
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

An energy-economic analysis of real-world hybrid
building energy systems
To cite this article: Parantapa Sawant et al 2021 J. Phys.: Conf. Ser. 2042 012095

 

View the article online for updates and enhancements.

You may also like
When Does the Operation of a Battery
Become Environmentally Positive?
Karl-Heinz Pettinger and Winny Dong

-

Observation-based solar and wind power
capacity factors and power densities
Lee M Miller and David W Keith

-

A systematic review of the evidence on
decoupling of GDP, resource use and
GHG emissions, part II: synthesizing the
insights
Helmut Haberl, Dominik Wiedenhofer,
Doris Virág et al.

-

This content was downloaded from IP address 141.79.176.18 on 21/12/2021 at 11:25

https://doi.org/10.1088/1742-6596/2042/1/012095
/article/10.1149/2.0401701jes
/article/10.1149/2.0401701jes
/article/10.1088/1748-9326/aae102
/article/10.1088/1748-9326/aae102
/article/10.1088/1748-9326/ab842a
/article/10.1088/1748-9326/ab842a
/article/10.1088/1748-9326/ab842a
/article/10.1088/1748-9326/ab842a
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstVamHOeDo-Vwop9TcwwM_FcGuo5mBXCpTqoV38BXDT01QvweT_j-n4MCeJl2DTbhDahcWW85wo62jqsxRbAZofCdmho7bv3lkBIiOE5DLHk4O0t95Po_5CFwcQzN0Bx84OMAuCaGTS2anM2Zeok84ZkA-pYe6EAXTs4ZTBThimALPn1wZQbLpxIJA4VKLD_gl7vYb3TUP1VGLLCGKrTdBwMr6P09xzVB8B_qwxtW2ghRufnE-_4TyZC1LsCXuwrm1BEd4pBRlqAysFJpyvAdYWZoygs7CzK6k&sig=Cg0ArKJSzH5UM7k5Uz0O&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

CISBAT 2021
Journal of Physics: Conference Series 2042 (2021) 012095

IOP Publishing
doi:10.1088/1742-6596/2042/1/012095

1

 

 

 

 

 

 

An energy-economic analysis of real-world hybrid building 

energy systems 

Parantapa Sawant1, Christian Braasch2, Manuel Koch3, Adrian Bürger4, Sonja 

Kallio5 

1Offenburg University of Applied Sciences, Badstrasse, Offenburg, Germany 
2Koblenz University of Applied Sciences, Konrad-Zuse-Straße, Koblenz, Germany 

3University of Applied Sciences and Arts Nortwestern Switzerland, Muttenz, CHE  
4Karlsruhe University of Applied Sciences, Moltkestraße, Karlsruhe, Germany 
5ICUBE, INSA University of Strasbourg, Boulevard de la Victoire, Strasbourg, France 

 

parantapa.sawant(a)hs-offenburg.de 

Abstract. A coordinated operation of decentralised micro-scale hybrid energy systems within a 

locally managed network such as a district or neighbourhood will play a significant role in the 

sector-coupled energy grid of the future. A quantitative analysis of the effects of the primary 

energy factors, energy conversion efficiencies, load profiles, and control strategies on their 

energy-economic balance can aid in identifying important trends concerning their deployment 

within such a network. In this contribution, an analysis of the operational data from five energy 

laboratories in the trinational Upper-Rhine region is evaluated and a comparison to a 

conventional reference system is presented. Ten exemplary data-sets representing typical 

operation conditions for the laboratories in different seasons and the latest information on their 

national energy strategies are used to evaluate the primary energy consumption, CO2 emissions, 

and demand-related costs. Various conclusions on the ecologic and economic feasibility of 

hybrid building energy systems are drawn to provide a toe-hold to the engineering community 

in their planning and development. 

1.  Introduction 

Hybrid building energy systems such as PV-heat pump and trigeneration units that facilitate higher 

energy-efficiency and usage of renewable energy in buildings have been studied for many years. 

