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Abstract. The Thread protocol is a recent development based on 6LoWPAN (IPv6 over 
IEEE 802.15.4), but with extensions regarding a more media independent approach, which – 
additionally – also promises true interoperability. To evaluate and analyse the operation of a 
Thread network a given open source 6LoWPAN stack for embedded devices (emb::6) has been 
extended in order to comply with the Thread specification. The implementation covers Mesh 
Link Establishment (MLE) and network layer functionality as well as 6LoWPAN mesh under 
routing mechanism based on MAC short addresses. The development has been verified on a 
virtualization platform and allows dynamical establishment of network topologies based on 
Thread’s partitioning algorithm. 

1.  Introduction  
Nowadays, several so-called megatrends like Internet of Things (IoT) are rapidly emerging and are 
leading to an increasing amount of new protocols and solutions to cover the manifold requirements of 
different applications. Wireless technologies based on embedded systems play a major role for the local 
communication. Since the use of IP-based addressing protocols became a necessity to give IoT devices 
the access to cloud services and interact together, the major drawback was the limited number of unique 
addresses provided by the IPv4 protocol. This issue was addressed by the development of IPv6 which 
allows a nearly unlimited number of devices and therefore provides the basis for the IoT. However, 
when using the IPv6 protocol for ‘things’ which are mainly embedded devices, several restrictions 
regarding the underlying technologies and performance of the devices must be considered. Therefore, 
the usage of IPv6 for embedded devices requires an adaptation layer named 6LoWPAN (IPv6 Low 
Power Wireless Personal Area Networks) [1] in order to be used in low power wireless networks. 

Nevertheless, even with a common network layer there are still several points which are not defined 
by 6LoWPAN such as the routing protocol and its parameters what might lead to incompatibilities. 
Therefore, the Thread protocol defines all the layers and technologies required to create a common 
communication network. To evaluate such a Thread network and to analyse its operation, we extended 
an open source 6LoWPAN stack – namely emb::6a - in order to comply with the Thread specification 
for connected home applications. The paper is structured as follows: Section 2 provides an overview of 
the emb::6 stack and the Thread protocol explaining the basic ideas behind. Sections 3 and 4 give insight 
into selected Mesh Link Establishment (MLE) and network layer functionality. In section 5 we present 
the memory usage of our implementation. The last section concludes our work. Thread related content 
is based on [2].  

a https://github.com/hso-esk/emb6 
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2.  Related Work  
The Thread implementation developed and presented herein is using the 6LoWPAN communication 
stack emb::6. It mainly covers the layer 2 and layer 3 requirements from the Thread Specification [2]. 

2.1.  emb::6 networking stack 
emb::6 [3][4] is an open source wireless communication stack based on the 6LoWPAN communication 
protocol [8]. The initial development of the emb::6 network stack  has started as a fork of Contiki OSb 
with several changes regarding the basic architecture. In general, emb::6 covers the Application Layer, 
Transport Layer, Network Layer, Data Link Layer, Physical Layer, and the Radio Driver. The basic 
architecture of the emb::6 wireless network stack consists of its networking core, a Hardware 
Abstraction Layer (HAL), Radio Drivers (RF) and a separate so-called utility module that implements 
all common functionalities such as timer and event handling used by all other layers and modules. The 
networking core handles the network related tasks, mainly the communication part, where different tasks 
are distributed over several layers. Beginning on top at the Application Layer (APL), usually serving as 
interface for the device application, the stack forwards requests layer by layer down to the radio driver, 
which is responsible for the implementation of the RF module drivers. 

2.2.  Thread protocol 
The Thread protocol is an open standard for reliable, cost-effective, low power, wireless device-to-
device communication. It is designed specifically for connected home applications where IP-based 
networking is desired and a variety of application layers can be used on the stack. The Thread standard 
is based on IEEE 802.15.4 (2006) MAC and physical layer operating at 250 kb/s in the 2.4 GHz band. 
Figure 1 illustrates a general overview of our Thread stack implementation architecture [6]. This work 
mainly concentrates on MLE and network layer as described in chapter 4 and 5 in the Thread 
specification.  

