

Abstract—The Metering Bus, also known as M-Bus,
is a European standard EN13757-3 for reading out
metering devices, like electricity, water, gas, or heat
meters. Although real-life M-Bus networks can
reach a significant size and complexity, only very
simple protocol analyzers are available to observe
and maintain such networks. In order to provide de-
velopers and installers with the ability to analyze the
real bus signals easily, a web-based monitoring tool
for the M-Bus has been designed and implemented.
Combined with a physical bus interface it allows for
measuring and recording the bus signals. For this at
first a circuit has been developed, which transforms
the voltage and current-modulated M-Bus signals to
a voltage signal that can be read by a standard ADC
and processed by an MCU. The bus signals and
packets are displayed using a web server, which an-
alyzes and classifies the frame fragments. As an ad-
ditional feature an oscilloscope functionality is in-
cluded in order to visualize the physical signal on the
bus. This paper describes the development of the
read-out circuit for the Wired M-Bus and the data
recovery.

Index Terms—Bus analyzer, signal recording, ADC,
M-Bus.

I. INTRODUCTION

 The Metering Bus, also known as M-Bus, is a com-
munication protocol used for various meters and data
collectors, e.g. for metering of gas, heat, or electricity.
It is defined in the European standard EN13757 [1].
The M-Bus is widely used, mainly for apartment build-
ings, but it is also deployed in the industrial sector. The
standard has some issues because of unclear or missing
definitions, which might result in inconsistencies dur-
ing the setup of an M-Bus network. To reduce the prob-
lems, companies founded the working group 4 (WG4)
[2] in the Open Metering Systems (OMS) group to re-
vise the current standard. The Laboratory “Embedded
Systems and Communication Electronics” (ESK) from
Offenburg University of Applied Sciences is an active

contributor to this group. To overcome existing prob-
lems, the authors developed an M-Bus bus analyzer
which is shown in figure 1. The M-Bus bus analyzer is
a tool that can help to create a properly-working M-Bus
network. Therefore, the analyzer (also called sniffer)
records the complete signal flow of an M-Bus network
and monitors and analyzes the data flow by use of an
integrated web server.

The main platform for the analyzer is the Wireless M-
Bus analyzer capt2web [3] which uses an ARM9 con-
troller[4], running a Linux distribution and an embed-
ded web server to illustrate the bus data. Since the ARM
controller was originally developed as a head unit for a
Wireless M-Bus RF module, one of the main tasks in
this project was to replace the existing RF module by a
read-out circuit for Wired M-Bus and to adapt the head
unit’s frontend to accommodate to the wired M-Bus
protocol. Furthermore, the read-out circuit had to be de-
veloped, since no other solution had been available.
 This paper is organized as follows: Chapter II ex-
plains the Physical (PHY) and Data Link Layer (DLL)
of the M-Bus protocol. After this, chapter III discusses
the possibilities to tap the signal with minimum influ-
ence on the measured system. Then, chapter IV de-
scribes the hardware architecture of the analyzer. The
software functionality will be presented in chapter V.
Finally, chapter VI describes the head unit, and chap-
ter VII provides a summary and an outlook.

A Web-Based Monitoring Tool for Metering Bus
(EN13757-3)

Thomas Matt, Manuel Schappacher, Axel Sikora

Thomas Matt, thomas.matt@hs-offenburg.de, Manuel Schappacher,
manuel.schappacher@hs-offenburg.de, Axel Sikora, axel.si-
kora@hs-offenburg.de, are with Hochschule Offenburg, Badstraße
24, 77652 Offenburg.

Figure 1: M-Bus protocol analyzer prototype.

�����������������������

��

II. METERING BUS

A. General

 The Metering Bus is based on a common UART in-
terface that uses a fixed parameter set to transmit a byte.
Therefore, the overhead is composed of a single start
bit, a parity bit, and a stop bit. For the transmission
speed, different baud rates in the range from 300 to
38,400 Baud can be used. However, baud rates above
9,600 Baud are neither recommended, nor widely used
due to the characteristics of the physical layer.
 The M-Bus does not provide a separate wire as bus
clock, but uses self-clocking. To reduce the number of
wires and to avoid collisions on the common bus, the
M-Bus is based on a single master to control the data
flow. Both send and receive operations can be done
over a single pair of wires. In addition to the bus arbi-
tration, the master provides the power supply for each
slave, resulting in a constant voltage offset on the bus.
Since this offset is not clearly specified in the standard,
the voltage can be in the range of several volts, while
typical values range is from 24 V to 50 V. The M-
Bus provides both the downlink communication from
master to slave (M2S) and the uplink communication
from slave to master (S2M).

