@phdthesis{Feng2021, author = {Xiaowei Feng}, title = {Characterization and compact modeling of printed electrolyte-gated thin film transistors and circuits}, doi = {10.5445/IR/1000137975}, pages = {13, ix, 126}, year = {2021}, abstract = {The manufacturing of conventional electronics has become a highly complicated process, which requires intensive investment. In this context, printed electronics keeps attracting attention from both academia and industry. The primary reason is the simplification of the manufacturing process via additive printing technology such as ink-jet printing. Consequently, advantages are realized such as on-demand fabrication, minimal material waste and versatile choice of substrate materials. Central to the development of printed electronic circuits are printed transistors. Recently, metal oxide semiconductors such as indium oxide have become promising materials for the fabrication of printed transistors due to their high charge mobility. Furthermore, electrolyte-gating also provides benefits such as the low-voltage operation in sub-1 V regime due to the large gate capacitance provided by electrical double layers. This opens new possibilities to fabricate printed devices and circuits for niche applications. To facilitate the design and fabrication of printed circuits, the development of compact models is necessary. However, most of the current works have focused on the study of the static behavior of transistors, while the in-depth understanding of other characteristics such as the dynamic or noise behavior is missing. To this end, the purpose of this work is the comprehensive study on capacitance and noise properties of inkjet-printed electrolyte-gated thin-film transistors (EGT) based on indium oxide semiconductors. Proper modeling approaches are also proposed to capture accurately the electrical behaviour, which can be further utilized to enable advanced analysis of digital, analog and mixed-signal circuits. In this work, the capacitance of EGTs is characterized using voltage-dependent impedance spectroscopy. Intrinsic and extrinsic effects are carefully separated by using de-embedding test structures. Also, a dedicated equivalent circuit model is established to offer accurate simulations of the measured frequency response of the gate impedance. Based on that, it is revealed that top-gated EGTs have the potential to reach operation frequency in the kHz regime with proper optimizations of materials and printing process. Furthermore, a Meyer-like model is proposed to accurately capture the capacitance-voltage characteristics of the lumped terminal capacitance. Both parasitic and nonquasi-static effects are considered. This further enables the AC and transient analysis of complex circuits in circuit simulators. Following, the study of noise properties in the field of printed electronics is conducted. Low-frequency noise of EGTs is characterized using a reliable experimental setup. By examining measured noise spectra of the drain current at various gate voltages, the number fluctuation with correlated mobility fluctuation has been determined as the primary noise mechanism. Based on that, normalized flat-band voltage noise can be determined as the key performance metrics, which is only 1.08 × 10−7 V^2 µm^2, significantly lower in comparison with other thin-film technologies, which are based on dielectric gating and semiconductors such as IZO and IGZO. A plausible reason could be the large gate capacitance offered by the electrical double layers. This renders EGT technology useful for low-noise and sensitive applications such as sensor periphery circuits. Last but not least, various circuit designs based on EGT technology are proposed, including basic digital circuits such as inverters and ring oscillators. Their performance metrics such as the propagation delay and power consumption are extensively characterized. Also, the first design of a printed full-wave rectifier is presented by using diode-connected EGTs, which features near-zero threshold voltage. As a consequence, the presented rectifier can effectively process input voltage with a small amplitude of 100 mV and a cut-off frequency of 300 Hz, which is particularly attractive for the application domain of energy harvesting. Additionally, the previously established capacitance models are verified on those circuits, which provide a satisfactory agreement between the simulation and measurement data.}, language = {en} }