2.3.  Thread device types 
The Thread network uses different types of devices as illustrated in figure 2. 
• Border Router: A specific type of router that supports multiple interfaces besides IEEE 802.15.4 in 

order to connect with other networks, e.g. Wi-Fi, Ethernet, etc. 
• Router: Used to provide routing services to the network and handle joining and security services for 

devices trying to join the network. Routers are not allowed to operate as sleepy end devices, but 
may downgrade their functionality and become REEDs (Router-eligible End Devices). 

• Leader: The device that makes decisions within the Thread network and manages router ID 
assignments. The Leader is the first active router on the network and can be elected in case of losing 
connectivity. 

• Router-eligible End Devices: REEDs have the capability to become routers without user interaction, 
if necessary. 

• End Devices: End devices communicate only through their parent router and cannot forward 
messages to other devices. To save energy they can sleep for a time period and poll their associated 
router for data once they are awake. 

 
 
 
 
 
 
 

b https://github.com/contiki-os/contiki 
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3.  Mesh Link Establishment 
The existence of many asymmetric radio links within the IEEE 802.15.4 network represents one of the 
main issues while establishing links between nodes. Thread is using the so-called Mesh Link 
Establishment protocol (MLE) [8] to resolve such kind of problems in addition to other capabilities.  

In this section, we give an overview about the capabilities of the MLE layer and its architecture. 
Furthermore, we will highlight the main processes of MLE that have been implemented. 

3.1.  MLE capabilities and architecture 
MLE is a protocol that is used to configure and secure radio links dynamically as the topology and 
physical environment change. This is done by exchanging IEEE 802.15.4 radio parameters between 
nodes such as addresses, node capabilities and frame counters. 

MLE allows all nodes to synchronize periodically and share radio link parameters to adapt to any 
change that might happen on the topology such as joining of new devices. Furthermore, MLE can detect 
unreliable links before any effort is spent for configuring them. For example, a link between two devices 
that is strong in one direction may be unusable due to weak signal strength towards the other direction. 
MLE resolves this by allowing a node to send periodical link-local multicast messages containing an 
estimated link quality for all links.  In addition, MLE exchanges link costs between nodes by sending 
MLE advertisement messages.  

Figure 1.  Thread network stack. 

Figure 2. Thread device types [7]. 
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MLE advertisement messages are used to exchange bidirectional link quality between neighboring 
routers. All routers exchange periodically single-hop MLE advertisement packets containing link cost 
information. Those periodic advertisements allow routers to quickly detect changes in the set of 
neighboring routers. For instance, if a new router joins the network, an existing router has been 
downgraded to REED or if a router lost connection to the Thread network.  

Regarding the architecture, MLE cannot be placed in OSI Model clearly. Instead, it operates 
alongside the stack using UDP (User Datagram Protocol) as transport protocol. This architecture is also 
given for other systems that make use of MLE, such as ARM mbed OS [9]. Figure 3 shows the different 
protocol modules used by ARM mbed OS and the interaction of the MLE protocol with the existing 
layers. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.  MLE processes and test cases 
In Thread networks, all devices join to the network either as an end device or as a REED. Joiner devices 
always try to attach to an active Thread router from which they allocate a 16-bit short address. In case 
such a join process fails, a second request is sent to both routers and REEDs. 

Figure 4 briefly shows such a mesh link establishment scenario. We use four nodes that have 0xAA, 
0xB0, 0xC0 and 0xB1 as last two bytes of their MAC address, respectively. Possible radio links are 
defined statically by the environment and are delineated by the gray line. 

Figure 5 shows the trace output of the nodes for this scenario. Window A corresponds to node 1 
(0xAA) and window B to node 2 (0xB0). 

Figure 3. ARM 6LoWPAN stack alongside OSI model [9]. 

Figure 4.  Testing scenario for MLE joining process. 
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• Node 1 (0xAA) is the first active node in the network. The joining process fails since no other routers 
are available (line A.12). Consequently, the node creates a new partition and starts operating as a 
parent (lines A.13 and A.14). 

• Node 2 (0xB0) attaches to node 1 after exchanging four handshake messages. Node 2 operates as a 
child after receiving the CHILD ID RESPONSE (lines B.18 and B.20). 