B. Master to Slave Communication (M2S)

 For the communication, a logical one is represented
by a fixed offset voltage Vmark and a logical zero by an
offset voltage Vspace of -12 V [1]. Therefore, the com-
munication is defined more or less by voltage drops of
12 V [1]. The current Iconsumption is constant during the
transmission, as shown in figure 2.

C. Slave to Master Communication (S2M)

 For the communication, the slave modulates its own
current consumption. In this case, the current will not
be constant anymore and the master that supplies the
power to the slaves can decode the communicated data
through the total current consumption on the bus.

 In its idle state, a slave consumes a constant current
of 1.5 mA [1], which is also known as unitload or Imark.
Depending on the current consumption, a device can
consume a single or integer multiples of a unitload. For
example, if a device needs 5 mA to run, it will burden
the bus with four unitloads (6 mA). In the S2M direc-
tion, Imark represents a logical one sent by a slave. The
maximal possible unitload within an M-Bus network
depends on the master providing the power supply.
Typically, a master can provide up to 250 unit loads.
The sum of all unitloads is called Iconsumption.
 The logical zero or Ispace is represented by a current
consumption in the range between 11 mA and 20 mA
[1]. The modulation of the current consumption also
has an effect on the offset voltage of the M-Bus master.
As shown in figure 3, a slave’s logical zero will always
cause a voltage drop on the bus. In order to verify that,
a part of this project was to record the signals on the
transmission lines. The oscillogram in figure 4 shows a
record of an S2M communication. It can be seen that
the current transmission implies a small voltage swing
on the bus according to theory. This swing depends on
the internal resistance of the master and on the re-
sistance of the transmission line. Since the internal re-
sistance of a master is not unambiguously specified in
the standard, it cannot be predicted. Typical values are
between 1 Ω and 68 Ω. These values result in a voltage

Figure 2: M-Bus physical levels during a master to slave transmis-
sion.

Figure 3: M-Bus physical levels during a Slave to Master transmis-
sion.

Figure 4: Real slave signals in a screenshot from an oscilloscope.

����������������������������
����������������������������

��

swing at the master clamp between 7 mVpp and 1.1 Vpp.
Figure 3 shows an example of some slave signals taken
from a test application given as reference. The voltage

swing in this case is Vpp ≈ 200 mV. For these
measurements, the oscilloscope must be set to AC
mode, because the offset voltage is about 200 times
higher than the signal.

III. SIGNAL TAPPING AND ACQUISITION

A bus or protocol analyzer needs to interpret the elec-
trical signals of the bus. In the case of the M-Bus, this
becomes even more difficult because of the two differ-
ent communication methods. Existing M-Bus sniffers
only interpret parts of the physical signals, since they
are designed as master devices without the abstraction
of the application and data link layer. Furthermore, they
only consider S2M direction, but not the M2S, since
this communication is always originated by the master
itself. This makes the approach unsuitable for a real an-
alyzer.
 For the M2S direction, various compatible driver ICs
are available as commercial-off-the-shelf (COTS) de-
vices, e.g. TSS721a [5] from Texas Instruments. How-
ever, it is not possible to use such a transceiver for the
planned analyzer, as it would increase the current con-
sumption of the bus and therefore would affect the bus
itself. Since this is an unwanted behavior for an ana-
lyzer, the usage of such components should be avoided.
In addition, there is also a circuit needed for the S2M
direction, because the previous described solution can-
not be used. The project goal was to create an analyzer
and not a bus master. To be able to analyze both direc-
tions different methods of the signal acquisition have
been investigated. However, since there were no suita-
ble methods or existing sniffers available, an own ap-
proach had to be developed.

A. Current Methods

 The S2M direction uses the current modulation for
data transmission, allowing these signals to be grabbed
with a current clamp or a shunt. The shunt method is
shown in figure 5. Both alternatives can only be used
for the S2M communication, because in M2S direction,
the bus current is constant. Also a problem of this
method is that the total S2M communication can only
be regained at the master’s clamp, because of Kirch-
hoff’s current law. Each slave creates a new junction in
the network, and so the sum of all currents can only be
measured at the master’s clamp.

