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Abstract—Android is an operating system which
was developed for use in smart mobile phones and
is the current leader in this market. A lot of efforts
are being spent to make Android available to the
embedded world, as well. Many embedded systems
do not have a local GUI and are therefore called
headless devices. This paper presents the results of
an analysis of the general suitability of Android in
headless embedded systems and ponders the ad-
vantages and disadvantages. It focuses on the
hardware related issues, i.e. to what extent An-
droid supports hardware peripherals normally
used in embedded systems.

Index Terms—Android, Accessory Development
Kit (ADK), Android Open Source Project (AOSP),
Asynchronous Shared Memory (Ashmem), Micro-
controllers (MCUs).

1. INTRODUCTION

Android is an operating system for mobile devices
developed by the Open Handset Alliance (OHA).
Android enjoys being the market leader in the field of
smart phones with a market share of more than 70 %
[1]. Android is based on the Linux kernel. So the
question arises if there are any additional benefits in
using Android instead of Linux for applications out-
side the smart phone or tablet world, i.e. for applica-
tions from industrial, process, or building automation.

The objective of this project was to discuss the suit-
ability, i.e. the advantages and disadvantages of An-
droid for headless systems in industrial automation. In
the projected case, the anticipated end product was a
system without a local user interface, but with the
option to add a GUI for a certain percentage of the
applications. This paper will only cover the use case
that all applications are Android based and there are
no Linux applications. A heterogeneous system (An-
droid and Linux applications) would need further
investigations.
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Figure 1: Architecture of Android [2].

A basic question in this context is the support for
external hardware peripherals. Specifically built for
smart phones Android does not need to provide gener-
ic support for external interfaces like SPI, UART,
GPIO or similar peripherals as opposed to "normal"
embedded systems.

In this paper first the architecture of Android is pre-
sented in ch. IT and the concept of headless Android is
introduced in ch. III. Then the used baseboard is short-
ly presented in ch. IV. The extension of Android based
systems with additional local hardware interfaces was
the most important part of the project. The mechanism
of hardware support in Android is discussed in ch. V.
Then the timing results of the test setup are presented
in detail in ch. VII and ch. VIII. The report is conclud-
ed by giving an opinion based on the findings during
the project.

II. ANDROID ARCHITECTURE

Android is based on the Linux kernel, a number of
software libraries written in 'C', a Java-like virtual
machine for the execution of application code, and a
full suite of mobile phone applications [3]. Fig. 1
shows an overview of the Android architecture.
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The Linux kernel in the Android is a modified ver-
sion of the kernels available from the Linux kernel
archives, often also called vanilla Linux kernel [4].
These modifications include Alarm, Asynchronous
shared memory (Ashmem), Binder, Power Manage-
ment, Low Memory Killer, Kernel Debugger and
Logger [5]. Android uses the Linux kernel to control
the underlying hardware.

III. ANDROID FOR HEADLESS EMBEDDED SYSTEMS

Headless embedded devices do not have a local user
interface like mobile devices, which Android was
originally created for. Android for headless devices
could therefore omit those components that are used to
draw and control the user interface. The components,
which are not required for the headless-only use case,
are SurfaceFlinger, Window-Manager, Wallpaper-
Service and InputMethodManager [6].

IV. THE BASE BOARD

The selection of the base board is an important step,
as there are a lot of aspects to be considered in this
process, especially in the case of porting Android to a
new device. The parameters to be taken into account
are SoC features, community, cost, features, expanda-
bility, availability, licensing, catalogue part, and soft-
ware support [7].

In the given project the focus was not on the porting
of Android, but on the features it offers. The project
work was started by testing requirements on the Rasp-
berry Pi[8] and then continued on the " Tsunami Pack"
by TechNexion [9]. The Raspberry Pi was not used
further because the Android builds available for it are
still not stable. Figure 2 shows the board used in the
setup of the test environment.

