
 

Abstract—The Metering Bus, also known as M-Bus, 
is a European standard EN13757-3 for reading out 
metering devices, like electricity, water, gas, or heat 
meters. Although real-life M-Bus networks can 
reach a significant size and complexity, only very 
simple protocol analyzers are available to observe 
and maintain such networks. In order to provide de-
velopers and installers with the ability to analyze the 
real bus signals easily, a web-based monitoring tool 
for the M-Bus has been designed and implemented. 
Combined with a physical bus interface it allows for 
measuring and recording the bus signals. For this at 
first a circuit has been developed, which transforms 
the voltage and current-modulated M-Bus signals to 
a voltage signal that can be read by a standard ADC 
and processed by an MCU. The bus signals and 
packets are displayed using a web server, which an-
alyzes and classifies the frame fragments. As an ad-
ditional feature an oscilloscope functionality is in-
cluded in order to visualize the physical signal on the 
bus. This paper describes the development of the 
read-out circuit for the Wired M-Bus and the data 
recovery.  

Index Terms—Bus analyzer, signal recording, ADC, 
M-Bus. 

I. INTRODUCTION 

 The Metering Bus, also known as M-Bus, is a com-
munication protocol used for various meters and data 
collectors, e.g. for metering of gas, heat, or electricity. 
It is defined in the European standard EN13757 [1]. 
The M-Bus is widely used, mainly for apartment build-
ings, but it is also deployed in the industrial sector. The 
standard has some issues because of unclear or missing 
definitions, which might result in inconsistencies dur-
ing the setup of an M-Bus network. To reduce the prob-
lems, companies founded the working group 4 (WG4) 
[2] in the Open Metering Systems (OMS) group to re-
vise the current standard. The Laboratory “Embedded 
Systems and Communication Electronics” (ESK) from 
Offenburg University of Applied Sciences is an active 

contributor to this group. To overcome existing prob-
lems, the authors developed an M-Bus bus analyzer 
which is shown in figure 1. The M-Bus bus analyzer is 
a tool that can help to create a properly-working M-Bus 
network. Therefore, the analyzer (also called sniffer) 
records the complete signal flow of an M-Bus network 
and monitors and analyzes the data flow by use of an 
integrated web server. 
  
The main platform for the analyzer is the Wireless M-
Bus analyzer capt2web [3] which uses an ARM9 con-
troller[4], running a Linux distribution and an embed-
ded web server to illustrate the bus data. Since the ARM 
controller was originally developed as a head unit for a 
Wireless M-Bus RF module, one of the main tasks in 
this project was to replace the existing RF module by a 
read-out circuit for Wired M-Bus and to adapt the head 
unit’s frontend to accommodate to the wired M-Bus 
protocol. Furthermore, the read-out circuit had to be de-
veloped, since no other solution had been available. 
 This paper is organized as follows: Chapter II ex-
plains the Physical (PHY) and Data Link Layer (DLL) 
of the M-Bus protocol. After this, chapter III discusses 
the possibilities to tap the signal with minimum influ-
ence on the measured system. Then, chapter IV de-
scribes the hardware architecture of the analyzer. The 
software functionality will be presented in chapter V. 
Finally, chapter VI describes the head unit, and chap-
ter VII provides a summary and an outlook. 
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Figure 1: M-Bus protocol analyzer prototype. 
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II. METERING BUS 

A. General 

 The Metering Bus is based on a common UART in-
terface that uses a fixed parameter set to transmit a byte. 
Therefore, the overhead is composed of a single start 
bit, a parity bit, and a stop bit. For the transmission 
speed, different baud rates in the range from 300 to 
38,400 Baud can be used. However, baud rates above 
9,600 Baud are neither recommended, nor widely used 
due to the characteristics of the physical layer. 
 The M-Bus does not provide a separate wire as bus 
clock, but uses self-clocking. To reduce the number of 
wires and to avoid collisions on the common bus, the 
M-Bus is based on a single master to control the data 
flow. Both send and receive operations can be done 
over a single pair of wires. In addition to the bus arbi-
tration, the master provides the power supply for each 
slave, resulting in a constant voltage offset on the bus. 
Since this offset is not clearly specified in the standard, 
the voltage can be in the range of several volts, while 
typical values range is from 24 V to 50 V. The M-
Bus provides both the downlink communication from 
master to slave (M2S) and the uplink communication 
from slave to master (S2M). 

B. Master to Slave Communication (M2S) 

 For the communication, a logical one is represented 
by a fixed offset voltage Vmark and a logical zero by an 
offset voltage Vspace of -12 V [1]. Therefore, the com-
munication is defined more or less by voltage drops of 
12 V [1]. The current Iconsumption is constant during the 
transmission, as shown in figure 2. 

C. Slave to Master Communication (S2M) 

 For the communication, the slave modulates its own 
current consumption. In this case, the current will not 
be constant anymore and the master that supplies the 
power to the slaves can decode the communicated data 
through the total current consumption on the bus. 

 In its idle state, a slave consumes a constant current 
of 1.5 mA [1], which is also known as unitload or Imark. 
Depending on the current consumption, a device can 
consume a single or integer multiples of a unitload. For 
example, if a device needs 5 mA to run, it will burden 
the bus with four unitloads (6 mA). In the S2M direc-
tion, Imark represents a logical one sent by a slave. The 
maximal possible unitload within an M-Bus network 
depends on the master providing the power supply. 
Typically, a master can provide up to 250 unit loads. 
The sum of all unitloads is called Iconsumption. 
 The logical zero or Ispace is represented by a current 
consumption in the range between 11 mA and 20 mA 
[1]. The modulation of the current consumption also 
has an effect on the offset voltage of the M-Bus master. 
As shown in figure 3, a slave’s logical zero will always 
cause a voltage drop on the bus. In order to verify that, 
a part of this project was to record the signals on the 
transmission lines. The oscillogram in figure 4 shows a 
record of an S2M communication. It can be seen that 
the current transmission implies a small voltage swing 
on the bus according to theory. This swing depends on 
the internal resistance of the master and on the re-
sistance of the transmission line. Since the internal re-
sistance of a master is not unambiguously specified in 
the standard, it cannot be predicted. Typical values are 
between 1 Ω and 68 Ω. These values result in a voltage 

Figure 2: M-Bus physical levels during a master to slave transmis-
sion. 

Figure 3: M-Bus physical levels during a Slave to Master transmis-
sion. 

 

Figure 4: Real slave signals in a screenshot from an oscilloscope. 
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swing at the master clamp between 7 mVpp and 1.1 Vpp. 
Figure 3 shows an example of some slave signals taken 
from a test application given as reference. The voltage 

swing in this case is Vpp ≈ 200 mV. For these 
measurements, the oscilloscope must be set to AC 
mode, because the offset voltage is about 200 times 
higher than the signal.  

III. SIGNAL TAPPING AND ACQUISITION 

A bus or protocol analyzer needs to interpret the elec-
trical signals of the bus. In the case of the M-Bus, this 
becomes even more difficult because of the two differ-
ent communication methods. Existing M-Bus sniffers 
only interpret parts of the physical signals, since they 
are designed as master devices without the abstraction 
of the application and data link layer. Furthermore, they 
only consider S2M direction, but not the M2S, since 
this communication is always originated by the master 
itself. This makes the approach unsuitable for a real an-
alyzer. 
 For the M2S direction, various compatible driver ICs 
are available as commercial-off-the-shelf (COTS) de-
vices, e.g. TSS721a [5] from Texas Instruments. How-
ever, it is not possible to use such a transceiver for the 
planned analyzer, as it would increase the current con-
sumption of the bus and therefore would affect the bus 
itself. Since this is an unwanted behavior for an ana-
lyzer, the usage of such components should be avoided. 
In addition, there is also a circuit needed for the S2M 
direction, because the previous described solution can-
not be used. The project goal was to create an analyzer 
and not a bus master. To be able to analyze both direc-
tions different methods of the signal acquisition have 
been investigated. However, since there were no suita-
ble methods or existing sniffers available, an own ap-
proach had to be developed. 

A. Current Methods 

 The S2M direction uses the current modulation for 
data transmission, allowing these signals to be grabbed 
with a current clamp or a shunt. The shunt method is 
shown in figure 5. Both alternatives can only be used 
for the S2M communication, because in M2S direction, 
the bus current is constant. Also a problem of this 
method is that the total S2M communication can only 
be regained at the master’s clamp, because of Kirch-
hoff’s current law. Each slave creates a new junction in 
the network, and so the sum of all currents can only be 
measured at the master’s clamp. 

B. Voltage Methods 

 The simplest way to retrieve M2S and S2M signals 
with a single circuit is to use the bus voltage as shown 
in figure 6, since both directions have effects on the bus 
voltage. However, the offset voltage of the M-Bus re-
mains an unknown parameter, as it depends on the im-
plementation of the devices. Since also the offset itself 
does not have any informational content, the basic idea 
of this approach is to separate the data signals from the 
offset. 

C. DC Cancelation 

 The UART interface uses rectangular pulses to trans-
mit the data, meaning the data has a direct current (DC) 
part as well. However, if an offset blocker is used to 
split up the data signal from the bus signal, it will have 
some impact on the frequency characteristics of the 
data signal, i.e. it will lead to a distortion of the signal. 
This is because of the system function of the offset 
blocker. The data signal will be convolved with this 
function, but the influence of the blocker will be mar-
ginal if the cutoff frequency is much smaller than the 
transmission frequency. Figure 7 shows what a data sig-
nal will look like after a passive 1st order high pass. The 

 

Figure 5: Signal tapping over a shunt. 

 

Figure 6: Signal tapping parallel to a slave. 

Figure 7: DC cancelation using a passive 1st order high pass filter 
with fc = 1 Hz at 300 Baud. 
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cutoff frequency is fc = 1 Hz, and the simulated baud 
rate is 300 Baud, which is also the lowest data rate for 
the sniffer. The upper graph shows the input signal, the 
lower the output signal of the high pass filter. As can be 
seen, even though the levels might drop slightly over 
time, the edges are clear enough to perform the required 
signal analysis. With higher baud rates, e.g. 9,600 
Baud, these effects will no longer be recognizable as 
can be seen in figure 8. Higher baud rates do have fre-
quencies around the baseband like lower baud rates, but 
the amplitudes are not this high. So the waveform of the 
higher baud rates will be less affected than the wave-
forms at lower baud rates. This method is also used in 
the AC mode in oscilloscopes. 
 To remove the voltage offset, the M-Bus analyzer 
uses such a 1st order high pass filter. After the offset is 
removed, the data signal will be amplified to get a 
larger voltage swing from the S2M direction. Further-
more, a specified offset will be added to achieve posi-
tive voltage levels. This signal will be captured by a 
microcontroller (MCU) using an ADC, and finally, the 
signal analysis will be performed. 
 The M-Bus does not specify which of the two wires 
of the cable is used as ground and which one carries the 
signal. This fact requires the sniffer to allow a voltage 
inversion at the bus input. In case there is no function 
or no component to invert the voltage, or if the device 
is not connected correctly, the phase of the data signal 
will be inverted, and the data cannot be analyzed cor-
rectly. A rectifier would represent the default solution 
here, but because of its transverse current it would also 
increase the influence on the bus. Therefore, the ADC 
input can simply be inverted to achieve the same effect. 
When the sniffer is plugged in with an incorrect phase, 
the configuration can be changed to fix this problem. 
This phase inversion is a very simple process where 
only the thresholds of the program and the sample of 
the ACD will be inverted. Thereafter, the whole pro-
gram will run properly. 

IV. ARCHITECTURE 

A. General Architecture 

 Figure 9 shows the protocol analyzer with its four 
functional blocks. The analyzer must be supplied with 
at least 5 V, with a maximum current of 500 mA. The 
power supply transforms the input voltage into two dif-
ferent output voltages. 
 First, the input circuit requires a voltage of 15 V to 
accommodate the M2S voltage swing. This swing is de-
fined by a minimum peak to peak voltage of 12 V, but 
it is also possible to have a higher swing. To prevent 
the limits of the circuit to be reached, it works with 
15 V. The rest of the circuit only needs a voltage of 
3.3 V. The remaining blocks are mainly responsible for 
the actual signal capturing and analysis.  

B. Analog to Digital Conversion 

 The selected MCU is a derivate of the Texas Instru-
ments MSP430 family including a delta-sigma con-
verter (DSC). An advantage is the high resolution, com-
pared to an ADC with a successive approximation reg-
ister (SAR) conversion method. The high resolution is 
needed to recognize the S2M signal without an addi-
tional amplifier. A disadvantage of a DSC is the long 
conversion time, compared to a SAR ADC. In theory, 
there is only one sample per bit needed to recognize the 
logical level. However, if the signals are too short, or if 
there is no separate synchronization signal available, 
single bits might be missing. Since S2M communica-
tion implies small signals on the M-Bus an asynchro-
nous interface is used. 
 For a single bit conversion, there are at least two or 
more samples needed. To fulfil this requirement, the 

Figure 8:  DC cancelation using a passive 1st order high pass filter 
with fc = 1 Hz at 9,600 Baud. 

Figure 9: Architecture of the protocol analyzer. 

Table 1: CSPB at 9,600 Baud. 

 OSR 32 OSR 64 OSR 128

CLK 39 19 9 

CLK/2 19 9 4 

CLK/4 9 4 2 

CLK/8 4 2 1 
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conversion time of the ADC must match the configured 
baud rate. Therefore, a conversion table, as shown in 
table 1, can be used, which shows the count of samples 
per bit CSPB for a baud rate of 9,600. The conversion 
time depends on the selected clock frequency CLKmax 
and the oversampling rate OSR. Both parameters are 
relevant to calculate the CSPB, as shown in equation 1. 

ú
û

ú
ê
ë

ê ×
=

OSR

CLKt
CSPB bit � (1)

 The parameter tbit describes the time, which is needed 
to transmit one single bit, e.g. tbit = 104 µs for 9,600 
Baud. The selected configuration for 9,600 Baud is 
CLK = 3 MHz and OSR = 64, thus CSPB = 4. The baud 
rates, which can be recorded, are between 300 and 
9,600 Baud; otherwise, CSPB is too low to recognize a 
bit properly. This limitation at 9,600 Baud gives 
enough points to realize a scope function. The algo-
rithms were designed with Matlab [6]. The microcon-
troller sends the ADC samples via its UART interface 
to a workstation. Thus, the algorithm could be written 
in Matlab and later be implemented in the controller 
source code. 

V. SOFTWARE 

 The overall architecture of the MCU software is 
shown in figure 10, including its two main functionali-
ties, the data analysis and the scope function. Further-
more, the different software parts can be controlled and 
configured via the UART interface using a packet-
based communication protocol.  

 In addition, there is also a mode for self-calibration. 
A self-calibration is required since the signal analysis 
uses level thresholds to regain the information. The val-
ues of the calibration are stored at the flash segment of 
the MCU, so a recalibration is only needed if there are 
significant errors within the conversion. The calibrated 
values are automatically reloaded during the initializa-
tion of the controller. The footprint of the software cur-
rently requires 5.6 kB for the code segment in flash and 
860 Bytes of RAM memory. 

A. Signal Analysis 

 According to the UART specification, an incoming 
byte always begins with a start bit. However, since the 
interface is asynchronous, the timing of the start bit is 
unknown. Therefore, the internal timing needs to be 
synchronized to the bus transmission timing. If the tim-
ing is not synchronized, the following data bits will not 
be analyzed correctly and bit errors might occur. To 
avoid this, the data recognition state machine, as shown 
in figure 11, consists of two different states to analyze 
the data. After a reset, the software assumes that the 
next incoming bit is a start bit. If start bit comes in, the 
state machine will switch to the data analysis state. 

1) Start Bit Recognition 

 The recognition of the start bit uses the time discrete 
functionality of an ADC. Each ADC sample will be 
passed to a state machine that uses an averaging method 
and thresholds to detect the start bit. Once the start bit 
is detected, the main state machine switches to the data 
analyze function which is described in the following 
chapter. 
 Averaging multiple values is very simple from a 
mathematical point of view. All values need to be 
summed up and divided by the number of values. Some 
controllers, like the used MSP430, do not have special 
hardware units for divisions. This will cause a timing 
problem, since a division needs many more machine 
cycles in that case. To avoid this, the state machine uses 

 

Figure 10: Software block diagram. 

Figure 11: Finite state machine for data recognition. 

 

Figure 12: Recognition of the start bit. 
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a counter mechanism. If the sample becomes lower than 
a predefined threshold, the counter will be decre-
mented; if the detected value is higher, the counter will 
be incremented. The maximum value of the counter is 
equal to the CSPB. For example, in case the ADC uses 
eight samples per bit, the upper limit for the counter 
will be eight as well. The lower limit will always be 
zero. This method needs only a few machine cycles. 
Figure 12 shows the steps of how to recognize the start 
bit. The incoming signal is quantized and the counter’s 
value is changed accordingly. In case the value of the 
counter runs below the threshold of the counter, the 
start bit is detected and the data analysis is triggered.  

2) Data Analysis 

 In case of a successful start bit recognition, the fol-
lowing ADC values are understood as data bits. Like 
the start bit recognition, the data analysis also uses a 
state machine, which is driven by the ADC values. The 
main difference compared to the start bit recognition is 
that the state machine decides for the value of the rec-
orded bit after each CSPB instead of after each sample. 
 The data analysis state machine uses three thresholds 
instead of two, if it is compared to the start bit recogni-
tion state machine. Two of the three thresholds will de-
cide, how a counter value will changed, depending on 
the current ADC sample. The third threshold is to re-
gain the logical information from the counter value. 
Figure 13 shows an example of the transmitted byte 
0xED and how the data will be analyzed with this algo-
rithm. 
 An additional functionality of the data analysis state 
machine is the parity filter, allowing the parity to be 
checked before the data is copied into the input buffer. 
If the parity calculation is not equal to the transmitted 
parity bit, the byte will not be discarded. Since parity 
errors are an important indicator for the bus analysis, 
this function can be enabled or disabled by the user. 

B. Scope Function 

 The scope function is another important feature of the 
sniffer. Recording of the data by use of an ADC allows 
for sending the samples directly to the head unit. The 
head unit can then use these samples to draw a time and 

voltage discrete graph of signal edges and voltage lev-
els on the bus. For the scope function common oscillo-
scope controls have been adopted. The scope has the 
ability to trigger at the end of each bit of the communi-
cation, as well as to operate in a free-running mode. A 
free running-mode prompts the data without waiting for 
any trigger. When using triggers, the scope offers two 
run modes. The first run mode is called single shot and 
will only record one interval and then freeze. The sec-
ond mode is the continuous mode, where the record will 
be retriggered until the user stops the recording. 
 The scope function also supports presamples. For ex-
ample, when using triggers, it would not be possible to 
see the start bit since the record can only be triggered 
after the bit was recognized. A memory or presample 
functionality helps in this situation. Figure 14 shows an 
example where the record is triggered by a first data bit. 
The presample functionality is implemented with a ring 
buffer using two pointers and a size of the ringbuffer 
equal to the maximum sample size as indicated in fig-
ure 14. The two pointers are used to get access to the 
buffer. One pointer is used to store the data and the 
other to pick the data. The position difference of both 
pointers is used for the presamples. If there are no 
presamples selected, both pointers are pointing to the 
same data segment, otherwise the pick pointer runs af-
ter the store pointer. The maximum possible number of 
presamples is the number of samples – 1. 
 The maximum possible sample frequency of the 
scope is limited by the communication interface be-
tween head unit and driver and the size of the ADC 
sample. Because of the 16 bit ADC resolution, one sam-
ple has the size of two bytes. The interface between the 
head unit and the driver is a UART communication 
with 115200 Baud. The maximum sample frequency 
can be estimated by use of equation 2. 

ADCBytes
sample

n

Baudrate
f < � (2)

 

Figure 13: Signal analysis via ADC. 

 

Figure 14: Example for scope record. 

Figure 15: Packet design [7]. 
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Taking into account the data of table 1, the maximum 
sampling frequency is limited to 46 kHz.  

C. Head Unit Interface 

 The main platform for the analyzer is the Wireless M-
Bus analyzer capt2web [3] that uses a packet-based 
protocol to communicate with a driver module. This 
protocol had to be implemented to finally integrate the 
wired M-Bus driver into the existing sniffer backend. 
As mentioned, figure 15 shows the structure of such a 
packet. The packets begin with a start field with a con-
stant value, which is called start frame delimiter (SFD). 
Each packet has a length field describing the size of the 
following data field. The content of the data field is de-
scribed by the type field at the beginning of the data 
field. At the end of each package, a cyclic redundancy 
check (CRC) over the complete data field is appended. 
For this, the calculated CRC has to be updated immedi-
ately while the ADC continues its sampling to save 
time.  
 The MCU uses an array of packets to send the data. 
This is required because a packet cannot be filled and 
transmitted at the same time. If there is only one packet 
to fill and send, there would be some access problems 
if some new data comes in. The handling of these pack-
ages will be done by a scheduler. So the data analysis 
or the scope function will just pass the data to the sched-
uler, which handles the rest. 

VI. HEAD UNIT 

 The head unit uses a web server to process the rec-
orded data, which can be displayed with any ordinary 

web browser like firefox or internet explorer. The usage 
of a web server as frontend increases the flexibility of 
the analyzer since it is possible to use any operation 
system with a web browser and there is no need to in-
stall additional tools. The languages which are used for 
the interface are Php and Javascript. The recorded data 
is stored in an SQL database. 
 The information is separated into the frame types of 
the M-Bus [1], which increases the comprehension of 
the data. The data is normally sent with one of the two 
M-Bus frames. These frames will be dissected into its 
fields. Also, the CRC will be checked and highlighted. 
Figure 16 shows a screenshot from the capt2web inter-
face with some packages. Each information is dis-
played with a time stamp which is always at the begin-
ning. The time stamp is generated by the head unit and 
shows the time when the packet with the information 
was received by the head unit. The parts of the data link 
layer are displayed in blue and the application layer in 
pink. If a data segment is not a part of a frame, the data 
will be in grey. The data can also be exported from the 
web interface; for this, there is a csv-export page avail-
able where the complete data displayed is available as 
semicolon separated textual fields. A future feature of 
the interface will be the implementation of the applica-
tion layer. So, e.g., the values or mean values of meters 
will be shown.  

VII. SUMMARY AND OUTLOOK 

 This project presents a bus analyzer for the M-Bus, 
which is a big step forward for finding network prob-
lems and errors since the detection of errors has always 
been a big problem until now. The analyzer is a flexi-
ble, easy, and low-cost tool. Furthermore, it is designed 
with a low-cost input circuit, which allows the user to 
connect the analyzer to any point of the M-Bus. The 
information itself will be regained by the software and 
the analog output value of the input circuit. Through 
this ability, it will be easy to implement other UART-
based protocols into the analyzer, e.g. RS232. 
 The advantage of the web-based interface is that it 
does not depend on a specific operation system or ad-
ditional software tools, which increases the flexibility. 
Also the Ethernet interface of the head unit improves 
the flexibility, since the analyzer runs as a stand-alone 
unit with access over a local area network. All plugs 
and jacks of the sniffer are removable, so it is easy to 
swap the tool to another test circuit. 
 The future will bring some interesting features to the 
user. For example, the data will not only be presented 
as raw data, but the application layer data will be de-
composed. This will allow the user to read everything 
in normal textual form without a second tool. Another 
future option is to unite the wireless and wired sniffer 
into one single unit to obtain a one-and-all solution for 
the M-Bus.  

Figure 16: capt2web web interface. 
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