@phdthesis{Aliabadi2023, type = {Master Thesis}, author = {Reza Aliabadi}, title = {AI-based Ground Penetrating Radar Signal Processing for Thickness Estimation of Subsurface Layers}, journal = {KI-basierte Bodenradar Signalverarbeitung zur Dickensch{\"a}tzung von Schichten im Untergrund}, pages = {vi, 84, ix}, year = {2023}, abstract = {This thesis focuses on the estimation of subsurface layer thickness using Ground Penetrating Radar (GPR) A-scan and B-scan data through the application of neural networks. The objective is to develop accurate models capable of estimating the thickness of up to two subsurface layers. Two different approaches are explored for processing the A-scan data. In the first approach, A-scans are compressed using Principal Component Analysis (PCA), and a regression feedforward neural network is employed to estimate the layers’ thicknesses. The second approach utilizes a regression one-dimensional Convolutional Neural Network (1-D CNN) for the same purpose. Comparative analysis reveals that the second approach yields superior results in terms of accuracy. Subsequently, the proposed 1-D CNN architecture is adapted and evaluated for Step Frequency Continuous Wave (SFCW) radar, expanding its applicability to this type of radar system. The effectiveness of the proposed network in estimating subsurface layer thickness for SFCW radar is demonstrated. Furthermore, the thesis investigates the utilization of GPR B-scan images as input data for subsurface layer thickness estimation. A regression CNN is employed for this purpose, although the results achieved are not as promising as those obtained with the 1-D CNN using A-scan data. This disparity is attributed to the limited availability of B-scan data, as B-scan generation is a resource-intensive process.}, language = {en} }