V. HARDWARE SUPPORT MECHANISMS

A. General Architecture

Many embedded devices need to collect data from
local sensors, analyze and process the data, and con-
trol local actuators accordingly. In some cases, they
are connected to backend control and monitoring
systems for proper operation. All these embedded
scenarios require different hardware interfaces like
GPIO, SPI, UART PWM or alike. This connectivity
between sensors and actuator devices through local
hardware interfaces is normally not required in smart
phones. The Android architecture has been optimized
for smart phones, and thus, only includes a minimum
of hardware drivers required for smart phones [10].
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Figure 3: Android hardware access mechanisms [11].

In the changes made to the standard Linux kernel for
Android, the approach of hardware support has also
been changed. Standard Linux provides access to
hardware interfaces via device drivers. In Android
hardware access is typically supported through shared
libraries provided by manufacturers. Most software
stacks typically found in Linux distributions that ena-
ble interaction with local hardware are not found on
Android [11]. Figure 3 shows how hardware is ac-
cessed on Android.

Unlike native Linux applications, Android applica-
tions communicate with the underlying hardware
through Java APIs, direct system calls are not possi-
ble. Android defines APIs which can be utilized by
applications to communicate with the underlying
hardware. A system service is used to load and inter-
face the shared libraries and provide the API function-
ality to the application. These system services consist
of two parts. One is written in Java and the other one
in C. The Java part implements the Android side of the
service and the C part communicates with the shared
library.

Consequently, there exist multiple ways to add local
hardware interfaces to an Android run-time system:
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e Add shared libraries to the source code and make
a custom port to Android (cf. ch. B.1)).

e Use the Android Open Accessory Mode (cf.
ch. B.2)).

e Use external MCUs connected over USB or Blue-
tooth (cf. ch. B.3)).

B. Accessing local interfaces from Android

1) Android Porting

This solution requires adding the needed hardware
drivers to the Linux kernel and applying the Android
patch to the kernel as a first step. As a second step, the
shared libraries should be made available in the source
code of Android. This custom version must then be
ported to the target device. The best part of this ap-
proach is that after the accomplishment of this task
only application level programming would be required
to make use of these peripherals like the USB and
WiFi APIs are used in Android normally. The down-
turn of this approach is that detailed knowledge of the
hardware would be required, which mostly calls for
support from the hardware vendor.

Generally speaking, this approach fundamentally
contradicts the overall Android approach, which
strives to avoid complex Linux programming and tries
to replace it with comparatively easier Java program-
ming. In the end this approach would double the work,
because first Linux programmers would build their
own build of Android to include the libraries in the OS
and then the Java developers would use these libraries
in the application development phase. This would also
increase the initial development cycle of the product
but with a much more stable result.

2) Android Open Accessory Mode

The second option to add hardware interfaces comes
from the Android Open Accessory mode, which al-
lows the connection of peripherals to an Android plat-
form where the Android is the USB device and the
peripheral (accessory) is the USB host [6]. This avoids
the necessity of new hardware drivers.

Google implemented its own hardware by the name
Android Accessory Development Kit (ADK) as a
reference implementation to build hardware accesso-
ries for Android. The ADK is based on the Arduino
open source electronics prototyping platform [12].
Android Open Accessory [13] protocol is used to
communicate with the Android device over a USB or
a Bluetooth connection. This mode is not supported on
a lot of devices and as reported by various senior de-
velopers on communities it is not so robust [ 14].

3) External Microcontrollers

The third possible solution is very similar to the one
used by Google for their Google ADK. It uses the
USB or Bluetooth interfaces of the Android device to
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attach an external MCU, where the MCU implements
and provides the actual connectivity to the local inter-
faces. There are external boards already available on
the market, like the FT311D from FTDI [15] or the
I0IO from Sparkfun [16]. These boards are delivered
with a custom API library which may be included into
an Android application and provides access to the
boards peripherals. The good side is that for these
boards the development time decreases considerably,
compared to integrating Linux drivers.

