TY - THES U1 - Dissertation / Habilitation A1 - Zimmermann, Lukas T1 - Printed Electronics-Based Physically Unclonable Functions for Lightweight Security in the Internet of Things N2 - Die moderne Gesellschaft strebt mehr denn je nach digitaler Konnektivität -- überall und zu jeder Zeit - was zu Megatrends wie dem Internet der Dinge (Internet of Things, IoT) führt. Bereits heute kommunizieren und interagieren „Dinge“ autonom miteinander und werden in Netzwerken verwaltet. In Zukunft werden Menschen, Daten und Dinge miteinander verbunden sein, was auch als Internet von Allem (Internet of Everything, IoE) bezeichnet wird. Milliarden von Geräten werden in unserer täglichen Umgebung allgegenwärtig sein und über das Internet in Verbindung stehen. Als aufstrebende Technologie ist die gedruckte Elektronik (Printed Electronics, PE) ein Schlüsselelement für das IoE, indem sie neuartige Gerätetypen mit freien Formfaktoren, neuen Materialien auf einer Vielzahl von Substraten mit sich bringt, die flexibel, transparent und biologisch abbaubar sein können. Darüber hinaus ermöglicht PE neue Freiheitsgrade bei der Anpassbarkeit von Schaltkreisen sowie die kostengünstige und großflächige Herstellung am Einsatzort. Diese einzigartigen Eigenschaften von PE ergänzen herkömmliche Technologien auf Siliziumbasis. Additive Fertigungsprozesse ermöglichen die Realisierung von vielen zukunftsträchtigen Anwendungen wie intelligente Objekte, flexible Displays, Wearables im Gesundheitswesen, umweltfreundliche Elektronik, um einige zu nennen. Aus der Sicht des IoE ist die Integration und Verbindung von Milliarden heterogener Geräte und Systeme eine der größten zu lösenden Herausforderungen. Komplexe Hochleistungsgeräte interagieren mit hochspezialisierten, leichtgewichtigen elektronischen Geräten, wie z.B. Smartphones mit intelligenten Sensoren. Daten werden in der Regel kontinuierlich gemessen, gespeichert und mit benachbarten Geräten oder in der Cloud ausgetauscht. Dabei wirft die Fülle an gesammelten und verarbeiteten Daten Bedenken hinsichtlich des Datenschutzes und der Sicherheit auf. Herkömmliche kryptografische Operationen basieren typischerweise auf deterministischen Algorithmen, die eine hohe Schaltungs- und Systemkomplexität erfordern, was sie wiederum für viele leichtgewichtige Geräte ungeeignet macht. Es existieren viele Anwendungsbereiche, in denen keine komplexen kryptografischen Operationen erforderlich sind, wie z.B. bei der Geräteidentifikation und -authentifizierung. Dabei hängt das Sicherheitslevel hauptsächlich von der Qualität der Entropiequelle und der Vertrauenswürdigkeit der abgeleiteten Schlüssel ab. Statistische Eigenschaften wie die Einzigartigkeit (Uniqueness) der Schlüssel sind von großer Bedeutung, um einzelne Entitäten genau unterscheiden zu können. In den letzten Jahrzehnten hat die Hardware-intrinsische Sicherheit, insbesondere Physically Unclonable Functions (PUFs), eine große Strahlkraft hinsichtlich der Bereitstellung von Sicherheitsfunktionen für IoT-Geräte erlangt. PUFs verwenden ihre inhärenten Variationen, um gerätespezifische eindeutige Kennungen abzuleiten, die mit Fingerabdrücken in der Biometrie vergleichbar sind. Zu den größten Potenzialen dieser Technologie gehören die Verwendung einer echten Zufallsquelle, die Ableitung von Sicherheitsschlüsseln nach Bedarf sowie die inhärente Schlüsselspeicherung. In Kombination mit den einzigartigen Merkmalen der PE-Technologie werden neue Möglichkeiten eröffnet, um leichtgewichtige elektronische Geräte und Systeme abzusichern. Obwohl PE noch weit davon entfernt ist, so ausgereift und zuverlässig wie die Siliziumtechnologie zu sein, wird in dieser Arbeit gezeigt, dass PE-basierte PUFs vielversprechende Sicherheitsprimitiven für die Schlüsselgenerierung zur eindeutigen Geräteidentifikation im IoE sind. Dabei befasst sich diese Arbeit in erster Linie mit der Entwicklung, Untersuchung und Bewertung von PE-basierten PUFs, um Sicherheitsfunktionen