TY - CPAPER U1 - Konferenzveröffentlichung A1 - Ho, Kalun A1 - Pfreundt, Franz-Josef A1 - Keuper, Margret A1 - Keuper, Janis T1 - Learning Embeddings for Image Clustering: An Empirical Study of Triplet Loss Approaches T2 - Proceedings of ICPR 2020 : 25th International Conference on Pattern Recognition N2 - In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisy labels. Additionally, we propose a new, simple Triplet Loss formulation, which shows desirable properties with respect to formal clustering objectives and outperforms the existing methods. We evaluate all three Triplet loss formulations for K-means and correlation clustering on the CIFAR-10 image classification dataset. KW - correlation KW - pattern recognition KW - noise measurement KW - convolutional neural networks KW - image classification Y1 - 2021 UR - https://ieeexplore.ieee.org/abstract/document/9412602 UR - https://www.computer.org/csdl/proceedings-article/icpr/2021/09412602/1tmjjjXo0xO SN - 1051-4651 SS - 1051-4651 SN - 978-1-7281-8808-9 (elektronisch) SB - 978-1-7281-8808-9 (elektronisch) SN - 978-1-7281-8809-6 (Print on Demand) SB - 978-1-7281-8809-6 (Print on Demand) U6 - https://doi.org/10.1109/ICPR48806.2021.9412602 DO - https://doi.org/10.1109/ICPR48806.2021.9412602 SP - 87 EP - 94 PB - IEEE ER -