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Abstract
Purpose This work presents a new monocular peer-to-peer tracking concept overcoming the distinction between tracking
tools and tracked tools for optical navigation systems. A marker model concept based on marker triplets combined with a
fast and robust algorithm for assigning image feature points to the corresponding markers of the tracker is introduced. Also
included is a new and fast algorithm for pose estimation.
Methods A peer-to-peer tracker consists of seven markers, which can be tracked by other peers, and one camera which
is used to track the position and orientation of other peers. The special marker layout enables a fast and robust algorithm
for assigning image feature points to the correct markers. The iterative pose estimation algorithm is based on point-to-line
matching with Lagrange–Newton optimization and does not rely on initial guesses. Uniformly distributed quaternions in 4D
(the vertices of a hexacosichora) are used as starting points and always provide the global minimum.
Results Experiments have shown that the marker assignment algorithm robustly assigns image feature points to the correct
markers even under challenging conditions. The pose estimation algorithm works fast, robustly and always finds the correct
pose of the trackers. Image processing, marker assignment, and pose estimation for two trackers are handled in less than
18 ms on an Intel i7-6700 desktop computer at 3.4 GHz.
Conclusion The new peer-to-peer tracking concept is a valuable approach to a decentralized navigation system that offers
more freedom in the operating room while providing accurate, fast, and robust results.

Keywords Peer-to-peer navigation · Monocular tracking · Pose estimation · Marker assignment

Introduction

Optical navigation systems normally consist of one tracking
unit and several tracked tools. While the tracking unit usu-
ally uses line scan cameras (e.g., Stryker FP 6000) or plane
image sensors (e.g., NDI Polaris), the markers are either
active [light-emitting diodes (LEDs)] or passive (retroreflec-
tive spheres, black-white targets). If at least threemarkers can
be triangulated, the pose of the tracked tool is calculated using

B Simon Strzeletz
simon.strzeletz@hs-offenburg.de

Harald Hoppe
harald.hoppe@hs-offenburg.de

1 Department of Electrical Engineering, Medical Engineering
and Computer Science, Offenburg University, Badstraße 24,
77652 Offenburg, Germany

2 Stryker Leibinger GmbH & Co. KG, Bötzinger Str. 39–41,
79111 Freiburg im Breisgau, Germany

point-to-point matching. This concept is “centralized,” and
the tracking unit needs an unobstructed view to all tracked
objects and therefore has to be placed at a significant dis-
tance away from the trackers. This can be problematic in an
operating room, where the situs is surrounded by OR person-
nel. Furthermore, this centralized concept lacks redundancy:
The transformation between two tracked tools depends on
the unobstructed view to both of them.

In [15], we proposed the novel concept of peer-to-peer
trackers which are tracking units and tracked tools at the
same time. The tracking of other peers is realized using one
camera in conjunction with a novel pose estimation algo-
rithm. In this work, the underlying tracker layout concept is
presented which is based on marker triplets together with a
fast and robust marker assignment algorithm which assigns
the markers found in the camera image to the correct markers
of the tracked tools. Furthermore, a new iterative pose esti-
mation algorithm not relying on initial guesses or previously
tracked poses is introduced. It is shown that tracking with the
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proposed concept and the novel algorithms is fast, accurate,
and robust even in the presence of accidental marker detec-
tions like reflections or unwanted light sources. The correct
assignment of markers is of central importance since testing
all possible combinations would take too much time.

In contrast to point-to-point matching with at least three
point correspondences [1], monocular pose estimation needs
at least four point-to-line correspondences (see, e.g., Ober-
kampf et al. [12]). While Oberkampf presents an iterative
pose estimation algorithm for large distances between cam-
era and object, this work focuses on small distances and high
accuracy. Furthermore, Oberkampf assigns quality measures
to each step of the iteration in order to get the best possible
solution. Here, if more than one possible constellation for
the same tracker type is found, the smallest residual error of
an appropriate objective function is used to find the correct
pose of the particular tracker type.