für ressourcenbeschränkte gedruckte Geräte und Systeme bereitzustellen. Im ersten Beitrag dieser Arbeit stellen wir das skalierbare, auf gedruckter Elektronik basierende Differential Circuit PUF (DiffC-PUF) Design vor, um sichere Schlüssel für Sicherheitsanwendungen für ressourcenbeschränkte Geräte bereitzustellen. Die DiffC-PUF ist als hybride Systemarchitektur konzipiert, die siliziumbasierte und gedruckte Komponenten enthält. Es wird eine eingebettete PUF-Plattform entwickelt, um die Charakterisierung von siliziumbasierten und gedruckten PUF-Cores in großem Maßstab zu ermöglichen. Im zweiten Beitrag dieser Arbeit werden siliziumbasierte PUF-Cores auf Basis diskreter Komponenten hergestellt und statistische Tests unter realistischen Betriebsbedingungen durchgeführt. Eine umfassende experimentelle Analyse der PUF-Sicherheitsmetriken wird vorgestellt. Die Ergebnisse zeigen, dass die DiffC-PUF auf Siliziumbasis nahezu ideale Werte für die Uniqueness- und Reliability-Metriken aufweist. Darüber hinaus werden die Identifikationsfähigkeiten der DiffC-PUF untersucht, und es stellte sich heraus, dass zusätzliches Post-Processing die Identifizierbarkeit des Identifikationssystems weiter verbessern kann. Im dritten Beitrag dieser Arbeit wird zunächst ein Evaluierungsworkflow zur Simulation von DiffC-PUFs basierend auf gedruckter Elektronik vorgestellt, welche auch als Hybrid-PUFs bezeichnet werden. Hierbei wird eine Python-basierte Simulationsumgebung vorgestellt, welche es ermöglicht, die Eigenschaften und Variationen gedruckter PUF-Cores basierend auf Monte Carlo (MC) Simulationen zu untersuchen. Die Simulationsergebnisse zeigen, dass die Sicherheitsmetriken im besten Betriebspunkt nahezu ideal sind. Des Weiteren werden angefertigte PE-basierte PUF-Cores für statistische Tests unter verschiedenen Betriebsbedingungen, einschließlich Schwankungen der Umgebungstemperatur, der relativen Luftfeuchtigkeit und der Versorgungsspannung betrieben. Die experimentell bestimmten Resultate der Uniqueness-, Bit-Aliasing- und Uniformity-Metriken stimmen gut mit den Simulationsergebnissen überein. Der experimentell ermittelte durchschnittliche Reliability-Wert ist relativ niedrig, was durch die fehlende Passivierung und Einkapselung der gedruckten Transistoren erklärt werden kann. Die Untersuchung der Identifikationsfähigkeiten basierend auf den PUF-Responses zeigt, dass die Hybrid-PUF ohne zusätzliches Post-Processing nicht für kryptografische Anwendungen geeignet ist. Die Ergebnisse zeigen aber auch, dass sich die Hybrid-PUF zur Geräteidentifikation eignet. Der letzte Beitrag besteht darin, in die Perspektive eines Angreifers zu wechseln. Um die Sicherheitsfähigkeiten der Hybrid-PUF beurteilen zu können, wird eine umfassende Sicherheitsanalyse nach Art einer Kryptoanalyse durchgeführt. Die Analyse der Entropie der Hybrid-PUF zeigt, dass seine Anfälligkeit für Angriffe auf Modellbasis hauptsächlich von der eingesetzten Methode zur Generierung der PUF-Challenges abhängt. Darüber hinaus wird ein Angriffsmodell eingeführt, um die Leistung verschiedener mathematischer Klonangriffe auf der Grundlage von abgehörten Challenge-Response Pairs (CRPs) zu bewerten. Um die Hybrid-PUF zu klonen, wird ein Sortieralgorithmus eingeführt und mit häufig verwendeten Classifiers für überwachtes maschinelles Lernen (ML) verglichen, einschließlich logistischer Regression (LR), Random Forest (RF) sowie Multi-Layer Perceptron (MLP). Die Ergebnisse zeigen, dass die Hybrid-PUF anfällig für modellbasierte Angriffe ist. Der Sortieralgorithmus profitiert von kürzeren Trainingszeiten im Vergleich zu den ML-Algorithmen. Im Falle von fehlerhaft abgehörten CRPs übertreffen die ML-Algorithmen den Sortieralgorithmus. N2 - Modern society is more than ever striving for digital connectivity -- everywhere and at any time, giving rise to megatrends such as the Internet of Things (IoT). Already today, 'things' communicate and interact autonomously