C. Evaluation of methods to access local interfaces

If a company develops their own board and ports
Android on their own, then they will write their own
drivers for their system. This is the best way to offer
these interfaces to the application. If a company wants
to use an off the shelf board with Android already
running on it but the required interfaces are missing,
the Android Open Accessory Mode or the external
MCU approach will be the approach with less effort.

The latter use case is interesting for this investigation
because the TechNexion board does not support the
drivers needed for the hardware. Furthermore the
ADK is not orderable. Therefore, it was decided to go
with the external MCU approach as a solution to add
peripheral support to Android. The IOIO board was
used for this work.

The board is created by a day-time Google employee
as a hobby project and is sold by Sparkfun. The board
connects to the Android device in debug mode using
USB OTG or Bluetooth. An Android application can
utilize the IOIO libraries to access functionalities on
the board. No embedded programming is required.
Another good thing is that it works with all Android
versions above 1.5.

VI. HARDWARE FOR THE TARGET SYSTEM

The target platform requires a lot of hardware inter-
faces to work. In this section each interface will be
discussed one after the other.

A. Tsunami Mainboard

1) SD-Card

As large memory storage is required to store logged
data, an SD-Card could easily solve this requirement.
The SD-Card support is provided by default in An-
droid and is fully functional on the Tsunami board.

2) UART

A serial UART-interface is still an important way to
access hardware peripherals on embedded systems.
There are no standard APIs present in Android to read
and write to Linux serial ports. However, there is an
open source project which makes it possible to read
and write data through the serial ports of Linux. The
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Figure 4: Block diagram of CAN Controller connected to the An-
droid device using 1010.

project name is "android-serialport-api“ [17]. The
serial ports on the Tsunami board can be used with
this api. Moreover, the Modbus [18] protocol can be
used. The application level protocol operates directly
on top of a serial interface and serial communication
standards [19].

3) GPIO, SPI and CAN

The support for other peripherals is present on the
Tsunami board. However, no out of the box solutions
or precompiled libraries exist for them. The 10IO
board was used to provide the other peripherals re-
quired for the system.

B. Using 1010 Board

1) GPIO

All 48 pins on the 1010 board can be configured and
used as GPIO’s. For this both digital and analogue
input/output tests were performed. For the digital
output an LED was successfully controlled with the
I0IO board. Using the I0IO board implementing the
GPIO functionality is quite straight forward.

2) SPI

There is a special class in the IOIO library called
"SpiMaster.java". Controlling the IOIO SPI interface
is done via the SpiMaster class. An instance of this
interface corresponds to a single SPI module on the
board, as well as to the pins it uses for CLK, MOS]I,
MISO and SS (one or more) [20].

In the test setup it was tested to make the SPI work
in the Master mode using a fixed buffer of 0x55 and it
transmitted successfully. During the tests the transmit-
ted signal was good up to 1 Mbps but it started dis-
torting after that and it worked till 3.2 Mbps. At higher
speeds, the output signal degraded significantly.
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Figure 5: OpenXC architecture [22].

3) CANbus

CAN Bus [21] is also not natively supported on An-
droid. One possible solution is to use the SPI of 1010
board to control a CAN controller from the Android
device. Such a CAN controller is provided by Micro-
chip, MCP2515 [23]. Figure 4 shows the block dia-
gram of the proposed solution.

Another interesting solution is the OpenXC architec-
ture [22] developed by Ford and Bug labs. It connects
the CAN bus to the Android device over USB using a
CAN translator in between. Figure 5 shows the overall
architecture. The Android libraries of the project are
available on the projects webpage.

4) UART

The IOIO Board also offers a UART interface,
which can be used in a similar way as the Tsunami
boards UART.

VII. I0IO TIMING TESTS

The purpose of the tests was to test the round trip
time of communication from Android to the IOIO
board and back. The idea was to measure the delays
that incurred during this communication process.
These tests were performed to assess the setup's feasi-
bility for target systems communication timing re-
quirements, which are very strict for automation con-
trol systems. The goal was to achieve a signal cycle
time of less than 12.5 ms because it sufficed the tim-
ing requirements of the target automation systems.
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Figure 7: The screen shot of the application.