However, with the dawn of modern energy networks with more decentralization, digitalization, 

prosumer coordination, and sector-coupling, advanced control for such systems has come into focus [1], 

[2]. Such advance control methods not only facilitate the utilization of the technical flexibility of 

individual systems (storage, combination of different energy sources, and operation modes), but also the 

coordination between them to support the energy grid of the future having a high share of volatile 

renewable energy. Although micro-scale (< 15 kWel) and small-scale (< 50 kWel) systems may not have 

a significant impact on the energy grid individually, and may not always have large economic benefits, 

recent studies have shown the advantages of a coordinated operation of many such systems in a 

neighborhood or campus in terms of supporting the energy transition on a regional level [3], [4]. One of 

the goals of the trinational (Switzerland, Germany, and France) research project “Advanced Control 

Algorithms for Management of Decentralised Energy Systems” (ACA-MODES) is to demonstrate a 
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real-time coordinated operation of multiple energy laboratories (plants) spread over the Upper Rhine 

region. In order to evaluate different variants of such a coordinator in terms of its possible benefits in 

socio-economic or energy-environmental aspects an evaluation tool is needed for a quick and reliable 

comparison of experimental data from the laboratories. 

Previous studies have reported on such tools using both simulation results and experimental data and 

have often presented results of a sensitivity analysis, evaluating the effects of parameter variations like 

fuel costs, component sizes, and efficiencies on a plant level [5], [6]. Similar work was also done in the 

ACA-MODES project for evaluating experimental data of the individual labs in a parameter analysis 

revealing benefits and detriments of hybrid systems with respect to the energy policies of their country 

of installation [7]. The current study adds to existing knowledge by comparing operational data of typical 

hybrid systems under almost identical conditions. 

In Section 2, the methodology for this analysis is explained, including an introduction to the different 

laboratories and the evaluation tool. Important results and a brief discussion of the findings are presented 

in Section 3. Finally, concluding remarks are provided to aid in planning and development of hybrid 

renewable energy systems for buildings.  

2.  Methodology 

For analyzing the performance of different types of hybrid systems, operational data from five energy 

laboratories in the trinational Upper-Rhine region was used. Each laboratory consists of a renewable 

energy system in the built environment and various primary HVAC components, such as heat pumps 

(HP), cogeneration units (CHP), adsorption chillers (AdC), compression chillers (CC), photovoltaics 

(PV), and solar-thermal collectors (ST) are installed in the different locations. A hysteresis dead-band 

logic over the storage temperature was used as conventional control in the tests. Experiments with a 

duration varying between 5 hours to 3 days representing both short- and long-term system dynamics 

were performed and the data-sets were filtered using 15-minutes mean values. In addition to evaluating 

typical performance factors such as thermal and electrical efficiencies for cogeneration units and 

coefficient of performance (energy efficiency ratio) for heat pumps (compression chillers), following 

operational key performance indicators (KPI) were also evaluated for each system: (a) primary energy 

consumption (PEC), (b) CO2 emissions, and (c) Demand-related costs. These indicators were selected 

based on the three-task method for stakeholder identification and bi-method for KPI selection [8] and 

would also be later used in the project for forming the mathematical framework to coordinate the 

operation of the various energy labs. Additionally, the analysis with these operational KPIs makes it 

possible to compare the regulations and demand-related costs of the plants according to their locations 

(to a certain extent countries) and allow both internal (plant planners and operators) and external 

(regulators) stakeholders to draw key information for multi-level energy performance analysis. The PEC 

of a plant 𝑄pe is calculated using the final energy produced in the plant 𝑄fe and the non-renewable part 

of the primary energy factor (PEF) 𝑓pefor its location as shown in (1). Similarly, the total CO2 emissions 

𝐸𝑀total and demand-related costs for the final energies 𝐶𝑜𝑠𝑡fe were calculated in (2) and (3) 

respectively. Here, 𝑓EM is the emission factor for the respective final energy and 𝑃𝑟𝑖𝑐𝑒fe is its purchasing 

price.  

𝑄pe =  𝑄fe𝑓pe      (1) 

 

𝐸𝑀total =  𝑄fe𝑓EM     (2) 

 

𝐶𝑜𝑠𝑡fe =  𝑄fe𝑃𝑟𝑖𝑐𝑒fe     (3) 

 

2.1.  Energy laboratories 

To show the variety of components and their sizes, pictures of the individual laboratories are shown in 

Figure 1. The main components are listed in Table 1. Detailed information on the set-up of the 
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laboratories and examples of the building automation and control framework can be found in previous 

works of the authors [9], [10]. 