with each other and are managed in networks. In the future, people, data, and things will be interlinked, which is also referred to as the Internet of Everything (IoE). Billions of devices will be ubiquitously present in our everyday environment and are being connected over the Internet. As an emerging technology, printed electronics (PE) is a key enabler for the IoE offering novel device types with free form factors, new materials, and a wide range of substrates that can be flexible, transparent, as well as biodegradable. Furthermore, PE enables new degrees of freedom in circuit customizability, cost-efficiency as well as large-area fabrication at the point of use. These unique features of PE complement conventional silicon-based technologies. Additive manufacturing processes enable the realization of many envisioned applications such as smart objects, flexible displays, wearables in health care, green electronics, to name but a few. From the perspective of the IoE, interconnecting billions of heterogeneous devices and systems is one of the major challenges to be solved. Complex high-performance devices interact with highly specialized lightweight electronic devices, such as e.g. smartphones and smart sensors. Data is often measured, stored, and shared continuously with neighboring devices or in the cloud. Thereby, the abundance of data being collected and processed raises privacy and security concerns. Conventional cryptographic operations are typically based on deterministic algorithms requiring high circuit and system complexity, which makes them unsuitable for lightweight devices. Many applications do exist, where strong cryptographic operations are not required, such as e.g. in device identification and authentication. Thereby, the security level mainly depends on the quality of the entropy source and the trustworthiness of the derived keys. Statistical properties such as the uniqueness of the keys are of great importance to precisely distinguish between single entities. In the past decades, hardware-intrinsic security, particularly physically unclonable functions (PUFs), gained a lot of attraction to provide security features for IoT devices. PUFs use their inherent variations to derive device-specific unique identifiers, comparable to fingerprints in biometry. The potentials of this technology include the use of a true source of randomness, on demand key derivation, as well as inherent key storage. Combining these potentials with the unique features of PE technology opens up new opportunities to bring security to lightweight electronic devices and systems. Although PE is still far from being matured and from being as reliable as silicon technology, in this thesis we show that PE-based PUFs are promising candidates to provide key derivation suitable for device identification in the IoE. Thereby, this thesis is primarily concerned with the development, investigation, and assessment of PE-based PUFs to provide security functionalities to resource constrained printed devices and systems. As a first contribution of this thesis, we introduce the scalable PE-based Differential Circuit PUF (DiffC-PUF) design to provide secure keys to be used in security applications for resource constrained printed devices. The DiffC-PUF is designed as a hybrid system architecture incorporating silicon-based and inkjet-printed components. We develop an embedded PUF platform to enable large-scale characterization of silicon and printed PUF cores. In the second contribution of this thesis, we fabricate silicon PUF cores based on discrete components and perform statistical tests under realistic operating conditions. A comprehensive experimental analysis on the PUF security metrics is carried out. The results show that the silicon-based DiffC-PUF exhibits nearly ideal values for the uniqueness and reliability metrics. Furthermore, the identification capabilities of the DiffC-PUF are investigated and it is