B. Voltage Methods

 The simplest way to retrieve M2S and S2M signals
with a single circuit is to use the bus voltage as shown
in figure 6, since both directions have effects on the bus
voltage. However, the offset voltage of the M-Bus re-
mains an unknown parameter, as it depends on the im-
plementation of the devices. Since also the offset itself
does not have any informational content, the basic idea
of this approach is to separate the data signals from the
offset.

C. DC Cancelation

 The UART interface uses rectangular pulses to trans-
mit the data, meaning the data has a direct current (DC)
part as well. However, if an offset blocker is used to
split up the data signal from the bus signal, it will have
some impact on the frequency characteristics of the
data signal, i.e. it will lead to a distortion of the signal.
This is because of the system function of the offset
blocker. The data signal will be convolved with this
function, but the influence of the blocker will be mar-
ginal if the cutoff frequency is much smaller than the
transmission frequency. Figure 7 shows what a data sig-
nal will look like after a passive 1st order high pass. The

Figure 5: Signal tapping over a shunt.

Figure 6: Signal tapping parallel to a slave.

Figure 7: DC cancelation using a passive 1st order high pass filter
with fc = 1 Hz at 300 Baud.

�����������������������

��

cutoff frequency is fc = 1 Hz, and the simulated baud
rate is 300 Baud, which is also the lowest data rate for
the sniffer. The upper graph shows the input signal, the
lower the output signal of the high pass filter. As can be
seen, even though the levels might drop slightly over
time, the edges are clear enough to perform the required
signal analysis. With higher baud rates, e.g. 9,600
Baud, these effects will no longer be recognizable as
can be seen in figure 8. Higher baud rates do have fre-
quencies around the baseband like lower baud rates, but
the amplitudes are not this high. So the waveform of the
higher baud rates will be less affected than the wave-
forms at lower baud rates. This method is also used in
the AC mode in oscilloscopes.
 To remove the voltage offset, the M-Bus analyzer
uses such a 1st order high pass filter. After the offset is
removed, the data signal will be amplified to get a
larger voltage swing from the S2M direction. Further-
more, a specified offset will be added to achieve posi-
tive voltage levels. This signal will be captured by a
microcontroller (MCU) using an ADC, and finally, the
signal analysis will be performed.
 The M-Bus does not specify which of the two wires
of the cable is used as ground and which one carries the
signal. This fact requires the sniffer to allow a voltage
inversion at the bus input. In case there is no function
or no component to invert the voltage, or if the device
is not connected correctly, the phase of the data signal
will be inverted, and the data cannot be analyzed cor-
rectly. A rectifier would represent the default solution
here, but because of its transverse current it would also
increase the influence on the bus. Therefore, the ADC
input can simply be inverted to achieve the same effect.
When the sniffer is plugged in with an incorrect phase,
the configuration can be changed to fix this problem.
This phase inversion is a very simple process where
only the thresholds of the program and the sample of
the ACD will be inverted. Thereafter, the whole pro-
gram will run properly.

IV. ARCHITECTURE

A. General Architecture

 Figure 9 shows the protocol analyzer with its four
functional blocks. The analyzer must be supplied with
at least 5 V, with a maximum current of 500 mA. The
power supply transforms the input voltage into two dif-
ferent output voltages.
 First, the input circuit requires a voltage of 15 V to
accommodate the M2S voltage swing. This swing is de-
fined by a minimum peak to peak voltage of 12 V, but
it is also possible to have a higher swing. To prevent
the limits of the circuit to be reached, it works with
15 V. The rest of the circuit only needs a voltage of
3.3 V. The remaining blocks are mainly responsible for
the actual signal capturing and analysis.

B. Analog to Digital Conversion

 The selected MCU is a derivate of the Texas Instru-
ments MSP430 family including a delta-sigma con-
verter (DSC). An advantage is the high resolution, com-
pared to an ADC with a successive approximation reg-
ister (SAR) conversion method. The high resolution is
needed to recognize the S2M signal without an addi-
tional amplifier. A disadvantage of a DSC is the long
conversion time, compared to a SAR ADC. In theory,
there is only one sample per bit needed to recognize the
logical level. However, if the signals are too short, or if
there is no separate synchronization signal available,
single bits might be missing. Since S2M communica-
tion implies small signals on the M-Bus an asynchro-
nous interface is used.
 For a single bit conversion, there are at least two or
more samples needed. To fulfil this requirement, the

Figure 8: DC cancelation using a passive 1st order high pass filter
with fc = 1 Hz at 9,600 Baud.

