
Development of Thread-compatible Open Source Stack

Lukas Zimmermann, Nidhal Mars, Manuel Schappacher and Axel Sikora
Institute of Reliable Embedded Systems and Communication Electronics, University
of Applied Sciences Offenburg, D77652 Offenburg, Germany

lukas.zimmermann@hs-offenburg.de

Abstract. The Thread protocol is a recent development based on 6LoWPAN (IPv6 over
IEEE 802.15.4), but with extensions regarding a more media independent approach, which –
additionally – also promises true interoperability. To evaluate and analyse the operation of a
Thread network a given open source 6LoWPAN stack for embedded devices (emb::6) has been
extended in order to comply with the Thread specification. The implementation covers Mesh
Link Establishment (MLE) and network layer functionality as well as 6LoWPAN mesh under
routing mechanism based on MAC short addresses. The development has been verified on a
virtualization platform and allows dynamical establishment of network topologies based on
Thread’s partitioning algorithm.

1. Introduction
Nowadays, several so-called megatrends like Internet of Things (IoT) are rapidly emerging and are
leading to an increasing amount of new protocols and solutions to cover the manifold requirements of
different applications. Wireless technologies based on embedded systems play a major role for the local
communication. Since the use of IP-based addressing protocols became a necessity to give IoT devices
the access to cloud services and interact together, the major drawback was the limited number of unique
addresses provided by the IPv4 protocol. This issue was addressed by the development of IPv6 which
allows a nearly unlimited number of devices and therefore provides the basis for the IoT. However,
when using the IPv6 protocol for ‘things’ which are mainly embedded devices, several restrictions
regarding the underlying technologies and performance of the devices must be considered. Therefore,
the usage of IPv6 for embedded devices requires an adaptation layer named 6LoWPAN (IPv6 Low
Power Wireless Personal Area Networks) [1] in order to be used in low power wireless networks.

Nevertheless, even with a common network layer there are still several points which are not defined
by 6LoWPAN such as the routing protocol and its parameters what might lead to incompatibilities.
Therefore, the Thread protocol defines all the layers and technologies required to create a common
communication network. To evaluate such a Thread network and to analyse its operation, we extended
an open source 6LoWPAN stack – namely emb::6a - in order to comply with the Thread specification
for connected home applications. The paper is structured as follows: Section 2 provides an overview of
the emb::6 stack and the Thread protocol explaining the basic ideas behind. Sections 3 and 4 give insight
into selected Mesh Link Establishment (MLE) and network layer functionality. In section 5 we present
the memory usage of our implementation. The last section concludes our work. Thread related content
is based on [2].

a https://github.com/hso-esk/emb6

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012001 doi:10.1088/1742-6596/870/1/012001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

2. Related Work
The Thread implementation developed and presented herein is using the 6LoWPAN communication
stack emb::6. It mainly covers the layer 2 and layer 3 requirements from the Thread Specification [2].

2.1. emb::6 networking stack
emb::6 [3][4] is an open source wireless communication stack based on the 6LoWPAN communication
protocol [8]. The initial development of the emb::6 network stack has started as a fork of Contiki OSb
with several changes regarding the basic architecture. In general, emb::6 covers the Application Layer,
Transport Layer, Network Layer, Data Link Layer, Physical Layer, and the Radio Driver. The basic
architecture of the emb::6 wireless network stack consists of its networking core, a Hardware
Abstraction Layer (HAL), Radio Drivers (RF) and a separate so-called utility module that implements
all common functionalities such as timer and event handling used by all other layers and modules. The
networking core handles the network related tasks, mainly the communication part, where different tasks
are distributed over several layers. Beginning on top at the Application Layer (APL), usually serving as
interface for the device application, the stack forwards requests layer by layer down to the radio driver,
which is responsible for the implementation of the RF module drivers.

2.2. Thread protocol
The Thread protocol is an open standard for reliable, cost-effective, low power, wireless device-to-
device communication. It is designed specifically for connected home applications where IP-based
networking is desired and a variety of application layers can be used on the stack. The Thread standard
is based on IEEE 802.15.4 (2006) MAC and physical layer operating at 250 kb/s in the 2.4 GHz band.
Figure 1 illustrates a general overview of our Thread stack implementation architecture [6]. This work
mainly concentrates on MLE and network layer as described in chapter 4 and 5 in the Thread
specification.