shown that additional post-processing can further improve the quality of the identification system. In the third contribution of this thesis, we firstly introduce an evaluation workflow to simulate PE-based DiffC-PUFs, also called hybrid PUFs. Hereof, we introduce a Python-based simulation environment to investigate the characteristics and variations of printed PUF cores based on Monte Carlo (MC) simulations. The simulation results show, that the security metrics to be expected from the fabricated devices are close to ideal at the best operating point. Secondly, we employ fabricated printed PUF cores for statistical tests under varying operating conditions including variations in ambient temperature, relative humidity, and supply voltage. The evaluations of the uniqueness, bit aliasing, and uniformity metrics are in good agreement with the simulation results. The experimentally determined mean reliability value is relatively low, which can be explained by the missing passivation and encapsulation of the printed transistors. The investigation of the identification capabilities based on the raw PUF responses shows that the pure hybrid PUF is not suitable for cryptographic applications, but qualifies for device identification tasks. The final contribution is to switch to the perspective of an attacker. To judge on the security capabilities of the hybrid PUF, a comprehensive security analysis in the manner of a cryptanalysis is performed. The analysis of the entropy of the hybrid PUF shows that its vulnerability against model-based attacks mainly depends on the selected challenge building method. Furthermore, an attack methodology is introduced to assess the performances of different mathematical cloning attacks on the basis of eavesdropped challenge-response pairs (CRPs). To clone the hybrid PUF, a sorting algorithm is introduced and compared with commonly used supervised machine learning (ML) classifiers including logistic regression (LR), random forest (RF), as well as multi-layer perceptron (MLP). The results show that the hybrid PUF is vulnerable against model-based attacks. The sorting algorithm benefits from shorter training times compared to the ML algorithms. If the eavesdropped CRPs are erroneous, the ML algorithms outperform the sorting algorithm. KW - Physically Unclonable Function KW - Hardware Security KW - Printed Electronics Y2 - 2020 UR - https://publikationen.bibliothek.kit.edu/1000125958 U6 - https://doi.org/10.5445/IR/1000125958 DO - https://doi.org/10.5445/IR/1000125958 SP - 156 S1 - 156 PB - KITopen CY - Karlsruhe ER - TY - THES U1 - Dissertation / Habilitation A1 - Feng, Xiaowei T1 - Characterization and compact modeling of printed electrolyte-gated thin film transistors and circuits N2 - The manufacturing of conventional electronics has become a highly complicated process, which requires intensive investment. In this context, printed electronics keeps attracting attention from both academia and industry. The primary reason is the simplification of the manufacturing process via additive printing technology such as ink-jet printing. Consequently, advantages are realized such as on-demand fabrication, minimal material waste and versatile choice of substrate materials. Central to the development of printed electronic circuits are printed transistors. Recently, metal oxide semiconductors such as indium oxide have become promising materials for the fabrication of printed transistors due to their high charge mobility. Furthermore, electrolyte-gating also provides benefits such as the low-voltage operation in sub-1 V regime due to the large gate capacitance provided by electrical double layers. This opens new possibilities to fabricate printed devices and circuits for niche applications. To facilitate the design and fabrication of printed circuits, the development of compact models is necessary. However, most of the current works have focused on the study of the static behavior