Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen
OPUS4-4409 Wissenschaftlicher Artikel Keuper, Janis; Tschannen, Valentin; Ettrich, Norman; Delescluse, Matthias Detection of point scatterers using diffraction imaging and deep learning Diffracted waves carry high-resolution information that can help interpreting fine structural details at a scale smaller than the seismic wavelength. However, the diffraction energy tends to be weak compared to the reflected energy and is also sensitive to inaccuracies in the migration velocity, making the identification of its signal challenging. In this work, we present an innovative workflow to automatically detect scattering points in the migration dip angle domain using deep learning. By taking advantage of the different kinematic properties of reflected and diffracted waves, we separate the two types of signals by migrating the seismic amplitudes to dip angle gathers using prestack depth imaging in the local angle domain. Convolutional neural networks are a class of deep learning algorithms able to learn to extract spatial information about the data in order to identify its characteristics. They have now become the method of choice to solve supervised pattern recognition problems. In this work, we use wave equation modelling to create a large and diversified dataset of synthetic examples to train a network into identifying the probable position of scattering objects in the subsurface. After giving an intuitive introduction to diffraction imaging and deep learning and discussing some of the pitfalls of the methods, we evaluate the trained network on field data and demonstrate the validity and good generalization performance of our algorithm. We successfully identify with a high-accuracy and high-resolution diffraction points, including those which have a low signal to noise and reflection ratio. We also show how our method allows us to quickly scan through high dimensional data consisting of several versions of a dataset migrated with a range of velocities to overcome the strong effect of incorrect migration velocity on the diffraction signal. Wiley 2020 14 Geophysical Prospecting 68 3 830 844 10.1111/1365-2478.12889 Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019)
OPUS4-4408 Wissenschaftlicher Artikel Keuper, Janis; Tschannen, Valentin; Ettrich, Norman; Delescluse, Matthias Extracting horizon surfaces from 3D seismic data using deep learning Extracting horizon surfaces from key reflections in a seismic image is an important step of the interpretation process. Interpreting a reflection surface in a geologically complex area is a difficult and time-consuming task, and it requires an understanding of the 3D subsurface geometry. Common methods to help automate the process are based on tracking waveforms in a local window around manual picks. Those approaches often fail when the wavelet character lacks lateral continuity or when reflections are truncated by faults. We have formulated horizon picking as a multiclass segmentation problem and solved it by supervised training of a 3D convolutional neural network. We design an efficient architecture to analyze the data over multiple scales while keeping memory and computational needs to a practical level. To allow for uncertainties in the exact location of the reflections, we use a probabilistic formulation to express the horizons position. By using a masked loss function, we give interpreters flexibility when picking the training data. Our method allows experts to interactively improve the results of the picking by fine training the network in the more complex areas. We also determine how our algorithm can be used to extend horizons to the prestack domain by following reflections across offsets planes, even in the presence of residual moveout. We validate our approach on two field data sets and show that it yields accurate results on nontrivial reflectivity while being trained from a workable amount of manually picked data. Initial training of the network takes approximately 1 h, and the fine training and prediction on a large seismic volume take a minute at most. 2020 9 Geophysics 85 3 17 26 10.1190/geo2019-0569.1 Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019)