2.3. Thread device types
The Thread network uses different types of devices as illustrated in figure 2.
• Border Router: A specific type of router that supports multiple interfaces besides IEEE 802.15.4 in

order to connect with other networks, e.g. Wi-Fi, Ethernet, etc.
• Router: Used to provide routing services to the network and handle joining and security services for

devices trying to join the network. Routers are not allowed to operate as sleepy end devices, but
may downgrade their functionality and become REEDs (Router-eligible End Devices).

• Leader: The device that makes decisions within the Thread network and manages router ID
assignments. The Leader is the first active router on the network and can be elected in case of losing
connectivity.

• Router-eligible End Devices: REEDs have the capability to become routers without user interaction,
if necessary.

• End Devices: End devices communicate only through their parent router and cannot forward
messages to other devices. To save energy they can sleep for a time period and poll their associated
router for data once they are awake.

b https://github.com/contiki-os/contiki

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012001 doi:10.1088/1742-6596/870/1/012001

2

3. Mesh Link Establishment
The existence of many asymmetric radio links within the IEEE 802.15.4 network represents one of the
main issues while establishing links between nodes. Thread is using the so-called Mesh Link
Establishment protocol (MLE) [8] to resolve such kind of problems in addition to other capabilities.

In this section, we give an overview about the capabilities of the MLE layer and its architecture.
Furthermore, we will highlight the main processes of MLE that have been implemented.

3.1. MLE capabilities and architecture
MLE is a protocol that is used to configure and secure radio links dynamically as the topology and
physical environment change. This is done by exchanging IEEE 802.15.4 radio parameters between
nodes such as addresses, node capabilities and frame counters.

MLE allows all nodes to synchronize periodically and share radio link parameters to adapt to any
change that might happen on the topology such as joining of new devices. Furthermore, MLE can detect
unreliable links before any effort is spent for configuring them. For example, a link between two devices
that is strong in one direction may be unusable due to weak signal strength towards the other direction.
MLE resolves this by allowing a node to send periodical link-local multicast messages containing an
estimated link quality for all links. In addition, MLE exchanges link costs between nodes by sending
MLE advertisement messages.

Figure 1. Thread network stack.

Figure 2. Thread device types [7].

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012001 doi:10.1088/1742-6596/870/1/012001

3

MLE advertisement messages are used to exchange bidirectional link quality between neighboring
routers. All routers exchange periodically single-hop MLE advertisement packets containing link cost
information. Those periodic advertisements allow routers to quickly detect changes in the set of
neighboring routers. For instance, if a new router joins the network, an existing router has been
downgraded to REED or if a router lost connection to the Thread network.

Regarding the architecture, MLE cannot be placed in OSI Model clearly. Instead, it operates
alongside the stack using UDP (User Datagram Protocol) as transport protocol. This architecture is also
given for other systems that make use of MLE, such as ARM mbed OS [9]. Figure 3 shows the different
protocol modules used by ARM mbed OS and the interaction of the MLE protocol with the existing
layers.

3.2. MLE processes and test cases
In Thread networks, all devices join to the network either as an end device or as a REED. Joiner devices
always try to attach to an active Thread router from which they allocate a 16-bit short address. In case
such a join process fails, a second request is sent to both routers and REEDs.

Figure 4 briefly shows such a mesh link establishment scenario. We use four nodes that have 0xAA,
0xB0, 0xC0 and 0xB1 as last two bytes of their MAC address, respectively. Possible radio links are
defined statically by the environment and are delineated by the gray line.

Figure 5 shows the trace output of the nodes for this scenario. Window A corresponds to node 1
(0xAA) and window B to node 2 (0xB0).

Figure 3. ARM 6LoWPAN stack alongside OSI model [9].

Figure 4. Testing scenario for MLE joining process.

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012001 doi:10.1088/1742-6596/870/1/012001

4

• Node 1 (0xAA) is the first active node in the network. The joining process fails since no other routers
are available (line A.12). Consequently, the node creates a new partition and starts operating as a
parent (lines A.13 and A.14).

• Node 2 (0xB0) attaches to node 1 after exchanging four handshake messages. Node 2 operates as a
child after receiving the CHILD ID RESPONSE (lines B.18 and B.20).

• Node 3 (0xC0) sends a multicast PARENT REQUEST. Node 1 and node 2 receive the message
(line A.22 and B.13), but only node 1 replies due to a scan mask TLV (the first request should be
replied only by the active router). In case that more than one parent responds, the joining device
compares them and selects the best device to be its parent using the connectivity TLV received in
the parent response and the calculated two-way link quality (calculated using the received link
margin TLV in the parent response and the RSSI of the response itself). Then the handshake process
will continue normally between node 3 and node 1. Finally, node 3 (0xC0) will start operating as a
child.