• Node 3 (0xC0) sends a multicast PARENT REQUEST. Node 1 and node 2 receive the message 
(line A.22 and B.13), but only node 1 replies due to a scan mask TLV (the first request should be 
replied only by the active router). In case that more than one parent responds, the joining device 
compares them and selects the best device to be its parent using the connectivity TLV received in 
the parent response and the calculated two-way link quality (calculated using the received link 
margin TLV in the parent response and the RSSI of the response itself). Then the handshake process 
will continue normally between node 3 and node 1. Finally, node 3 (0xC0) will start operating as a 
child. 

• Node 4 (0xB1) has one possible radio link with node 2. Although, node 2 (0xB0) only replied for 
the second PARENT REQUEST (line B.24). This is explained by the fact that on the first request 
only the active router should reply (node 2 is operating as a child at that moment). Once node 2 
receives a CHILD ID REQUEST, it sends a request to the leader to become a router (line B.26). 
Finally, node 2 switches its mode to active router (line B.27) and node 4 starts operating as a child. 

 
 

 
 

Figure 5. Trace output of Thread nodes. 

4.  Network Layer 
In this section, we provide information regarding the Thread network layer. Each Thread device must 
at least support the IEEE 802.15.4 (2006) standard but might support additional interfaces. This makes 
the Thread protocol appear heterogeneous from a PHY layer point of view. Above the MAC layer, 
Thread turns into a homogeneous protocol supporting IPv6 and IP routing. 

4.1.  EID / RLOC separation 
In a Thread network, each interface must have a routing locator (RLOC) address and an endpoint 
identifier (EID) address. The RLOC address is based on the router ID and child ID assigned to an 
interface. If for example one child switches over to another parent, only the RLOC will change, but not 
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MLE UDP initialized :  
 lport --> 19788  
 rport --> 19788  
MLE protocol initialized. 
[+] JP Send mcast parent request to active router 
==> MLE PARENT REQUEST sent to : ff02::2 
[+] JP Waiting for incoming response from active router 
[+] JP Send mcast parent request to active Router and REED 
==> MLE PARENT REQUEST sent to : ff02::2 
[+] JP Waiting for incoming response from active Router and 
REED 
 
Joining process failed. 
Starting new partition. 
MLE : Node operating as Parent. 
 
[+] SNY process: Send Link Request to neighbor router. 
==> MLE LINK REQUEST sent to : ff02::2 
[+] SNY process:  Synchronization process finished. 
<== MLE PARENT REQUEST received from : fe80::250:c2ff:fea8:b0 
ID allocated for the child = 1 
==> MLE PARENT RESPONSE sent to : fe80::250:c2ff:fea8:b0 
<== MLE PARENT REQUEST received from : fe80::250:c2ff:fea8:c0 
ID allocated for the child = 2 
==> MLE PARENT RESPONSE sent to : fe80::250:c2ff:fea8:c0 
<== MLE CHILD ID REQUEST received from : fe80::250:c2ff:fea8:b0 
==> MLE CHILD ID RESPONSE sent to : fe80::250:c2ff:fea8:b0 
<== MLE CHILD ID REQUEST received from : fe80::250:c2ff:fea8:c0 
==> MLE CHILD ID RESPONSE sent to : fe80::250:c2ff:fea8:c0 
Child linked with id : 1 and timeout is : 10 
Child li k d ith id  2 d ti t i   10 
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MLE UDP initialized :  
 lport --> 19788  
 rport --> 19788  
MLE protocol initialized. 
[+] JP Send mcast parent request to active router 
==> MLE PARENT REQUEST sent to : ff02::2 
 