A. Hardware Setup

The set-up includes the Tsunami board running An-
droid connected to the IOIO board through USB in
Android Debug Bridge (ADB) mode. The other possi-
bility would have been a connection over Bluetooth
which would additionally include its own delays.
Therefore the direct physical connection via USB was
used instead.

For the hardware, one pin (#10) of the IOIO board
was set as digital output in the application, which
turns on an LED, when set to true (on), and turns it
off, when set to false (off). The output of this pin
(#10) is given as input to another pin on the board (pin
#33) which is configured as digital input. With this
setup a hardware loop is created on the IOIO board,
which forms a cycle of on and off signals like a ring
oscillator. An oscilloscope was used to monitor the
signal across the LED, which was the desired repeat-
ing digital signal. Fig. 6 shows the hardware setup for
the tests.

B. Software Application

The software uses the IOIO library and tumns on the
digital output pin when the "Generate Signal" button
is pressed in the application. If the logical state of the
input pin is changed, then this state is inverted and set
to the output pin. The process of changing the logical
state of the output pin until the input pin represents
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this logical state is one cycle. By pressing the “Gener-
ate signal” button this process runs in a loop until
1000 if these cycles are run through and subsequently
the mean value of the readings and the variance of the
read values are displayed using the TextView widget
available in the Android API. Fig. 7 shows a screen
shot of the application that was developed to perform
the tests.

C. Measurements

Two types of measurements were taken for the tests.
One was software timing in the application itself for
one complete cycle off on and off (which means two
cycles of the IOIO board). The other one was using an
oscilloscope across the LED in the hardware setup to
measure the time period of one signal cycle.

The software measurements could be halved and
compared to the duration of one signal cycle. Alterna-
tively two signal cycles (on and off) could be consid-
ered as one software cycle duration and the timings
could be compared. The second option of taking two
consecutive on and off signals was chosen. The results
are discussed below.

D. Test Cases

1) Different Load Conditions

One important aspect is the dependency on the load
conditions of the CPU, i.e. from other processes run-
ning quasi-simultaneously in the Android device.
Three load conditions were tested to generate a set of
results. The first one was to run the test application by
itself, with no other applications running. The second
one was with a medium load condition with some
other applications running in the background. The
third one was a high load condition with even more
applications running in the background.

2) Sleep Function

For another test scenario the sleep function was in-
troduced in the loop test. In each operation the looping
thread of the I0OIO test application is put to sleep for
different amounts of milliseconds. After the time ex-
pires the thread is available again for scheduling and is
executed [24]. This was done to get an idea of the
delays that are incorporated by releasing and reacquir-
ing the processor.

3) Run as Service

Another test scenario was to do the timing tests by
communicating with the I0OIO board in an Android
service. A service is just like a foreground application
(activity). The only difference is that it does not have a
user interface and runs only in the background without
any user interaction. The looping test was the same as
before, this time only the application was run as a
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Figure 9: Software application readings for the low load scenario
test.

service, everything else was the same. Further three
sub scenarios for different load conditions were tested
which included the following:
e Run only the IOIO service.
e Run the service plus the music player application
continuously running in background as a service.
e Use the service, the music player playing songs
plus playing a game at the same time

VIII. RESULTS

A. Tests without sleep

On average a delay of 12 ms was experienced for the
two signal cycles. From the measurements it was seen
that adding the load didn't really affect the average
duration a lot (at least in milliseconds) but the vari-
ance did increase when increasing the number of ap-
plications running. Using a web server during the
IOIO operation increased the mean duration as well,
which was obvious due to processor scheduling. But
apart from only those specific times the oscilloscope
readings were the same. This explains Android sched-
uling as well. The foreground activities have most
(~90 %) of the CPU time whereas background activi-
ties share only the remaining resources (~10 %) [25].
Fig. 8 shows the oscilloscope image of one of the tests
being carried out for the low load scenario.
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Figure 10: Oscilloscope measurements for the high load scenario
and 10 ms sleep time.