of transistors, while the in-depth understanding of other characteristics such as the dynamic or noise behavior is missing. To this end, the purpose of this work is the comprehensive study on capacitance and noise properties of inkjet-printed electrolyte-gated thin-film transistors (EGT) based on indium oxide semiconductors. Proper modeling approaches are also proposed to capture accurately the electrical behaviour, which can be further utilized to enable advanced analysis of digital, analog and mixed-signal circuits. In this work, the capacitance of EGTs is characterized using voltage-dependent impedance spectroscopy. Intrinsic and extrinsic effects are carefully separated by using de-embedding test structures. Also, a dedicated equivalent circuit model is established to offer accurate simulations of the measured frequency response of the gate impedance. Based on that, it is revealed that top-gated EGTs have the potential to reach operation frequency in the kHz regime with proper optimizations of materials and printing process. Furthermore, a Meyer-like model is proposed to accurately capture the capacitance-voltage characteristics of the lumped terminal capacitance. Both parasitic and nonquasi-static effects are considered. This further enables the AC and transient analysis of complex circuits in circuit simulators. Following, the study of noise properties in the field of printed electronics is conducted. Low-frequency noise of EGTs is characterized using a reliable experimental setup. By examining measured noise spectra of the drain current at various gate voltages, the number fluctuation with correlated mobility fluctuation has been determined as the primary noise mechanism. Based on that, normalized flat-band voltage noise can be determined as the key performance metrics, which is only 1.08 × 10−7 V^2 µm^2, significantly lower in comparison with other thin-film technologies, which are based on dielectric gating and semiconductors such as IZO and IGZO. A plausible reason could be the large gate capacitance offered by the electrical double layers. This renders EGT technology useful for low-noise and sensitive applications such as sensor periphery circuits. Last but not least, various circuit designs based on EGT technology are proposed, including basic digital circuits such as inverters and ring oscillators. Their performance metrics such as the propagation delay and power consumption are extensively characterized. Also, the first design of a printed full-wave rectifier is presented by using diode-connected EGTs, which features near-zero threshold voltage. As a consequence, the presented rectifier can effectively process input voltage with a small amplitude of 100 mV and a cut-off frequency of 300 Hz, which is particularly attractive for the application domain of energy harvesting. Additionally, the previously established capacitance models are verified on those circuits, which provide a satisfactory agreement between the simulation and measurement data. N2 - Die Herstellung konventioneller Elektronik ist ein hochkomplexer Prozess, der hohe Kosten erfordert. In diesem Zusammenhang gewinne die gedruckte Elektronik sowohl in der Wissenschaft als auch in der Industrie eine erhöhte Aufmerksamkeit. Der Hauptgrund dafür ist die Vereinfachung des Herstellungsprozesses durch additive Drucktechnologien wie Inkjet-Druck. Dies hat Vorteile wie die bedarfsgerechte Herstellung und minimaler Materialverbrauch. Außerdem wird eine vielfältige Auswahl verschiedener Substratmaterialien ermöglicht. Im Zentrum der Entwicklung von Schaltungen auf Basis gedruckter Elektronik stehen gedruckte Transistoren. In letzter Zeit sind Metalloxidhalbleiter wie Indiumoxid aufgrund ihrer hohen Ladungsbeweglichkeit zu vielversprechenden Materialien für die Herstellung gedruckter elektronischer Bauelemente geworden. Darüber hinaus bietet der Elektrolyt-Gate-Ansatz aufgrund der großen Gate-Kapazität, die durch die