Figure 9: Architecture of the protocol analyzer.

Table 1: CSPB at 9,600 Baud.

 OSR 32 OSR 64 OSR 128

CLK 39 19 9

CLK/2 19 9 4

CLK/4 9 4 2

CLK/8 4 2 1

����������������������������
����������������������������

���

conversion time of the ADC must match the configured
baud rate. Therefore, a conversion table, as shown in
table 1, can be used, which shows the count of samples
per bit CSPB for a baud rate of 9,600. The conversion
time depends on the selected clock frequency CLKmax
and the oversampling rate OSR. Both parameters are
relevant to calculate the CSPB, as shown in equation 1.

ú
û

ú
ê
ë

ê ×
=

OSR

CLKt
CSPB bit � (1)

 The parameter tbit describes the time, which is needed
to transmit one single bit, e.g. tbit = 104 µs for 9,600
Baud. The selected configuration for 9,600 Baud is
CLK = 3 MHz and OSR = 64, thus CSPB = 4. The baud
rates, which can be recorded, are between 300 and
9,600 Baud; otherwise, CSPB is too low to recognize a
bit properly. This limitation at 9,600 Baud gives
enough points to realize a scope function. The algo-
rithms were designed with Matlab [6]. The microcon-
troller sends the ADC samples via its UART interface
to a workstation. Thus, the algorithm could be written
in Matlab and later be implemented in the controller
source code.

V. SOFTWARE

 The overall architecture of the MCU software is
shown in figure 10, including its two main functionali-
ties, the data analysis and the scope function. Further-
more, the different software parts can be controlled and
configured via the UART interface using a packet-
based communication protocol.

 In addition, there is also a mode for self-calibration.
A self-calibration is required since the signal analysis
uses level thresholds to regain the information. The val-
ues of the calibration are stored at the flash segment of
the MCU, so a recalibration is only needed if there are
significant errors within the conversion. The calibrated
values are automatically reloaded during the initializa-
tion of the controller. The footprint of the software cur-
rently requires 5.6 kB for the code segment in flash and
860 Bytes of RAM memory.

A. Signal Analysis

 According to the UART specification, an incoming
byte always begins with a start bit. However, since the
interface is asynchronous, the timing of the start bit is
unknown. Therefore, the internal timing needs to be
synchronized to the bus transmission timing. If the tim-
ing is not synchronized, the following data bits will not
be analyzed correctly and bit errors might occur. To
avoid this, the data recognition state machine, as shown
in figure 11, consists of two different states to analyze
the data. After a reset, the software assumes that the
next incoming bit is a start bit. If start bit comes in, the
state machine will switch to the data analysis state.

1) Start Bit Recognition

 The recognition of the start bit uses the time discrete
functionality of an ADC. Each ADC sample will be
passed to a state machine that uses an averaging method
and thresholds to detect the start bit. Once the start bit
is detected, the main state machine switches to the data
analyze function which is described in the following
chapter.
 Averaging multiple values is very simple from a
mathematical point of view. All values need to be
summed up and divided by the number of values. Some
controllers, like the used MSP430, do not have special
hardware units for divisions. This will cause a timing
problem, since a division needs many more machine
cycles in that case. To avoid this, the state machine uses

Figure 10: Software block diagram.

Figure 11: Finite state machine for data recognition.

Figure 12: Recognition of the start bit.

�����������������������

���

a counter mechanism. If the sample becomes lower than
a predefined threshold, the counter will be decre-
mented; if the detected value is higher, the counter will
be incremented. The maximum value of the counter is
equal to the CSPB. For example, in case the ADC uses
eight samples per bit, the upper limit for the counter
will be eight as well. The lower limit will always be
zero. This method needs only a few machine cycles.
Figure 12 shows the steps of how to recognize the start
bit. The incoming signal is quantized and the counter’s
value is changed accordingly. In case the value of the
counter runs below the threshold of the counter, the
start bit is detected and the data analysis is triggered.