Table 1. Repeated readings for the low load test scenario.

Application with no sleep (low load)
test | mean durati- variance oscilloscope
# on (ms) (ms) reading (ms)
1 12.09 0.28 12
2 12.21 0.49 12
3 12.23 0.54 12

Fig. 9 shows the software results of the timing test
for the same scenario presented above. Table 1 shows
the timing measurements for three repeated tests for
the same scenario, which are consistent enough to
deduce results. Readings were noted for the other test
scenarios as well, but are omitted here due to limited
space.

B. Tests with sleep

For this set of measurements a huge variation be-
tween the oscilloscope readings was observed. Also
when compared to the readings of the software appli-
cation the readings don’t match as for the test meas-
urements in the “no sleep scenarios”. However, the
mean values are consistent between different tests.
This indicates that the oscilloscope reading depends a
lot on the point in time when the oscilloscope was
stopped to take a measurement. Whereas the differ-
ence between the mean value in the software applica-
tion and the measured oscilloscope values presumably
are caused by the increased variance. The mean values
didn't change a lot in the computed results but the
variance increased a lot.

The results also depict that the delays added by add-
ing more load to the processor are small enough to
remain in the given timing requirements. Adding the
sleep functionality increases the timing of the whole
setup by almost the same amount as the sleep function
puts the thread on a hold.
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Fig 11: Software application readings for the high load and 10 ms
sleep scenario test.

Table 2: Repeated readings for the high load test scenario.

Application with 10 ms sleep (high load)
test | mean durati- variance | oscilloscope
# on (ms) (ms) reading (ms)
1 22.67 1.45 32 (varying)
2 22.55 1.28 32 (varying)
3 22.28 0.91 32 (varying)

Fig. 10 shows the oscilloscope image of one of the
tests being carried out for the high load scenario and a
sleep time of 10 ms. Fig. 11 shows the software results
of the timing test for the same scenario presented
above. Table 2 shows the timing measurements for
three repeated tests for the same scenario.

In summary if a process is released by the CPU and
it comes back after some time, the delays incorporated
are still bearable according to the timing requirements.
Adding the load also doesn't affect the communication
in an adverse manner. The sleep function only adds
delays roughly of the passive time of the sleep func-
tion.

C. Test of Running as a Service

The same logic of testing was applied in another
Android program which was run as service under
different load conditions. From the oscilloscope imag-
es it was clear that the variance is so high at different
times that the mean delay of communication has also
increased to a high number. These high numbers will
not meet the desired communication timing require-
ments so running the application in the foreground as
an activity would be advisable to stay under the com-
munication delay requirements. Fig. 12 shows the
oscilloscope image of one of the tests being carried
with the music service and game a being run simulta-
neously. Fig. 13 shows the software results of the
timing test for this very scenario.
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Fig 13: Software application readings for the service, music service
and game run together.

It is interesting that when the service is running
alone, it experiences significantly larger mean values
and variances in comparison to the situation when
other services are simultaneously executed on the
Android system. For the moment, it can just be as-
sumed that the power management has an impact also
on the scheduler. Perhaps the scheduler calls the back-
ground services more often if there is more than one
service active, which causes this unpredicted behavior.

IX. CONCLUSION

The target systems are headless systems with the op-
tion to add a local GUI to the system if required. The-
se headless systems require different hardware inter-
faces than the ones used in Android smartphones. The
standard procedure of integrating hardware interfaces
in Android is a bit complex but there are workarounds
available which were presented in this paper. The
delays these elements add to the whole communica-
tion setup are still bearable in most scenarios as
proved from the tests performed during this project.

From the work it was seen that Android is set to join
the embedded world. If the target systems are headless
with a small percentage being GUI enabled as well, it
is recommendable to use Android as the OS. This will
give the advantage of having a single platform with
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slightly different features. This would reduce the de-
velopment phase and costs. To summarize we think
that using Android in headless devices in industrial
automation is attractive, as soon as they have optional
GUIs.
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