[+] JP Waiting for incoming response from active 
router<== MLE PARENT RESPONSE received from : 
fe80::ff:fe00:0 
[+] JP received response from active Router 
my rssi : 30 
rssi of parent : 30 
two-way link quality : 3 
<== MLE PARENT REQUEST received from : 
fe80::250:c2fffea8:c0 
[+] JP Parent selection 
link quality with parent : 3  
[+] JP send Child ID Request 
==> MLE CHILD ID REQUEST sent to : fe80::ff:fe00:0 
<== MLE CHILD ID RESPONSE received from : 
fe80::ff:fe00:0 
[+] JP Parent Stored  
MLE : Node operating as Child 
<== MLE PARENT REQUEST received from : 
fe80::250:c2ff:fea8:b1 
<== MLE PARENT REQUEST received from : 
fe80::250:c2ff:fea8:b1 
ID allocated for the child = 1 
==> MLE PARENT RESPONSE sent to : fe80::250:c2ff:fea8:b1 
<== MLE CHILD ID REQUEST received from : 
fe80::250:c2ff:fea8:b1 
Sending request to become a Router 
MLE : Node operating as Parent. 
==> MLE CHILD ID RESPONSE sent to : 
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the child’s identity at all. Thread nodes are arranged in partitions forming closed affiliation areas for 
participating devices whereas each partition has one node designated as the leader. The leader is 
responsible for assigning and managing router IDs. A Thread EID is a stable IPv6 address that uniquely 
identifies a Thread interface within a Thread partition. EIDs are not directly routable, because the Thread 
routing protocol only exchanges route information for RLOCs. To deliver an IPv6 datagram with an 
EID as the IPv6 destination address, a Thread device must perform EID-to-RLOC lookup. When 
attaching to a partition, a node must retrieve an RLOC IPv6 address from a router. The RLOC’s 16 least 
significant bits are called RLOC16 and map router ID and child ID of the node. Routers assign 
child ID 0. Figure 6 shows the RLOC16 structure. 
 

 
Figure 6.  RLOC16 structure. 

 

A router retrieves his router ID from the partition leader by sending a CoAP address query message. 
RLOC addresses are only used for communicating control traffic and delivering IPv6 datagrams to their 
destinations. Since no RLOC address is available when initially sending an address query message, the 
EID is used. Intermediate nodes must perform EID-to-RLOC lookup in order to forward the packet to 
the partition leader and vice versa. The child ID is allocated by the parent node and communicated 
through MLE attachment process. 

4.2.  Routing algorithm 
A Thread network has up to 32 active routers that use next-hop routing for messages based on its routing 
database. This database includes path cost calculation that is performed by applying distributed 
Bellman-Ford algorithm (cf. RIPng) [10]. The routing database is a set of neighbor router table (Link 
Set), routing table (Route Set) and all valid router IDs (Router ID Set). All routers advertise their routing 
table periodically. The rate at which routing advertisements are sent is determined by an instance of the 
Trickle algorithm. For routers, in order to keep track of the validity of shared data in the network, an 
incremental ID sequence number is attached to the routing data. After looking up the shortest path for a 
route, a router generates the IPv6 RLOC address of the destination router using its router ID. 

All tables that are part of the routing database have been implemented by using linked lists. When 
looking for a routing entry, linked list structures can be used as a mask when iterating trough all list 
entries. The benefit of this approach is that predefined fields can be accessed easily. Since embedded 
devices usually underlie memory constraints, we implemented least recently used (LRU) replacement 
policy for Link Set and Route Set. The last recently accessed item is inserted at the head of the linked 
list by modifying appropriate pointers. As a result, when transmitting fragmented packets the lookup 
iteration for subsequent fragments will terminate after the first list element. When inserting a new list 
element, the last one of the linked list is removed if the number of elements would exceed a defined 
maximum. 

4.3.  Link cost determination 
The link set stores information about neighboring routers including the measured link margin (RSSI) 
in dB. Furthermore, the link margin plays a leading role in parent selection during attachment process. 
The measured one-way link margin may change during runtime due to noise floor or altered 
environmental conditions. To smooth out short-term volatility, Thread devices must perform 
exponentially weighted moving average (EWMA) method of the link margins for each neighbor. 
Equation (1) shows the EWMA calculation where 𝑀𝑀𝑡𝑡 −1 is the currently stored link margin for a specific 
neighbor, 𝑌𝑌𝑡𝑡 is the last recently measured link margin and 𝑀𝑀𝑡𝑡 will be the newly calculated link margin 
for that neighbor. 
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𝑀𝑀𝑡𝑡 =  𝛼𝛼 ∙ 𝑌𝑌𝑡𝑡 + (1 −  𝛼𝛼) ∙ 𝑀𝑀𝑡𝑡−1                    (1) 

To avoid costly floating point computations on the micro- controller, equation (1) has been rewritten to 
equation (2). 