Tjaden et al. [17] use a tracker with seven non-planar LED
markers in cross-shape for the marker assignment algorithm.
The image features are correctly assigned by analyzing the
two lines of the LEDcross in the 2D image. Especially in case
of highly distorting optics (e.g., fisheye lenses), this requires
an image distortion correction. Moreover, Tjaden only intro-
duces one tracker layout and uses a k-means approach to
distinguish clearly separated clusters of features in the image.
The presented algorithms are able to distinguish four differ-
ent tracker types even if they strongly overlap.

Dornaika and Garcia [6] describe two pose estimation
algorithms for weak perspective and paraperspective projec-
tion which both assume that the camera exhibits a unique
projection center where all viewing rays pass through. The
pose estimation algorithm described in “Pose estimation
algorithm” section overcomes this restriction and works per-
fectly for arbitrary constellations. As stated in [12,14,19],
most pose estimation algorithms show difficulties using pla-
nar targets that lead to pose ambiguities and can only be
solved with time-consuming calculations. Solutions often
lack the ability to truly support feature point assignment
under occlusion or with many accidental feature points [17].
This work is robust against such influences.

The presentedworkwas developed for surgical navigation
purposes, but is definitely not restricted to this application
area. In many different disciplines, methods are needed to
determine the location and orientation of objects. These
methods have to be fast, cheap, and still accurate enough
for the specific fields, e.g., satellite navigation or the calcula-
tion of the relative transformation betweenvarious unmanned
aerial vehicles such as quadrocopters [11]. In recent years,
augmented reality applications relying on cheap solutions
with fast and accurate transformations between real and vir-
tual objects are on the rise [10].

Teixeira et al. [16] present a solution in which pose esti-
mation with LEDs is used to determine the position and
orientation of a flying quadrocopter. They also state that in
the field of areal robotics, a cheap solution is needed for pose
estimation. Their achieved accuracies lack the requirements
for surgical navigation. Faessler et al. [8] use a monocular
setup and an iterative algorithm that uses the last detected
pose as a starting value for the pose estimation of the next
frame. This can result in subsequent errors if the last calcu-
lation was incorrect or too old.

The main focus of this work is a fast and robust marker
assignment algorithm together with the underlying marker
layout concept as well as a novel pose estimation algorithm
which works without initial guesses.

Material andmethods

Figure 1 shows the actual design of the proposed peer-to-peer
trackers with integrated cameras for pose estimation. The
seven markers (LEDs) are arranged in a square configuration
with four corners, one middle marker, and two markers (L2

and L6) tagging one of the two outer markers of the respec-
tive side triplet. Depending on the position of these tagging
markers, four different types of trackers can be realized (see
Fig. 1). All in all, each tracker type includes four collinear
LED triplets: two side triplets with an asymmetric and two
middle triplets with a symmetric LED layout. The cameras
are calibrated with the pixel-wise and model-free calibration
method introduced in [9]. In [15], it was shown that pose
estimation with one camera is accurate enough for surgical
navigation purposes.

Marker assignment algorithm

As stated in “Introduction” section, the fast and correct map-
ping of image feature points to the markers is crucial for pose
estimation. These points are found using a weighted center
blob detection which results in a set of N 2D pixel coordi-
nates. Each blob center defines a straight line containing all
world points that are projected on the specific pixel coor-
dinates. These straight lines can be defined by two points
marking the beginning (near point) and the end (far point) of
the calibration area (see Fig. 2).

Marker triplets

Given that three markers are collinear, their corresponding
viewing lines, and therefore their near and far points, are
coplanar (see Fig. 2). All

(N
3

)
possible combinations of three

blobs are investigated by calculating the regression plane
through their six near and far points. If the sum of squared
distances (SSD) of the points to the regression plane is below
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Fig. 1 The four possible peer-to-peer trackers with seven markers (LEDs) and one camera (left) and the underlying design concept (right)

Fig. 2 The three near and three
far points of a marker triplet lie
on a single plane

a defined threshold tSSD, the triplet is stored. This results
in a set of possible triplet candidates that are processed
further on.

