@phdthesis{Bhattacharyya2023, author = {Bhattacharyya, Mayukh}, title = {Near-field wireless ultra-low-power system for passive biotelemetry applications}, doi = {10.6094/UNIFR/235480}, institution = {Fakult{\"a}t Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019)}, school = {Albert-Ludwigs-Universit{\"a}t Freiburg}, pages = {xxiii, 206}, year = {2023}, abstract = {Ultra-low-power passive telemetry systems for industrial and biomedical applications have gained much popularity lately. The reduction of the power consumption and size of the circuits poses critical challenges in ultra-low-power circuit design. Biotelemetry applications like leakage detection in silicone breast implants require low-power-consuming small-size electronics. In this doctoral thesis, the design, simulation, and measurement of a programmable mixed-signal System-on-Chip (SoC) called General Application Passive Sensor Integrated Circuit (GAPSIC) is presented. Owing to the low power consumption, GAPSIC is capable of completely passive operation. Such a batteryless passive system has lower maintenance complexity and is also free from battery-related health hazards. With a die area of 4.92 mm² and a maximum analog power consumption of 592 µW, GAPSIC has one of the best figure-of-merits compared to similar state-of-the-art SoCs. Regarding possible applications, GAPSIC can read out and digitally transmit the signals of resistive sensors for pressure or temperature measurements. Additionally, GAPSIC can measure electrocardiogram (ECG) signals and conductivity. The design of GAPSIC complies with the International Organization for Standardization (ISO) 15693/NFC (near field communication) 5 standard for radio frequency identification (RFID), corresponding to the frequency range of 13.56 MHz. A passive transponder developed with GAPSIC comprises of an external memory storage and very few other external components, like an antenna and sensors. The passive tag antenna and reader antenna use inductive coupling for communication and energy transfer, which enables passive operation. A passive tag developed with GAPSIC can communicate with an NFC compatible smart device or an ISO 15693 RFID reader. An external memory storage contains the programmable application-specific firmware. As a mixed-signal SoC, GAPSIC includes both analog and digital circuitries. The analog block of GAPSIC includes a power management unit, an RFID/NFC communication unit, and a sensor readout unit. The digital block includes an integrated 32-bit microcontroller, developed by the Hochschule Offenburg ASIC design center, and digital peripherals. A 16-kilobyte random-access memory and a read-only 16-kilobyte memory constitute the GAPSIC internal memory. For the fabrication of GAPSIC, one poly, six-metal 0.18 µm CMOS process is used. The design of GAPSIC includes two stages. In the first stage, a standalone RFID/NFC frontend chip with a power management unit, an RFID/NFC communication unit, a clock regenerator unit, and a field detector unit was designed. In the second stage, the rest of the functional blocks were integrated with the blocks of the RFID/NFC frontend chip for the final integration of GAPSIC. To reduce the power consumption, conventional low-power design techniques were applied extensively like multiple power supplies, and the operation of complementary metal-oxide-semiconductor (CMOS) transistors in the sub-threshold region of operation, as well as further innovative circuit designs. An overvoltage protection circuit, a power rectifier, a bandgap reference circuit, and two low-dropout (LDO) voltage regulators constitute the power management unit of GAPSIC. The overvoltage protection circuit uses a novel method where three stacked transistor pairs shunt the extra voltage. In the power rectifier, four rectifier units are arranged in parallel, which is a unique approach. The four parallel rectifier units provide the optimal choice in terms of voltage drop and the area required. The communication unit is responsible for RFID/NFC communication and incorporates demodulation and load modulation circuitry. The demodulator circuit comprises of an envelope detector, a high-pass filter, and a comparator. Following a new approach, the bandgap reference circuit itself acts as the load for the envelope detector circuit, which minimizes the circuit complexity and area. For the communication between the reader and the RFID/NFC tag, amplitude-shift keying (ASK) is used to modulate signals, where the smallest modulation index can be as low as 10\%. A novel technique involving a comparator with a preset offset voltage effectively demodulates the ASK signal. With an effective die area of 0.7 mm² and power consumption of 107 µW, the standalone RFID/NFC frontend chip has the best figure-of-merits compared to the state-of-the-art frontend chips reported in the relevant literature. A passive RFID/NFC tag developed with the standalone frontend chip, as well as temperature and pressure sensors demonstrate the full passive operational capability of the frontend chip. An NFC reader device using a custom-built Android-based application software reads out the sensor data from the passive tag. The sensor readout circuit consists of a channel selector with two differential and four single-ended inputs with a programmable-gain instrumentation amplifier. The entire sensor readout part remains deactivated when not in use. The internal memory stores the measured offset voltage of the instrumentation amplifier, where a firmware code removes the offset voltage from the measured sensor signal. A 12-bit successive approximation register (SAR) type analog-to-digital-converter (ADC) based on a charge redistribution architecture converts the measured sensor data to a digital value. The digital peripherals include a serial peripheral interface, four timers, RFID/NFC interfaces, sensor readout unit interfaces, and 12-bit SAR logic. Two sets of studies with custom-made NFC tag antennas for biomedical applications were conducted to ascertain their compatibility with GAPSIC. The first study involved the link efficiency measurements of NFC tag antennas and an NFC reader antenna with porcine tissue. In a separate experiment, the effect of a ferrite compared to air core on the antenna-coupling factor was investigated. With the ferrite core, the coupling factor increased by four times. Among the state-of-the-art SoCs published in recent scientific articles, GAPSIC is the only passive programmable SoC with a power management unit, an RFID/NFC communication interface, a sensor readout circuit, a 12-bit SAR ADC, and an integrated 32-bit microcontroller. This doctoral research includes the preliminary study of three passive RFID tags designed with discrete components for biomedical and industrial applications like measurements of temperature, pH, conductivity, and oxygen concentration, along with leakage detection in silicone breast implants. Besides its small size and low power consumption, GAPSIC is suitable for each of the biomedical and industrial applications mentioned above due to the integrated high-performance microcontroller, the robust programmable instrumentation amplifier, and the 12-bit analog-to-digital converter. Furthermore, the simulation and measurement data show that GAPSIC is well suited for the design of a passive tag to monitor arterial blood pressure in patients experiencing Peripheral Artery Disease (PAD), which is proposed in this doctoral thesis as an exemplary application of the developed system.}, language = {en} }