• Node 4 (0xB1) has one possible radio link with node 2. Although, node 2 (0xB0) only replied for
the second PARENT REQUEST (line B.24). This is explained by the fact that on the first request
only the active router should reply (node 2 is operating as a child at that moment). Once node 2
receives a CHILD ID REQUEST, it sends a request to the leader to become a router (line B.26).
Finally, node 2 switches its mode to active router (line B.27) and node 4 starts operating as a child.

Figure 5. Trace output of Thread nodes.

4. Network Layer
In this section, we provide information regarding the Thread network layer. Each Thread device must
at least support the IEEE 802.15.4 (2006) standard but might support additional interfaces. This makes
the Thread protocol appear heterogeneous from a PHY layer point of view. Above the MAC layer,
Thread turns into a homogeneous protocol supporting IPv6 and IP routing.

4.1. EID / RLOC separation
In a Thread network, each interface must have a routing locator (RLOC) address and an endpoint
identifier (EID) address. The RLOC address is based on the router ID and child ID assigned to an
interface. If for example one child switches over to another parent, only the RLOC will change, but not

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

MLE UDP initialized :
 lport --> 19788
 rport --> 19788
MLE protocol initialized.
[+] JP Send mcast parent request to active router
==> MLE PARENT REQUEST sent to : ff02::2
[+] JP Waiting for incoming response from active router
[+] JP Send mcast parent request to active Router and REED
==> MLE PARENT REQUEST sent to : ff02::2
[+] JP Waiting for incoming response from active Router and
REED

Joining process failed.
Starting new partition.
MLE : Node operating as Parent.

[+] SNY process: Send Link Request to neighbor router.
==> MLE LINK REQUEST sent to : ff02::2
[+] SNY process: Synchronization process finished.
<== MLE PARENT REQUEST received from : fe80::250:c2ff:fea8:b0
ID allocated for the child = 1
==> MLE PARENT RESPONSE sent to : fe80::250:c2ff:fea8:b0
<== MLE PARENT REQUEST received from : fe80::250:c2ff:fea8:c0
ID allocated for the child = 2
==> MLE PARENT RESPONSE sent to : fe80::250:c2ff:fea8:c0
<== MLE CHILD ID REQUEST received from : fe80::250:c2ff:fea8:b0
==> MLE CHILD ID RESPONSE sent to : fe80::250:c2ff:fea8:b0
<== MLE CHILD ID REQUEST received from : fe80::250:c2ff:fea8:c0
==> MLE CHILD ID RESPONSE sent to : fe80::250:c2ff:fea8:c0
Child linked with id : 1 and timeout is : 10
Child li k d ith id 2 d ti t i 10

A

1
2
3
4
5
6
7
8
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2

MLE UDP initialized :
 lport --> 19788
 rport --> 19788
MLE protocol initialized.
[+] JP Send mcast parent request to active router
==> MLE PARENT REQUEST sent to : ff02::2

[+] JP Waiting for incoming response from active
router<== MLE PARENT RESPONSE received from :
fe80::ff:fe00:0
[+] JP received response from active Router
my rssi : 30
rssi of parent : 30
two-way link quality : 3
<== MLE PARENT REQUEST received from :
fe80::250:c2fffea8:c0
[+] JP Parent selection
link quality with parent : 3
[+] JP send Child ID Request
==> MLE CHILD ID REQUEST sent to : fe80::ff:fe00:0
<== MLE CHILD ID RESPONSE received from :
fe80::ff:fe00:0
[+] JP Parent Stored
MLE : Node operating as Child
<== MLE PARENT REQUEST received from :
fe80::250:c2ff:fea8:b1
<== MLE PARENT REQUEST received from :
fe80::250:c2ff:fea8:b1
ID allocated for the child = 1
==> MLE PARENT RESPONSE sent to : fe80::250:c2ff:fea8:b1
<== MLE CHILD ID REQUEST received from :
fe80::250:c2ff:fea8:b1
Sending request to become a Router
MLE : Node operating as Parent.
==> MLE CHILD ID RESPONSE sent to :

B

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012001 doi:10.1088/1742-6596/870/1/012001

5

the child’s identity at all. Thread nodes are arranged in partitions forming closed affiliation areas for
participating devices whereas each partition has one node designated as the leader. The leader is
responsible for assigning and managing router IDs. A Thread EID is a stable IPv6 address that uniquely
identifies a Thread interface within a Thread partition. EIDs are not directly routable, because the Thread
routing protocol only exchanges route information for RLOCs. To deliver an IPv6 datagram with an
EID as the IPv6 destination address, a Thread device must perform EID-to-RLOC lookup. When
attaching to a partition, a node must retrieve an RLOC IPv6 address from a router. The RLOC’s 16 least
significant bits are called RLOC16 and map router ID and child ID of the node. Routers assign
child ID 0. Figure 6 shows the RLOC16 structure.

Figure 6. RLOC16 structure.

A router retrieves his router ID from the partition leader by sending a CoAP address query message.
RLOC addresses are only used for communicating control traffic and delivering IPv6 datagrams to their
destinations. Since no RLOC address is available when initially sending an address query message, the
EID is used. Intermediate nodes must perform EID-to-RLOC lookup in order to forward the packet to
the partition leader and vice versa. The child ID is allocated by the parent node and communicated
through MLE attachment process.

4.2. Routing algorithm
A Thread network has up to 32 active routers that use next-hop routing for messages based on its routing
database. This database includes path cost calculation that is performed by applying distributed
Bellman-Ford algorithm (cf. RIPng) [10]. The routing database is a set of neighbor router table (Link
Set), routing table (Route Set) and all valid router IDs (Router ID Set). All routers advertise their routing
table periodically. The rate at which routing advertisements are sent is determined by an instance of the
Trickle algorithm. For routers, in order to keep track of the validity of shared data in the network, an
incremental ID sequence number is attached to the routing data. After looking up the shortest path for a
route, a router generates the IPv6 RLOC address of the destination router using its router ID.

All tables that are part of the routing database have been implemented by using linked lists. When
looking for a routing entry, linked list structures can be used as a mask when iterating trough all list
entries. The benefit of this approach is that predefined fields can be accessed easily. Since embedded
devices usually underlie memory constraints, we implemented least recently used (LRU) replacement
policy for Link Set and Route Set. The last recently accessed item is inserted at the head of the linked
list by modifying appropriate pointers. As a result, when transmitting fragmented packets the lookup
iteration for subsequent fragments will terminate after the first list element. When inserting a new list
element, the last one of the linked list is removed if the number of elements would exceed a defined
maximum.

4.3. Link cost determination
The link set stores information about neighboring routers including the measured link margin (RSSI)
in dB. Furthermore, the link margin plays a leading role in parent selection during attachment process.
The measured one-way link margin may change during runtime due to noise floor or altered
environmental conditions. To smooth out short-term volatility, Thread devices must perform
exponentially weighted moving average (EWMA) method of the link margins for each neighbor.
Equation (1) shows the EWMA calculation where 𝑀𝑀𝑡𝑡 −1 is the currently stored link margin for a specific
neighbor, 𝑌𝑌𝑡𝑡 is the last recently measured link margin and 𝑀𝑀𝑡𝑡 will be the newly calculated link margin
for that neighbor.

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012001 doi:10.1088/1742-6596/870/1/012001

6

𝑀𝑀𝑡𝑡 = 𝛼𝛼 ∙ 𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼) ∙ 𝑀𝑀𝑡𝑡−1 (1)

To avoid costly floating point computations on the micro- controller, equation (1) has been rewritten to
equation (2).

𝑀𝑀𝑡𝑡 =
𝑌𝑌𝑡𝑡+ �1𝛼𝛼−1�∙𝑀𝑀𝑡𝑡−1

1
𝛼𝛼

 (2)

The exponential smoothing fraction 𝛼𝛼 (equation (3)) is used as weighting and defined as either 1
8
 or

1
16 [11].

𝛼𝛼 = {𝛼𝛼 ∈ 𝑅𝑅 | 0 ≤ 𝛼𝛼 ≤ 1} (3)

The preceding transformation results in a bit shift to the left of the numerator around the reciprocal value
of 𝛼𝛼. This allows to exploit the benefits of integer calculations without glaring rounding errors.

4.4. Routing advertisement
Distributed routing algorithms reduce node-sided computational costs in terms of shared route data.
When using non-distributed algorithms, each node has to expand a graph by incrementally improving
path costs. In Thread, MLE advertisements are used from nodes acting as routers for advertising their
routing table to neighboring routers. A practicable approach of determining the rate at which
advertisements are sent is to deploy a dependency on the change of routing data. Thread uses the Trickle
algorithm to generate dynamic and random transmission windows. If the routing entries are stable, the
rate is reduced to a minimum. The flowchart in figure 7 shows our implementation of the Trickle
algorithm. We use a timer that recalculates its expiration time after a timeout. The limits of the time
slots can be defined via C macros. After initializing the Trickle timer, it runs independently from other
processes.

Figure 7. Flowchart of Trickle timer implementation.

4.5. Unicast packet forwarding
Routing inside a Thread network is performed using RLOC IPv6 addresses. Unicast packets are
forwarded by applying a mesh under strategy on the 6LoWPAN layer. Router packets include the
6LoWPAN mesh header carrying the originator and final RLOC16 addresses. When receiving a packet
including a 6LoWPAN mesh header, a routing table lookup is performed without uncompressing the

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012001 doi:10.1088/1742-6596/870/1/012001

7

packet. Therefore, we extended the emb::6 implementation in order to support mesh under routing for
unicast packets. During MLE joining process, the 16-bit short MAC address is set to the RLOC16
assigned to the router. Usually, IPv6 packets from higher layers, e.g. application layer, are using the EID
of the destination device. Then, routers must perform EID-to-RLOC lookup to retrieve the router ID of
the destination router. The EID-to-RLOC lookup mechanism consists of CoAP messages targeting
CoAP resources provided by routers [12]. The router that is responsible for the given EID is sending a
response message including its router ID. Each router maintains a EID-to-RLOC map cache to hold a
list of recently used lookups. This prevents from frequently sending lookup messages when transmitting
fragmented packets. For instance, an end device does not have routing capability and therefore must
forward packets to its parent router. In this case the packet is sent without adding 6LoWPAN mesh
header.

5. Memory usage
An analysis of our implementation in terms of memory usage is shown in table 1. Both figures show the
RAM and flash memory usage for selected network layer modules and MLE. Mesh under routing is
enabled on 6LoWPAN layer. The ‘net-thread’ bar shows all additional Thread-specific implementations
such as routing database, partitioning etc. The reason for the high memory usage of this part is the static
memory allocation of the routing database.

Table 1. Thread implementation memory usage.

Feature RAM (kB) Flash (kB)
net-ipv6 4,056 25,025
net-sicslowpan 460 14,826
net-thread 12,692 33,014
mle 2,088 15,638

6. Conclusion
This paper presents the architecture and basic information about the Thread protocol. The current status
of the implementation allows to create nodes inside a hardware virtualization environment dynamically.
Thread nodes autonomously establish connection and create network topologies as specified by Thread
algorithms. An important next step will be the full integration of Thread Network Data and
commissioning protocol in order to validate the compatibility with existing Thread devices.

References
[1] G Montenegro, N Kushalnagar, J Hui, D Culler, Transmission of IPv6 Packets over IEEE

802.15.4 Networks, RFC 4944, (Sept. 2007)
[2] Thread Group, Inc., Thread Specification, Revision 1.1.0 (July 2016)
[3] A Yushev, A Sikora and J Sebastian E, Open source 6Lo protocol stack for wireless embedded

systems, 2016 Wireless Telecommunications Symposium (WTS), London, UK, 2016, pp. 1-7.
[4] M Schappacher, E Schmitt, A Sikora, P Weber, A Yushev, A Flexible, Modular, Open-Source

Implementation of 6LoWPAN, 8th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS2015), 24-26 September 2015, Warsaw, Poland, pp. 838-844.

[5] A Sikora, Funknetzwerke für das Internet der Dinge: 6LoWPAN OpenSource-Projekt: emb6,
Elektronik Wireless 2016, (2016)

[6] Thread Group, Inc., Thread Stack Fundamentals (whitepaper), Revision 2.0 (July 2015)
[7] B Curtis, S Ashon. Thread Open House. Thread Group, (May 2016)
[8] R K Kelsey, Mesh Link Establishment, (Oct. 2013)
[9] ARM mbed 6LoWPAN Stack Overview, https://docs.mbed.com/docs/arm-ipv66lowpan-

stack/en/latest/02_N_arch/, (04.02.2017)

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012001 doi:10.1088/1742-6596/870/1/012001

8

[10] Malkin, G and R Minnear, RIPng for IPv6, RFC 2080, (Jan. 1997)
[11] T Agami Reddy, Applied data analysis and modeling for energy engineers and scientists, in.

Boston, MA: Springer US, pp. 253–288 (2011)
[12] Z Shelby, K Hartke, C Bormann, The Constrained Application Protocol (CoAP), RFC 7252,

(2014)

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012001 doi:10.1088/1742-6596/870/1/012001

9

	2.1. emb::6 networking stack
	2.2. Thread protocol
	2.3. Thread device types
	3.1. MLE capabilities and architecture
	3.2. MLE processes and test cases
	4.1. EID / RLOC separation
	4.2. Routing algorithm
	4.3. Link cost determination
	4.4. Routing advertisement
	4.5. Unicast packet forwarding