𝑀𝑀𝑡𝑡 =
𝑌𝑌𝑡𝑡+ �1𝛼𝛼−1�∙𝑀𝑀𝑡𝑡−1

1
𝛼𝛼

                                        (2) 

The exponential smoothing fraction 𝛼𝛼 (equation (3)) is used as weighting and defined as either 1
8
 or 

1
16 [11]. 

𝛼𝛼 = {𝛼𝛼 ∈ 𝑅𝑅 | 0 ≤ 𝛼𝛼 ≤ 1}                              (3) 

The preceding transformation results in a bit shift to the left of the numerator around the reciprocal value 
of 𝛼𝛼. This allows to exploit the benefits of integer calculations without glaring rounding errors. 

4.4.  Routing advertisement 
Distributed routing algorithms reduce node-sided computational costs in terms of shared route data. 
When using non-distributed algorithms, each node has to expand a graph by incrementally improving 
path costs. In Thread, MLE advertisements are used from nodes acting as routers for advertising their 
routing table to neighboring routers. A practicable approach of determining the rate at which 
advertisements are sent is to deploy a dependency on the change of routing data. Thread uses the Trickle 
algorithm to generate dynamic and random transmission windows. If the routing entries are stable, the 
rate is reduced to a minimum. The flowchart in figure 7 shows our implementation of the Trickle 
algorithm. We use a timer that recalculates its expiration time after a timeout. The limits of the time 
slots can be defined via C macros. After initializing the Trickle timer, it runs independently from other 
processes. 
 

 

Figure 7.  Flowchart of Trickle timer implementation. 

4.5.  Unicast packet forwarding 
Routing inside a Thread network is performed using RLOC IPv6 addresses. Unicast packets are 
forwarded by applying a mesh under strategy on the 6LoWPAN layer. Router packets include the 
6LoWPAN mesh header carrying the originator and final RLOC16 addresses. When receiving a packet 
including a 6LoWPAN mesh header, a routing table lookup is performed without uncompressing the 
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packet. Therefore, we extended the emb::6 implementation in order to support mesh under routing for 
unicast packets. During MLE joining process, the 16-bit short MAC address is set to the RLOC16 
assigned to the router. Usually, IPv6 packets from higher layers, e.g. application layer, are using the EID 
of the destination device. Then, routers must perform EID-to-RLOC lookup to retrieve the router ID of 
the destination router. The EID-to-RLOC lookup mechanism consists of CoAP messages targeting 
CoAP resources provided by routers [12]. The router that is responsible for the given EID is sending a 
response message including its router ID. Each router maintains a EID-to-RLOC map cache to hold a 
list of recently used lookups. This prevents from frequently sending lookup messages when transmitting 
fragmented packets. For instance, an end device does not have routing capability and therefore must 
forward packets to its parent router. In this case the packet is sent without adding 6LoWPAN mesh 
header. 

5.  Memory usage 
An analysis of our implementation in terms of memory usage is shown in table 1. Both figures show the 
RAM and flash memory usage for selected network layer modules and MLE. Mesh under routing is 
enabled on 6LoWPAN layer. The ‘net-thread’ bar shows all additional Thread-specific implementations 
such as routing database, partitioning etc. The reason for the high memory usage of this part is the static 
memory allocation of the routing database. 

Table 1. Thread implementation memory usage. 

Feature RAM (kB) Flash (kB) 
net-ipv6 4,056 25,025 
net-sicslowpan 460 14,826 
net-thread 12,692 33,014 
mle 2,088 15,638 

6.  Conclusion 
This paper presents the architecture and basic information about the Thread protocol. The current status 
of the implementation allows to create nodes inside a hardware virtualization environment dynamically. 
Thread nodes autonomously establish connection and create network topologies as specified by Thread 
algorithms. An important next step will be the full integration of Thread Network Data and 
commissioning protocol in order to validate the compatibility with existing Thread devices. 
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