2) Data Analysis

 In case of a successful start bit recognition, the fol-
lowing ADC values are understood as data bits. Like
the start bit recognition, the data analysis also uses a
state machine, which is driven by the ADC values. The
main difference compared to the start bit recognition is
that the state machine decides for the value of the rec-
orded bit after each CSPB instead of after each sample.
 The data analysis state machine uses three thresholds
instead of two, if it is compared to the start bit recogni-
tion state machine. Two of the three thresholds will de-
cide, how a counter value will changed, depending on
the current ADC sample. The third threshold is to re-
gain the logical information from the counter value.
Figure 13 shows an example of the transmitted byte
0xED and how the data will be analyzed with this algo-
rithm.
 An additional functionality of the data analysis state
machine is the parity filter, allowing the parity to be
checked before the data is copied into the input buffer.
If the parity calculation is not equal to the transmitted
parity bit, the byte will not be discarded. Since parity
errors are an important indicator for the bus analysis,
this function can be enabled or disabled by the user.

B. Scope Function

 The scope function is another important feature of the
sniffer. Recording of the data by use of an ADC allows
for sending the samples directly to the head unit. The
head unit can then use these samples to draw a time and

voltage discrete graph of signal edges and voltage lev-
els on the bus. For the scope function common oscillo-
scope controls have been adopted. The scope has the
ability to trigger at the end of each bit of the communi-
cation, as well as to operate in a free-running mode. A
free running-mode prompts the data without waiting for
any trigger. When using triggers, the scope offers two
run modes. The first run mode is called single shot and
will only record one interval and then freeze. The sec-
ond mode is the continuous mode, where the record will
be retriggered until the user stops the recording.
 The scope function also supports presamples. For ex-
ample, when using triggers, it would not be possible to
see the start bit since the record can only be triggered
after the bit was recognized. A memory or presample
functionality helps in this situation. Figure 14 shows an
example where the record is triggered by a first data bit.
The presample functionality is implemented with a ring
buffer using two pointers and a size of the ringbuffer
equal to the maximum sample size as indicated in fig-
ure 14. The two pointers are used to get access to the
buffer. One pointer is used to store the data and the
other to pick the data. The position difference of both
pointers is used for the presamples. If there are no
presamples selected, both pointers are pointing to the
same data segment, otherwise the pick pointer runs af-
ter the store pointer. The maximum possible number of
presamples is the number of samples – 1.
 The maximum possible sample frequency of the
scope is limited by the communication interface be-
tween head unit and driver and the size of the ADC
sample. Because of the 16 bit ADC resolution, one sam-
ple has the size of two bytes. The interface between the
head unit and the driver is a UART communication
with 115200 Baud. The maximum sample frequency
can be estimated by use of equation 2.

ADCBytes
sample

n

Baudrate
f < � (2)

Figure 13: Signal analysis via ADC.

Figure 14: Example for scope record.

Figure 15: Packet design [7].

����������������������������
����������������������������

���

Taking into account the data of table 1, the maximum
sampling frequency is limited to 46 kHz.

C. Head Unit Interface

 The main platform for the analyzer is the Wireless M-
Bus analyzer capt2web [3] that uses a packet-based
protocol to communicate with a driver module. This
protocol had to be implemented to finally integrate the
wired M-Bus driver into the existing sniffer backend.
As mentioned, figure 15 shows the structure of such a
packet. The packets begin with a start field with a con-
stant value, which is called start frame delimiter (SFD).
Each packet has a length field describing the size of the
following data field. The content of the data field is de-
scribed by the type field at the beginning of the data
field. At the end of each package, a cyclic redundancy
check (CRC) over the complete data field is appended.
For this, the calculated CRC has to be updated immedi-
ately while the ADC continues its sampling to save
time.
 The MCU uses an array of packets to send the data.
This is required because a packet cannot be filled and
transmitted at the same time. If there is only one packet
to fill and send, there would be some access problems
if some new data comes in. The handling of these pack-
ages will be done by a scheduler. So the data analysis
or the scope function will just pass the data to the sched-
uler, which handles the rest.

VI. HEAD UNIT

 The head unit uses a web server to process the rec-
orded data, which can be displayed with any ordinary

web browser like firefox or internet explorer. The usage
of a web server as frontend increases the flexibility of
the analyzer since it is possible to use any operation
system with a web browser and there is no need to in-
stall additional tools. The languages which are used for
the interface are Php and Javascript. The recorded data
is stored in an SQL database.
 The information is separated into the frame types of
the M-Bus [1], which increases the comprehension of
the data. The data is normally sent with one of the two
M-Bus frames. These frames will be dissected into its
fields. Also, the CRC will be checked and highlighted.
Figure 16 shows a screenshot from the capt2web inter-
face with some packages. Each information is dis-
played with a time stamp which is always at the begin-
ning. The time stamp is generated by the head unit and
shows the time when the packet with the information
was received by the head unit. The parts of the data link
layer are displayed in blue and the application layer in
pink. If a data segment is not a part of a frame, the data
will be in grey. The data can also be exported from the
web interface; for this, there is a csv-export page avail-
able where the complete data displayed is available as
semicolon separated textual fields. A future feature of
the interface will be the implementation of the applica-
tion layer. So, e.g., the values or mean values of meters
will be shown.