Marker tagging

The middle marker of a triplet can be used to distinguish
between triplets with symmetric and asymmetric layout. In

the latter case, the triplet’s middle marker is placed at 20%
resp. 80%of the distance between the two outer ones. The dif-
ferentiation is realized by calculating and sorting the three
angles (αmin, αmid, αmax) between the straight lines corre-
sponding to one triplet. The two lines corresponding to the
largest angle αmax correspond to the two outer markers, and
the tagged marker also contributes to αmin. See Fig. 3 (left)
for further details.
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Fig. 3 Marker triplet with viewing angles αmin, αmid, and αmax (left) and angle ratio f = αmid
αmin

for symmetric (red) and asymmetric (green) triplets
(right)

If the triplet is observed fromadistance significantly larger
than the extension of the triplet, the ratio f = αmid

αmin
is 1.0 for

symmetric triplets and 4.0 for the chosen percentage of 20%
resp. 80%. But the smaller this distance gets, the more this
ratio differs from these values. Figure 3 (right) shows f for a
triplet extension of 80mm and a viewing distance of 200mm
for all possible viewing angles. It ranges from 2.7 to 6.0 for
asymmetric (green line) and from 0.7 to 1.5 for symmetric
triplets (red line). Therefore, f can be used to distinguish the
two kinds of triplets: f < 2.0 for symmetric, f > 2.0 for
asymmetric triplets. Triplets with f > 6.0 are rejected (the
markers align coincidentally).

All in all, this part of the algorithm results in a number of
M symmetric middle triplets and S asymmetric side triplets.

Combining triplets

Now, all
(M
2

)
combinations of twomiddle triplets are checked

for a shared middle marker. If a pair was found, the blob IDs
are stored as follows:

– pid . . . outer marker of triplet 1 with smaller blob ID
– qid . . . outer marker of triplet 2 with smaller blob ID
– rid . . . outer marker of triplet 1 with larger blob ID
– sid . . . outer marker of triplet 2 with larger blob ID
– mid . . . blob ID of shared middle marker

pid, qid, rid, and sid (in this order) define the blob IDs of
the corners of the square in clockwise or counterclockwise
order. Now, the first side triplet is searched which connects

pid and qid, qid and rid, rid and sid, or sid and pid. If found, a
second side triplet is searched which shares one corner with
the first side triplet. Let uid and vid be the outer marker blob
IDs of this second side triplet. If the first triplet connects,
e.g., pid and qid, there are two possible cases for the second
side triplet:
1. (uid = pid and vid = sid) or (vid = pid and uid = sid)

(the second triplet connects sid and pid). Then, corner
pid is the shared marker and the involved blob IDs are
stored in the following order: pid/tagging marker ID of
side triplet 1/qid/rid/sid/tagging marker ID of side triplet
2/mid

2. (uid = qid and vid = rid) or (vid = qid and uid = rid) (the
second triplet connects qid and rid). Then, corner qid is
the shared marker and the involved blob IDs are stored in
the following order: qid/tagging marker ID of side triplet
2/rid/sid/pid/tagging marker ID of side triplet 1/mid

Figure 4 (left) illustrates the two described cases in coun-
terclockwise order. Other cases are handled analogously.

The handedness of the found constellation is investigated
by calculating the determinant of the viewing directions
of the first, fifth, and third entry of the current square
candidate. If this determinant is negative, the square IDs
are stored clockwise and have to be resorted as follows:
id1/id6/id5/id4/id3/id2/id7

The last step of the algorithm determines the type of
the square tracker by investigating which outer markers are
tagged by the tagging markers of the two side triplets (see
Fig. 4 right):
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Fig. 4 The two different cases for the second side triplet if the first side triplet connects pid and qid (left) and the four different types of trackers
(right)

– Type 1: Both tagging markers tag L1.
– Type 2: Both tagging markers do not tag L1.
– Type 3: Tagging marker L2 tags L3 and tagging marker

L6 tags L1.
– Type 4: Tagging marker L2 tags L1 and tagging marker

L6 tags L5.

