TY - JOUR U1 - Zeitschriftenartikel, wissenschaftlich - begutachtet (reviewed) A1 - Bühler, Karl T1 - Hydrodynamic instabilities in rotating fluids JF - Journal of Thermal Science N2 - Rotating flow systems are often used to study stability phenomena and structure developments. The closed spherical gap problem is generalized into an open flow system by superimposing a mass flux in meridional direction. The basic solutions at low Reynolds numbers are described by analytical methods. The nonlinear supercritical solutions are simulated numerically and realized in experiments. Novel steady and time-dependent modes of flows are obtained. The extensive results concern the stability behaviour, non-uniqueness of supercritical solutions, symmetry behaviour and transitions between steady and time-dependent solutions. The experimental investigations concern the visualization of the various instabilities and the quatitative description of the flow structures including the laminar-turbulent transition. A comparison between theoretical and experimental results shows good agreement within the limit of rotational symmetric solutions from the theory. KW - Rotierende Flüssigkeit KW - Hydrodynamik Y1 - 2000 SN - 1993-033X SS - 1993-033X U6 - https://doi.org/10.1007/s11630-000-0002-5 DO - https://doi.org/10.1007/s11630-000-0002-5 VL - 9 IS - 2 SP - 103 EP - 108 PB - Science Press ER -