elektrischen Doppelschichten bereitgestellt wird, auch die Vorteile, einen Niederspannungsbetrieb im Sub-1 V-Bereich zu erreichen. Dies eröffnet neue Möglichkeiten für die Herstellung gedruckter Bauteile und Schaltungen in Nischenanwendungen. Um das Design und die Herstellung von gedruckten Schaltungen zu erleichtern, ist die Entwicklung kompakter Modelle erforderlich. Die meisten existierenden Arbeiten haben sich bisher auf die Untersuchung des statischen Verhaltens von Transistoren konzentriert. Hierbei wird das dynamische und das Rauschverhalten der Bauteile häufig vernachlässigt. Ziel dieser Arbeit ist es daher, die umfassende Untersuchung der Kapazitäts sowie Rauscheigenschaften Tintenstrahl-gedruckter Dünnschichttransistoren mit einem flüssig-prozessierbaren Feststoffelektrolyten als Isolator (EGT) und einem Indiumoxid-Halbleiter als Kanalmaterial durchzuführen.. Es werden geeignete Modellierungsansätze vorgeschlagen, um das elektrische Verhalten genau zu erfassen. Dies ermöglicht eine erweiterte Analyse analoger, digitaler sowie gemischter analog-digitaler Schaltungen. In dieser Arbeit wird die Kapazität von EGTs mittels spannungsabhängiger Impedanzspektroskopie charakterisiert. Intrinsische und extrinsische Effekte werden durch Verwendung von De-Embedding-Teststrukturen getrennt. Des Weiteren wird ein Ersatzschaltbild erstellt, um genaue Simulationen des gemessenen Frequenzgangs der Gate-Impedanz zu ermöglichen. Auf dieser Grundlage zeigt sich, dass Top-Gate EGTs das Potenzial haben, eine Schaltfrequenz im kHz-Bereich zu erreichen, wenn die Materialien und der Druckprozess weiter optimiert werden. Darüber hinaus wird ein Meyer-ähnliches Modell vorgeschlagen, um die Kapazitäts-Spannungs-Eigenschaften der Anschlusskapazität genau zu erfassen. Es werden sowohl parasitäre Kapazitäten als auch nicht-quasistatische Effekte berücksichtigt. Die resultierenden Modelle ermöglichen weitere AC- und transiente Simulationen komplexer Schaltungen in der EGT-Technologie. Im Folgenden werden Untersuchungen zu den Rauscheigenschaften gedruckter EGTs durchgeführt. Das Niederfrequenzrauschen wird anhand eines eigens dafür optimierten Versuchsaufbaus charakterisiert. Durch Untersuchung der gemessenen Rauschspektren im Transistor-Drainstrom bei verschiedenen Gate-Spannungen wurde die Ladungsträgerschwankung mit korrelierter Mobilitätsschwankung als primärer Rauschmechanismus bestimmt. Auf dieser Grundlage kann das normalisierte Flachband-Spannungsrauschen als Hauptleistungsmetrik berechnet werden, was im Vergleich zu anderen Dünnschichttechnologien, die auf Dielektrika und Halbleitern wie IZO und IGZO basieren, einen erheblich niedrigeren Wert aufweist.. Ein plausibler Grund könnte die große Gate-Kapazität sein, die durch die elektrische Doppelschicht erzeugt wird. Daher eigenen sich gedruckte EGTs für beispielsweise rauscharme Anwendungen in der Sensorik. Abschließend werden verschiedene Schaltungsdesigns vorgeschlagen, die auf EGT-Technologie basieren. Dies beinhaltet grundlegende digitale Schaltungen wie Inverter Strukturen und Ringoszillatoren. Ihre Leistungsmetriken, einschließlich der Gatterlaufzeit und dem Stromverbrauch, werden ausführlich charakterisiert. Des Weiteren wird das erste Design eines gedruckten Brückengleichrichters unter Verwendung von EGTs mit eine nahe-null-Volt-Schwellspannung in einer Dioden-Konfiguration vorgestellt. Der vorgestellte Gleichrichter ist in der Lage, Eingangsspannungen mit kleiner Amplitude von circa 100 mV effektiv zu verarbeiten. Dies ist besonders im Anwendungsbereich des Energy-Harvestings von Interesse. Zusätzlich werden die zuvor etablierten Kapazitätsmodelle auf diesen Schaltungen verifiziert. Ein Vergleich der Simulations- und Messdaten zeigt deren sehr gute Übereinstimmung und verifiziert die entwickelten Kapazitätsmodelle. Y2 - 2021 U6 - https://doi.org/10.5445/IR/1000137975 DO - https://doi.org/10.5445/IR/1000137975 SP - 13, ix, 126 S1 - 13, ix, 126 ER -