Pose estimation algorithm

Optimization function

Figure 5 depicts the pose estimation problem: Given a set of
straight lines ai + si · di with normalized direction vectors
di in camera coordinatesC and a set of corresponding points
pi with i = 1 . . . N in tracker coordinates T , we search for
the rotation matrix R and the translational vector T such that
the sum of squared distances of the transformed points yi =
R ·pi+T to the straight lines getsminimal.Withhi = yi−ai ,
the distance of yi to ai + si · di is

∣∣hi − (
dTi · hi

) · di
∣∣ and

can be written as
∣∣(E − di · dTi

) · hi
∣∣ where E is the 3×3

identity matrix. Therefore, we have to minimize

f (R,T) =
N∑

i=1

∣
∣∣
(
E − di · dTi

)
· (R · pi + T − ai )

∣
∣∣
2

(1)

T can be eliminated by solving ∂ f
∂T = 0 for T and inserting

it back into (1). After parameterizing R with the elements of

Fig. 5 The known marker positions (right) are matched to their corre-
sponding viewing lines (left)

the corresponding unit quaternion qT = (
q0 q1 q2 q3

)
, the

optimization function only depends on q and has the form

f (q) =
N∑

i=1

3∑

j=1

(
qT · Bi j · q + ki j

)2
(2)

where Bi j are symmetric 4×4 matrices and ki j are scalars
depending on pi , ai , and di . A comprehensive derivation of
(2) can be found in [15].

Optimization

WhileOlsson et al. [13] use a branch and bound algorithm for
minimizing (2)—unfortunately without presenting its calcu-
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Fig. 6 Typical image of four trackers (28 LEDs) together with four extra LEDs seen by the virtual camera (left); the same scene after analyzing
the possible tracker constellations (right)

lation time—the algorithm proposed here uses Lagrange–
Newton Iteration which turned out to converge extremely
fast after a mean of ten iterations. Minimizing f (q) under
the constraint qT · q = 1 equals minimizing

F(q, λ) =
N∑

i=1

3∑

j=1

(
qT · Bi j · q + ki j

)2 + λ ·
(
qT · q − 1

)

(3)

where the gradient of F(q, λ) has to be zero:

∇F(q, λ) =
(
2λ · q + ∑N

i=3
∑3

j=1 4 · vi j · Bi j · q
q20 + q21 + q22 + q23 − 1

)

!=
(
0
0

)
with vi j = qT · Bi j · q + ki j (4)

This nonlinear equation system can be solved iteratively:

(
qnew
λnew

)
=

(
qold
λold

)
−

(
Δq
Δλ

)
with HF (qold, λold) ·

(
Δq
Δλ

)

= ∇F(qold, λold) (5)

The elements of the symmetric Hessian matrix HF (q, λ) are

Hkl = 2λ · δkl + 4 ·
N∑

i=1

3∑

j=1

(
2 · hi j (l) · hi j (k) + vi j · Bi j (k, l)

)

for 0 ≤ k, l ≤ 3 where δkl is the Kronecker delta and hi j =
Bi j ·q. Furthermore, H4k = Hk4 = 2qk and H44 equals zero.

Starting values for the Lagrange–Newton iteration

The above described iterative optimization relies on suitable
starting values for q. An inevitable demand for this work was

Fig. 7 Relative frequency of found valid tracker constellations after
100,000 trials

not to rely on guesses or previous calculations. This leads to
the question how a sufficient number of uniformly distributed
starting quaternions can be arranged on a four-dimensional
unit hypersphere such that at least one of them converges to
the global minimum.

The solution is using the vertices of the 600-cell or
hexacosichora—one of the six platonic solids in 4D and
the equivalent of the icosahedron in 3D. The 120 ver-
tices of the 600-cell are the 16 possible combinations of
(± 1

2 ,± 1
2 ,± 1

2 ,± 1
2 ), the 8 permutations of (±1, 0, 0, 0), and

the 96 even permutations of (± τ
2 ,± 1

2 ,± 1
2τ , 0) with (τ =

(1 + √
5)/2). Since q and −q define the same rotation, this

results in 60 uniformly distributed quaternions.
While the derivation of the optimization function (2) is

state of the art, uniformly distributing starting rotations as
described above has, to the best of the authors’ knowledge,
not been presented in the literature before. All experiments
have shown that the global minimum is always found if these
60 quaternions are used as starting values.
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Fig. 8 Strongly overlapping
(and therefore nearly
impossible) constellation with 8
valid tracker constellations

Results

In a MATLAB simulation, all four possible tracker types (28
LEDs) together with 4 extra LEDs (possible reflections or
other accidental light sources) were randomly placed in front
of a virtual camera 100,000 times and analyzed as described
in “Marker assignment algorithm” section. Figure 6 (left)
shows a typical camera image of the 32 LEDs, and Fig. 6
(right) shows the same scene after analyzing the possible
tracker constellations. The simulation was performed with-
out preventing the trackers from overlapping and with the
following parameters: 64 mm tracker side length; 150–200
mm distance range of tracker center to projection center; 140
mmmaximum distance between tracker center and camera’s
principal axis; 85◦ maximum angle between tracker normal
and principal axis.

In 100% of the trials, all four trackers were found. With
a relative frequency of 71.6%, only the four trackers and
no other valid candidates were found. Furthermore, with a
relative frequency of 21.2%, the actual four trackers and one
more possible candidate were found. Further details can be
found in Fig. 7.

Samples with 7 or more possible candidates only occur
if the four randomly placed trackers strongly overlap or if
one or more of the four extra LEDs are very close to one of
the tracker LEDs, which is rather unlikely in real scenes (see
Fig. 8).

Note 1: The fact that the algorithm finds more possible
candidates than present in the image does not mean that the
correct poses of the trackers can not be found. The marker
assignment algorithm has to heavily reduce the number of
possible candidates before the pose estimation algorithm
optimizes the objective function (2) of “Pose estimation algo-
rithm” section. The correct poses correspond to the smallest
residual objective function values for the particular tracker
types.

Note 2: State-of-the-art surgical navigation systems (e.g.,
NDI Polaris, Stryker FP 6000) triangulate marker positions
and calculate transformations by means of point-to-point
matching forwhich at least threemarkers are needed. If oneof
these three markers is occluded, the calculation fails. While

Fig. 9 Marker assignment result for four overlapping trackers with five
extra light sources

Table 1 Calculation time of marker assignment for multiple trackers
under real conditions

# of trackers No accidental light
sources (ms)

Seven accidental
light sources (ms)

1 6.0 7.0

2 6.5 7.1

3 6.8 7.2

4 7.0 7.5

the minimum number or markers for monocular tracking
resp. point-to-line matching is four, the presented algorithms
rely on the visibility of seven markers in order to achieve
a robust and fast marker assignment which is essential for
monocular tracking. The transformation can only be calcu-
lated if all seven LEDs are visible.

All subsequent tests were performed under real condi-
tions. The first test scenario included a calibrated Ximea
MQ013MG-E2 with all four tracker types simultaneously
placed at distances ranging from 200 to 350 mm. A typi-
cal result after marker assignment can be found in Fig. 9.
The underlying software was written in C++ using the
“Armadillo library for linear algebra & scientific comput-
ing” and executed on an Intel i7-6700 at 3.4 GHz. The mean
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Table 2 Mean deviations of
LEDs and tool center points for
stereo and monocular tracking

Stereo Monocular camera 1 Monocular camera 2

LED (mm) LED (mm) TCP (mm) LED (mm) TCP (mm)

Frontal view 0.10 0.77 0.93 0.48 0.70

45◦ view 0.12 0.61 0.67 0.61 0.64

Random angle 0.11 0.55 0.60 0.46 0.54

Fig. 10 Mean TCP deviations
for different distances and
viewing angles

calculation times for marker assignments with and without
accidental light sources were measured and are displayed in
table 1. The calculation time is small and does not increase
significantlywith the number of trackers.Although four over-
lapping trackers are tracked simultaneously together with
accidental light sources, the algorithm still robustly finds all
trackers.

Themean calculation time for one pose estimationwith 60
uniformly distributed start rotations was 5.5 ms per tracker.
Therefore, the overall calculation time is below 18 ms for
a common use case of two trackers tracked by another peer
(6.5 ms for markers assignment, two times 5.5 ms for pose
estimation).

Accuracy tests

In order to compare the proposed peer-to-peer tracking
concept in terms of accuracy, three different tests were con-
ducted. They each utilize the same two cameras (The Imaging
Source DMM 37UX273-ML), the same camera calibrations,
as well as a the same tool center point (TCP) distance of
150 mm.

Stereo tracking versus monocular tracking

A stereo camera system is used to calculate the pose of a
peer-to-peer tracker utilizing both cameras simultaneously
(triangulation and point-to-point matching) and each cam-
era separately (point-to-line matching). This results in three

transformations from tracker to camera coordinates. In the
first test, the tracker is oriented frontally, under 45° in the
second test, and at arbitrary angles in the third. Table 2 shows
the measured mean deviations for 100 test positions each. In
case of LED deviations, the triangulated LED positions are
taken as ground truth and the deviations of the transformed
LED positions are used to calculate the mean deviations.
For the tool center points located at 150 mm away from the
tracker center, the transformation resulting from triangula-
tion was used to calculate the ground truth positions, which
are compared to those resulting from point-to-line matching.
The results show that the achieved accuracy is practically
independent from the viewing angle.

The same test is performed using a linear guide rail
together with two rotary joints which are used to automati-
cally control the distance aswell as the pitch and yaw angle of
the peer-to-peer tracker with respect to the cameras. Again,
the stereo transformation is taken as ground truth and the
TCP deviations are calculated for more than 2500 positions.
Figure 10 shows these deviations for the resulting distances
and viewing angles. Please note that the cameras are only cal-
ibrated up to a maximum distance of 350 mmwhich explains
higher deviations beyond this limit.

Peer-to-peer tracking versus Stryker FP 6000

In the following two tests, the accuracy of the presented
peer-to-peer tracking concept is compared to the accuracy
of Stryker’s surgical navigation camera FP 6000.
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Table 3 Pivot test results of 1000 poses for peer-to-peer tracking and
the FP6000 navigation system

Mean (mm) Std. (mm) Max (mm)

Peer-to-peer tracking 0.31 0.36 1.14

Stryker FP 6000 0.28 0.31 1.09

Fig. 11 Test setup for the transformation chain calculation

For the first test, a bearing ball is rigidly attached 150 mm
away from the center of a Stryker universal tracker which
itself is mounted back to back on a peer-to-peer tracker.
Now, the bearing ball is pivoted inside its matching coun-
terpart and for each of the two trackers, 1000 different poses
are recorded. Finally, the pivot points are optimized in both
coordinate systems and the resulting deviations to the pivot
points are calculated for all transformations. Table 3 shows
the mean, standard, and maximum deviations for both nav-
igation systems. The results clearly show that the presented
peer-to-peer tracking is nearly as accurate as Stryker’s state-
of-the-art navigation camera and definitely accurate enough
for surgical navigation.

For the second test, Stryker’s universal tracker is again
mounted back to back on a peer-to-peer tracker and the two
navigation cameras are rigidly attached to the same table such
that their relative transformation stays constant (see Fig. 11).
Now, 100 arbitrary pairs of corresponding poses FCTi and
FSUi are recorded and used to optimize the static transfor-
mations FUT and FCS . Afterward, tool center points pT (still

150 mm away from the tracker center) defined constantly in
peer-to-peer tracker coordinates T are transformed to naviga-
tion camera coordinates C directly using FCTi and indirectly
using the Stryker transformation as ground truth:

pCi P2P = FCTi ·pT resp. pCiStryker = FCS · FSUi · FUT ·pT
(6)

Statistically analyzing the distances di = |pCi P2P −
pCiStryker | results in mean deviation of 0.50 mm and a root
mean square of 0.57 mm. All in all, it turns out that the
accuracy of the presented peer-to-peer tracking concept is
definitely comparable to the accuracy of a state-of-the-art
surgical navigation system.

Peer-to-peer tracking versus ground truth

A thorough comparison of Stryker’s FP 6000 (used in “Peer-
to-peer tracking versus Stryker FP 6000” section) against a
coordinatemeasurementmachine can be found in [7]. Elfring
et al. conclude that the Stryker camera exhibits best-in-class
accuracy with a trueness of 0.07 mm.

In order to compare the peer-to-peer tracking concept
against a ground truth, two linear guide rails are used to
position the pivot mold of the test described in “Peer-to-peer
tracking versus Stryker FP 6000” section with an absolute
accuracy of 0.02 mm at rasterized grid positions with a grid
spacing of 37.5 mm in x-direction and 40 mm in z-direction.
For 40 grid positions, 500 transformations of the pivoted
peer-to-peer tracker are recorded. This results in 40 pivot
points which are matched to the exact grid positions using
point-to-point matching. Figure 12 shows the pivot-to-grid
point deviations aftermatching for all 40 positions. Themean
deviation equals 0.14 mm and the maximum deviation is
0.31 mm.

Fig. 12 Pivot-to-grid point
deviation after point-to-point
matching

123



488 International Journal of Computer Assisted Radiology and Surgery (2020) 15:479–489

Conclusion and discussion

In this work and in [15], a new peer-to-peer tracking con-
cept was presented which overcomes the separation between
tracking tools and tracked tools. It was shown that one camera
per tracker provides sufficient accuracy for surgical naviga-
tion. Furthermore, novel algorithms for pose estimation and
marker assignment as well as a whole new tracker layout and
coding concept based on marker triplets were introduced.
Simulations and real experiments showed that the overall
concept works fast, accurately, and robustly.

The promising results shown in chapter 3 suggest that the
presented approach is a feasible alternative to the current
state-of-the-art surgical navigation and has the potential to
entail new applications that are not possible using current
technology. For example, peer-to-peer tracking opens up the
possibility to build tracking chains (one peer tracking the
next) and to navigate “around the corner.” Furthermore, the
presented trackers only consist of a housing, sevenLEDs, and
a low-cost camera and can therefore be realized as disposable
items which in turn facilitates that they do not have to be
sterilizable.

The presented approach also implies advantages with
respect to the emerging field of glasses-based augmented
reality in the operating theater: Instead of trying to get the
tracked see-through glasses (worn by the surgeon) and the
tracked tools into the working volume of a conventional sur-
gical navigation system (which is nearly impossible), the
glasses and tools only have to be equipped with one of the
proposed peer-to-peer trackers in order to realize precise
overlays. Corresponding use scenarios can be found in [2,5].
A similar approach for augmented reality was presented by
Vogt et al. [18].

Last but not least, although the concept was developed
for surgical navigation, it is also suitable for many other
fields where cheap, fast, and accurate methods of tracking
are of special interest, e.g., unmanned areal vehicles or self-
organizing robot swarms [3,4]. Future work will concentrate
on parallelizing and optimizing the algorithms to ensure an
update rate of at least 100 Hz. An achievable goal is reducing
the processing time for marker assignment from 7 ms to 5
ms and parallelizing pose estimation such that the poses of
all trackers can be calculated in 5 ms.
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