VII. SUMMARY AND OUTLOOK

 This project presents a bus analyzer for the M-Bus,
which is a big step forward for finding network prob-
lems and errors since the detection of errors has always
been a big problem until now. The analyzer is a flexi-
ble, easy, and low-cost tool. Furthermore, it is designed
with a low-cost input circuit, which allows the user to
connect the analyzer to any point of the M-Bus. The
information itself will be regained by the software and
the analog output value of the input circuit. Through
this ability, it will be easy to implement other UART-
based protocols into the analyzer, e.g. RS232.
 The advantage of the web-based interface is that it
does not depend on a specific operation system or ad-
ditional software tools, which increases the flexibility.
Also the Ethernet interface of the head unit improves
the flexibility, since the analyzer runs as a stand-alone
unit with access over a local area network. All plugs
and jacks of the sniffer are removable, so it is easy to
swap the tool to another test circuit.
 The future will bring some interesting features to the
user. For example, the data will not only be presented
as raw data, but the application layer data will be de-
composed. This will allow the user to read everything
in normal textual form without a second tool. Another
future option is to unite the wireless and wired sniffer
into one single unit to obtain a one-and-all solution for
the M-Bus.

Figure 16: capt2web web interface.

�����������������������

���

REFERENCES

[1] M-Bus Documentation Rev 4.8, http://www.m-bus.com/,
11.09.2015.

[2] Open Metering Systems work group 4, http://oms-group.org/
en/oms-group/working-groups/, 11.09.2015.

[3] SSV-Teleservice Gateway, http://www.ssv-comm.de/
produkte/mgw865.php, 11.09.2015.

[4] SSV-DNP/9265, http://www.dilnetpc.com/dnp0096.htm,
11.09.2015.

[5] M-Bus Slave Transceiver, Texas Instruments TSS721a,
http://www.ti.com/lit/ds/symlink/tss721a.pdf, 11.09.2015.

[6] Matlab Homepage, http://de.mathworks.com/products/
matlab/, 11.09.2015.

[7] Serial Reference Manual, Steinbeis Transfer Center, page 21,
2014.

Thomas Matt studied Electrical and Infor-
mation Engineering (EI) at the University of
Applied Science Offenburg and received his
B.Eng. degree in February 2015. Since that
time he has been working as an engineer for
the lab “Embedded Systems and Communica-
tion Electronics” at University of Applied Sci-
ences Offenburg.

Manuel Schappacher studied Computer Engi-
neering at the University of Applied Sciences,
Furtwangen and received his Dipl.-Inform.
degree in April 2009. After that, he continued
to work as project engineer at Steinbeis Inno-
vation Center Embedded Design and Net-
working (sizedn) mainly in the field of em-
bedded wireless and wired communication,
including simulation of networking protocols.
Since 2014 he is with the laboratory of Em-
bedded Systems and Communication Elec-
tronics at University of Applied Sciences Of-
fenburg.

Prof. Dr.-Ing. Axel Sikora holds a diploma of
Electrical Engineering and a diploma of Busi-
ness Ad-ministration, both from Aachen
Technical University. He has done a Ph.D. in
Electrical Engineering at the Fraunhofer Insti-
tute of Microelectronics Circuits and Systems,
Duisburg, with a thesis on SOI-technologies.
After various positions in the telecommunica-
tions and semiconductor industry, he became
a professor at the Baden-Wuerttemberg Coop-
erative State University Loerrach in 1999. In
2011, he joined Offenburg University of Ap-
plied Sciences, where he holds the professor-
ship of Embedded Systems and Communica-
tion Electronics. His major interest is in the
field of efficient, energy-aware, autonomous,
and value-added algorithms and protocols for
wired and wireless embedded communica-
tion. Dr. Sikora is author, co-author, editor
and co-editor of several textbooks and numer-
ous papers in the field of embedded design
and wireless and wired networking, and head
and member of numerous steering and pro-
gram committees of international scientific
conferences.

����������������������������
����������������������������

���

