
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012006  doi :10.1088/1742-6596/870/1/012006

Dynamic mapping of EDDL device descriptions to OPC UA 

Kofi Atta Nsiah, Manuel Schappacher, and Axel Sikora  
Institute of Reliable Embedded Systems and Communication Electronics (ivESK), 
Offenburg University of Applied Sciences, 77652 Offenburg, Germany 
 
kofi.nsiah@hs-offenburg.de 

Abstract. OPC UA (Open Platform Communications Unified Architecture) is already a well-
known concept used widely in the automation industry. In the area of factory automation, OPC 
UA models the underlying field devices such as sensors and actuators in an OPC UA server to 
allow connecting OPC UA clients to access device-specific information via a standardized 
information model. One of the requirements of the OPC UA server to represent field device 
data using its information model is to have advanced knowledge about the properties of the 
field devices in the form of device descriptions. The international standard IEC 61804 specifies 
EDDL (Electronic Device Description Language) as a generic language for describing the 
properties of field devices. In this paper, the authors describe a possibility to dynamically map 
and integrate field device descriptions based on EDDL into OPCUA. 

1.  Introduction  
In today’s automation industry, the increasing number and types of field devices from different manufacturers 
require integration into industrial control systems. As a result, the provision of a standardized access to these 
field devices allows fairly easy device management such as configuration, diagnosis and maintenance. So far, 
major device description and integration technologies are EDDL (Electronic Device Description Language) 
[1-3], FDT (Field Device Tool) [1, 2, 4] and FDI (Field Device Integration) [1, 2, 5]. These device integration 
technologies provide different mechanisms to solve the provision of standardized access to field device 
problem. 

In OPC UA terms, this standardized access is provided by the information model of the server-side of OPC 
UA’s client server architecture.  An OPC UA server exposes its data via its information model. In order to 
represent the data of field devices, the OPC UA server has to have advanced knowledge about the field 
devices in the form of device descriptions. EDDL, FDT/DTM and FDI technologies define device descriptions 
and their integration into OPC UA. The device descriptions can either be used to create new information 
models before the OPC UA server is started or can be used to alter the information model of the already 
running OPC UA server. In this paper, the authors investigate the dynamic integration of device descriptions 
by altering the information model of the OPC UA server at run-time. 

This paper is organized as follows: Chapter 2 provides a brief overview of the OPC UA technology in 
terms of its system architecture, information model and comparisons of the existing open source 
implementations of the technology. Chapter 3 presents the EDDL technology and provides a brief overview of 
other competing solutions. Finally, chapter 4 provides an insight into the implementation of the dynamic 
mapping of device descriptions based on the EDDL technology to OPC UA by the authors. 

 
 

http://creativecommons.org/licenses/by/3.0


2

1234567890

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012006  doi :10.1088/1742-6596/870/1/012006

 

2.  OPC UA  
OPC UA, the successor to the legacy OPC technology, was developed to address the inherent technical defects 
associated with the classic OPC technology. Compared to the OPC technology, OPC UA provides a consistent 
and integrated address space that allows a single OPC UA server to integrate data, historical data, alarms and 
events [6]. Additionally, OPC UA defines a service model that provides a set of services that allows the data 
exposed in the address space of the OPC UA server to be accessed by connected OPC UA clients. The 
contents of the address space are described by well-defined information models.  

2.1 OPC UA system architecture 
The OPC UA system architecture models OPC UA clients and servers as interacting partners. The OPC UA 
server provides data by exposing its information model while the OPC UA client consumes the data provided 
by the information model of the OPC UA server. OPC UA services define the APIs (Application 
Programming Interfaces) that allow the OPC UA clients to interact with the OPC UA servers. Generally, a 
typical OPC UA client or server consists of three software layers briefly explained as follows:   
• OPC UA Communication stack – implements the different data encoding mechanisms, message security 

and transport protocols defined by the OPC UA technology. 
• OPC UA client or server SDK – implements common OPC UA functionalities including OPC UA 

services. The SDK is not a mandatory feature, however if implemented, reduces the development efforts 
of the client or server application. 

• Client or Server application – uses the OPC UA communication stack and SDK to send and receive OPC 
UA messages. Specific functionalities can be implemented in this layer.     

2.2 OPC UA information model 
The OPC UA information model is based on the OPC UA Meta model [7]. The OPC UA information model 
provides not only the pure data but also exposes the semantic of the provided data. OPC UA information 
modelling is always done on the server-side however, they can be accessed and modified by connected OPC 
UA clients. 

The data provided by the information model of OPC UA servers are represented as a set of nodes described 
by attributes and interconnected by references [8]. This data exposed by the OPC UA server is based on the 
eight base nodes and their attributes as shown in Figure 1.  

Each OPC UA node has a unique purpose. For example, the Variable node is used to model the value of a 
field device while the DataType   node models simple and structured data types of the Variable node’s value.  
Depending on the purpose of an OPC UA node, they can have different sets of attributes. However, there are 
some attributes that are common to all OPC UA nodes. 

 
Figure 1. OPC UA Meta Model [7] 



3

1234567890

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012006  doi :10.1088/1742-6596/870/1/012006

 

3.  Device Descriptions 

3.1. EDDL  
EDDL (Electronic Device Description Language) is a structured text-based device description technology for 
describing the information that is accessible in digital devices. EDDL is an open technology with international 
standard status and can be applied to several field devices. The format of the described information is similar 
to an XML, HTML web page or SGML document. EDDL describes these digital devices in terms of device 
parameters and their dependencies, device functions, visual representations as well as interactions with control 
systems [9]. EDD (Electronic Device Description) is the resulting file deployed by device manufacturers that 
use the EDDL technology to describe their devices. A sample EDD describing the parameters contained in a 
NIKI current and temperature sensor is as shown in Figure 2.  
 

/** 
 * Sample EDD showing a sample description of  
 * parameters  contained in a current or temperature   
 * sensor. 
 */ 
 
MANUFACTURER 66, 
DEVICE_TYPE  0x070E, 
DEVICE_REVISION     1, 
DD_REVISION  1 
 
/** 
 * Describes the NIKI Current Sensor. 
 */ 
VARIABLE         NIKI_Current_Sensor 
{ 
       LABEL           NIKI_Current_Sensor; 
       HELP           measures_actual_current; 
       CLASS           CONTAINED & DYNAMIC; 
       TYPE              FLOAT; 
       HANDLING   READ; 
} 
 
/** 
 * Describes the NIKI Temperature sensor. 
 */ 
VARIABLE          NIKI_Temperature_Sensor 
{ 
       LABEL  NIKI_Temperature_Sensor; 
       HELP  measures_actual_temperature; 
       CLASS  CONTAINED; 
       TYPE  FLOAT; 
       { 
       DEFAULT_VALUE   0.0; 
       } 
       HANDLING READ & WRITE; 
} 

Figure 2. EDD for NIKI Current and Temperature Sensor. 

3.2. EDDL as a Data Model  
The general motivation of this sub-chapter is to describe the EDDL as a data model. The EDDL technology 
provides a set of scalable language elements that are used in describing the field devices. EDDL language 
elements consist of identification elements, basic construction elements and special elements [9]. The 
identification elements (e.g. MANUFACTURER, DEVICE_TYPE) specify identification information that 
uniquely identifies the device description of a specific device type from a device manufacturer.  

The basic construction elements support device descriptions in terms of device properties and related 
device functionalities. These elements define a set of associated attributes that refine their definition. Finally, 
special elements are EDDL extensions that support additional features. [9]. Table 1 presents some commonly 
used EDDL basic construction elements with their respective descriptions. 

 



4

1234567890

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012006  doi :10.1088/1742-6596/870/1/012006

 

Table 1. EDDL language elements and their descriptions. 

EDDL  element Description 

VARIABLE Describes parameters 
contained in a device. 

METHOD Defines executable 
subroutines. 

COMMAND 
Describes the structure and the 
addressing of variables in the 
device. 

BLOCK Describes a field device that is 
organized in logical blocks. 

MENU Organizes EDDL elements 
into a hierarchical structure. 

LIKE 
Used to create a new instance 
of an existing item (e.g. 
VARIABLE) 

GRAPH Used to display data from a 
device. 

 
EDDL technology consists of EDD file and a host PC that hosts an EDDL interpreter. EDD file contains 

the descriptions of the devices as supplied by the device manufacturers. EDDs supplied in the form of ASCII 
text files are imported into the host PC, interpreted by the EDDL interpreter and executed.   

3.3. EDDL vs FDT/DTM  
EDDL and FDT/DTM (Field Device Tool/ Device Type Manager) technologies are two most widely used 
device description technologies. EDDL technology comprises two components – EDD file, which contains the 
device descriptions and a host application that reads and executes the EDD file. On the other hand, the 
FDT/DTM technology consist of two software components – DTM, a software component that contains 
device descriptions or descriptions of the communication component and  FDT Frame Application that 
provides a common runtime environment for all DTMs [4]. Compared to the FDT/DTM technology, EDDL 
technology is operating system independent and portable. Recently, the FDI (Field Device Integration) 
technology has been developed to combine the advantages of both competing solutions in a single solution. 
The core component of the FDI technology is the FDI Package which contains the device descriptions and 
other optional components. The FDI device descriptions are based on the EDDL technology [5]. 

4.  Implementation 

4.1. Introduction  
This section presents the OPC UA open source solutions [10] that were compared by the authors to finally 
select one for our implementation, presents the EDDL parser implementation and the EDDL to OPC UA 
mapping. This section also describes shortly the test setup to test whether the authors’ approach of 
dynamically mapping devices based on the EDDL technology to OPC UA is feasible.  

4.2 OPC UA open source solutions 
Open source solutions of the OPC UA technology developed by the OPC Foundation, other companies, 
research institutes and academia as well as commercial solutions of the technology are available. In this paper, 
the authors compare the existing twelve open source implementations [10] based on some selected parameters. 
These parameters include the open source solution’s support for the different OPC UA communication 
mappings, security profiles, transport profiles, OPC UA services, license types, community updates, 
programming languages used, operating system and hardware targets as well as tools required to enhance 
usability of the solutions.  A snapshot of the parameters supported by three of the open source solutions, 
UA.Net [11], open62541 [12], AsNeG [13-14] are as shown in Figure 3. 

Comparing the selected parameters of all the open source solutions, the AsNeG (Automation Service Next 
Generation) solution was preferred by the authors and selected as our reference OPC UA server 
implementation. AsNeG is open, free and is developed in C++.  



5

1234567890

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012006  doi :10.1088/1742-6596/870/1/012006

 

 
Figure 3. OPC UA open source solutions 

 

4.3. EDDL Parser  
EDD files can be distributed by device manufacturers either in text or binary format depending on what the 
host system requires. Binary EDD file is normally tokenized to a compressed binary to prevent tampering of 
the EDD file. These compressed files are relatively smaller, uploaded by the host system and decoded by DD 
services. On the other hand, text-based EDD files are interpreted by EDDI (Electronic Device Description 
Interpreter) in the host system where these EDD files are uploaded.  In this paper, only text-based EDD files 
are considered.  

The main motivation for implementing the EDDL parser is to extract the EDDL language elements and 
map them to OPC UA nodes. Several tools and libraries such as GNU Bison – YACC compatible parser 
generator, Boost Spirit library and Flex are possible solutions to implement the EDDL parser. The EDDL 
parser implemented by the authors has the following characteristics: 
• Based on the Boost Spirit library 
• Parses all EDDL language elements (e.g. language elements for identifying a specific EDD, describing data and 

communication components of field devices). 
• Skips all whitespaces, pre-processor directives and all comments in the EDD file 
• Parser can be extended to parse additional EDDL language elements that would be required in future. 

4.4. EDDL to OPC UA mapping 
The FDI technical specification part 5 defines the mapping of EDDL and other FDI package information to 
the FDI information model and its underlying OPC UA information models [15]. Based on these defined 
mappings, the authors have designed APIs to automatically map the parsed EDDL language elements or 
constructs to their corresponding OPC UA nodes or attributes.  Even though these mappings are well-defined, 
not all EDDL language elements have their corresponding mappings. For example, while the EDDL 
VARIABLE language element maps to a Variable node in OPC UA, the EDDL COMMAND language 
element has no mapping. The reason is based on the purpose of the EDDL language element. OPC UA clients 
access Variable nodes in the OPC UA server to read or write sensor values but do not need to access the 
COMMAND element. As explained earlier, the EDDL COMMAND language element supports the mapping 
of the EDDL file communication elements to the underlying communication system. 

The simple logic flow of how the EDDL to OPC UA mapping is achieved is as shown in Figure 4.  
 



6

1234567890

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012006  doi :10.1088/1742-6596/870/1/012006

 

 
Figure 4. Flowchart showing EDDL to OPC UA mapping 

 
In Figure 6, an EDDL file (EDD Document) with the VARIABLE and COMMAND EDDL language 
elements is parsed by our own EDDL parser. According to the FDI specification [15], the VARIABLE 
language element is mapped to create corresponding OPC UA variable nodes in the OPC UA server. The 
COMMAND language element with no defined mapping however allows the OPC UA server to have 
knowledge about how data can be read or written to the actual field devices or sensors. In between these 
operations, a complex data structure is implemented to store all relevant information.  

4.5 Test setup 
The objective of our test setup is to provide a platform to test the dynamic integration of device descriptions 
based on the EDDL technology into OPC UA. The test setup consists of an embedded platform, which hosts 
the server-side of the OPC UA implementation and a Windows-based PC running the client-side of the OPC 
UA implementation. In our set up, the OPC UA server open source implementation of the AsNeG solution is 
selected, fine-tuned and run on the embedded platform. On the other hand, UaExpert developed by Unified 
Automation is selected as our OPC UA client application and run on the Windows PC.  

4.5.1 Embedded platform. The BBB (BeagleBone Black) [16] is used as the embedded platform to run the 
OPC UA server implementation from AsNeG. The BBB runs Debian OS, has a 512MB DDR3 RAM, 4GB 8-
bit eMMC on-board flash storage and connects to the host PC via its USB host and Ethernet interfaces [16].  

The tools required to build and run this implementation on the BBB are as follows: 
• Boost version 1.54 
• Gcc 4.9 
• Cmake 
• Openssl 
• OPC UA server configuration file (.xml) 
• EDDL files (.ddl) 
• EDDL configuration files (.xml) 
The build and run process of the OPC UA server implementation have been automated by bash scripts. To 
start the OPC UA server, a configuration file which defines information models, security profiles, transport 
profiles is required.  

At run-time, the OPC UA server is able to load several EDDL configuration files. Each EDDL 
configuration file contain information about the EDDL file that shall be loaded by the OPC UA server and 
predefined ids and attributes of the OPC UA nodes that would be created by the OPC UA server. For example, 
the EDDL configuration file for the NIKI Current Sensor as shown in Figure 5 defines the corresponding 
EDD description of the NIKI Current Sensor in Figure 2. The OPC UA server therefore loads several EDDL 
configuration files, extracts the specified EDDL files, invokes the EDDL parser, maps the parsed EDDL 
languages elements to the corresponding OPC UA nodes as defined in [15] and finally creates the 
corresponding OPC UA nodes in the address space of the OPC UA server. 

 



7

1234567890

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012006  doi :10.1088/1742-6596/870/1/012006

 

<?xml version="1.0" encoding="utf-8"?> 
<EddlModel xmlns="http://eddl/EddlModel.xsd"> 
    <EddlPath File="@CONF_DIR@/Nodes/ 
       Current-Sensor.ddl" /> 
    <ObjectNode Id="998" BrowseName="NIKI  
        Current Sensor" DisplayName="NIKI Current   
      Sensor" Description="Current Sensor" /> 
    <VariableNodes FirstId="1200" /> 
</EddlModel> 

Figure 5. EDDL Configuration file for NIKI Current Sensor. 

4.5.2 Windows PC. A standard Windows PC is used to host the UaExpert application. UaExpert is a full-
featured OPC UA client implementation that supports several OPC UA functionalities such as data access, 
alarms and conditions and historical access. In our test setup, the UaExpert is used to connect and visualize the 
OPC UA nodes created on the OPC UA server.  

4.6 Test results 
Figure 6 shows a snapshot of the UaExpert’s visualized OPC UA nodes that were created dynamically by the 
OPC UA server running on the BBB after loading and parsing sample NIKI Current and Temperature Sensor 
EDDL configuration files and their corresponding EDD files.   
 

Opc Ua Server

EDD Interpreter

EDD Interpreting Transforming EDD  
to OPC UA nodes

Load config files and 
extract EDD 
documents

Address
 Space Object

NIKI 
Temperature

Sensor

Create OPC UA nodes

Connnection from OPC 
UA client (UaExpert) 

Server 
Object

NIKI 
Current
Sensor

Object

Variable
NodeView

Node

Method 
Node

EDD 
documents

 
Figure 6. Snapshot showing UaExpert visualized nodes from the OPC UA server. 

 
 



8

1234567890

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012006  doi :10.1088/1742-6596/870/1/012006

 

5.  Outlook 
We have presented in this paper our approach to dynamically map device descriptions based on EDDL to 
OPC UA. So far, our test results are based on Profibus, FOUDATION and HART devices. Currently, work is 
ongoing to integrate the open source LWM2M server implementation in the OPC UA server to allow the OPC 
UA server to access or get notified of data changes in the corresponding client, for example, a temperature 
sensor hosting a LWM2M client. Furthermore, we are working to support more devices based on protocols 
such as Modbus.   

References 
[1] M. Gunzert. Compatibility and interoperability in field device integration – A view on EDDL, FDT and 

FDI, (2015). In IEEE Conference Publications pp. 941-946G. Lütjering, J.C. Williams, Titanium, 
Springer, 2003. 

[2]  S. Runde, G. Wolf, M. Braun. EDDL and Semantic Web – from Field Device Integration (FDI) to 
Future Device Management (FDM), (2013). In IEEE Conference Publications pp. 1-8.  

[3] www.eddl.org. 
[4] www.fdtgroup.org. 
[5] http://www.fdi-cooperation.com/technology.html. 
[6] OPC Foundation, OPC Unified Architecture Specification Part 1: Overview and Concepts, Release 1.03 

(2015)  
[7] OPC Foundation, OPC Unified Architecture Specification Part 3: Address Space Model, Release 1.03 

(2015)   
[8] OPC Foundation, OPC Unified Architecture Specification Part 5: Information Model, Release 1.03 

(2015) 
[9] PROFIBUS Nutzerorganisation e.V., EDDL Specification for Profibus Device Description and Device 

Integration, (2005). 
[10] https://github.com/open62541/open62541/wiki/List-of-Open-Source-OPC-UA-Implementations. 
[11] https://github.com/OPCFoundation/UA-.NET 
[12] http://open62541.org/ 
[13] http://wiki.asneg.de/wiki/index.php/Produkte/OpcUaStack 
[14] https://81.169.197.52:8443/tree/OpcUaStack.git/master/src 
[15] FDI Cooperation, FDI Technical Specification Part 5: Information Model (2015) 
[16] https://cdn.sparkfun.com/datasheets/Dev/Beagle/BBB_SRM_C.pd
 
Acknowledgement 
The work of this paper was partially supported within the project NIKI4.0 “NIcht disruptives Kit für die 
Evalution von Industrie 4.0” funded by Baden-Württemberg Stiftung GmbH. The authors are grateful for this 
support. 

 


