@inproceedings{Junk2017, author = {Stefan Junk}, title = {Integration of sustainable design and additive manufacturing in design education}, series = {Challenges for Technology Innovation: An Agenda for the Future}, publisher = {Taylor \& Francis Group}, address = {London}, isbn = {978-1-138-71374-1}, pages = {171 -- 175}, year = {2017}, abstract = {Additive manufacturing processes have evolved rapidly in recent years and now offer a wide range of manufacturing technologies and workable materials. This range from plastics and metals to paper and even polymer plaster composites. Due to the layer by layer structure of the components the additive processes have in comparison with conventional manufacturing processes the advantage of freedom of design, that means the simple implementation of complex geometries. Moreover, the additive processes provide the advantage of reduced consumption of resources, since essentially only the material is consumed, which is required for the actual component, since no waste in the form of chips is produced. In order to use these advantages, the potentials of additive manufacturing and the requirements of sustainable design must already be observed in the product development process. So the design of the components and products must be made so as little as possible construction and supporting material is required for the generative production and therefore little resources are consumed. Also, all steps of the additive manufacturing process must be considered properly, that includes the post processing. This allows components be designed so that for instance the effort for removing the support structure is considerably reduced. This leads to a significant reduction in manufacturing time and thus energy consumption. The implementation of these potentials in product development can be demonstrated by means of a multiple-stages model. A case study shows how this model is applied in the training of Master students in the field of product development. In a workshop the students work as a group while implementing the task of developing a miniature racing car under the rules of sustainable design in compliance with the boundary conditions for an additive manufacturing. In this case, Fused Deposition Modelling FDM using plastics as a building material is applied. The results show how the students have dealt with the different requirements and how they have implemented them in product development and in the subsequent additive manufacturing.}, language = {en} }