 
Figure 1 (a) Polygeneration lab in Offenburg University of Applied Sciences (HSO), (b) Solar cooling 

lab in Karlsruhe University of Applied Sciences (HKA), (c) Trigeneration lab in Koblenz University of 

Applied Sciences (HSKo), (d) Micro-cogeneration lab in National Institute of Applied Sciences 

Strasbourg (INSA), (e) Building technologies lab at University of Applied Sciences and Arts 

Nortwestern Switzerland (FHNW) 

Table 1 A selection of components in the five energy laboratories 

 HSO HKA HSKo FHNW INSA 

Adsorption chiller (AdC) x x x   

Battery storage    x x 

Compression chiller (CC) x     

Micro-cogeneration (CHP) x  x  x 

Cooling tower (dry) x x x   

Heat pump (HP) x   x  

Photovoltaics (PV)    x x 

Photovoltaic-Thermal (PVT)     x 

Solar-thermal (ST)  x x x  

Water storage  x x x x x 

Thermal load emulator x x x x  

Electrical load emulator    x  

(a) (b) 

(c) (d) 

(e) 
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2.2.  KPI parameters and data collection 

The parameters for the three countries are summarized in Table 2, Table 3, and Table 4, with original 

data available in a previous work of the authors and other reports [7], [11], [12]. The PEF for fossil fuels 

is similar in all countries. However, the PEF for electricity is considerably higher in France and 

Switzerland considering high import of electricity. However, France and Switzerland have a lower 

emission factor for the general electricity mix, owing to the higher share of nuclear energy in their energy 

mix. The electricity buying price in Germany is higher than the other two countries. Additionally, due 

to the CHP-Act in Germany, the selling price for CHP electricity is higher than the other two countries. 

The selling price for PV is highest in the Swiss system. The selling price in France are the lowest 

amongst the three countries. 

It is noticeable that the PEF and CO2 emission factors are also a reflection of the energy mix of the 

respective countries, with more renewables in Germany, compared to more nuclear energy in France 

and Switzerland [13]. 

 

Table 2 A selection of primary energy factors (PEF) used in the study.  

  France Germany Switzerland 

Fossil fuels Fuel oil 1.0 1.1 1.2 

 Natural gas 1.1 1.1 1.1 

Electricity Electricity mix 2.58 1.8 2.5 

 

Table 3 A selection of CO2 emission factors used in the study [kg CO2/kWh]. 

 France Germany Switzerland 

Electricity mix 0.057 0.485 0.090 

Fuel oil 0.325 0.294 0.288 

Natural gas 0.227 0.202 0.205 

Diesel 0.322 0.266 0.293 

 

Table 4 A selection of fuel and electricity rates used in the study [€/kWh]. 

 France Germany Switzerland 

Electricity purchase price 0.155 0.298 0.193 

Electricity selling price (CHP) 0.093 0.151 - 

Electricity selling price (PV) 0.060 0.089 0.122 

Natural gas 0.084 0.061 0.090 

 

2.3.  Reference system 

A virtual reference system representing separate production of electricity, heating, and cooling was 

applied for comparison. It was designed with a condensing boiler  

(ηth = 95 %) for heating, including auxiliary and distribution energy operating on natural gas, and a 

compression chiller (energy efficiency ratio = 4.0) for cooling using local grid-electricity. All electricity 

requirements were satisfied over the local grid. Since no storages were considered for the reference 

system, the energy differences in heat and cold-water storages in the laboratories are considered in the 

reference system by increasing or decreasing energy production. 
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3.  Results and discussion 

For sake of brevity, the results of operational data for only 10 exemplary data-sets from four types of 

hybrid systems representing typical operation conditions for the laboratories in different seasons and 

scenarios is presented. Other hybrid systems and more data-sets will be evaluated extensively in a future 

work by the authors. The load profiles were synthetically generated for different types of buildings and 

one test typically lasted for 10 hours to 15 hours.   

In Figure 2 results of (a) Stirling engine-based CHP and (b) combustion engine-based CHP are 

shown. Here, under similar load profile scenarios for a building with low thermal load, it is seen that the 

combustion engine-based CHP provides significant PEC and cost savings compared to the Stirling 

engine-based CHP due to its higher electrical efficiency, especially for systems with low thermal loads. 

However, the CO2 emissions are higher especially in France and Switzerland due to their electricity 

mix’s lower emission factor. Both cogeneration systems show higher economic benefits for Germany 

due to the incentives provided by the German energy policy for micro-scale cogeneration systems. 

 

 
Figure 2 Results for CHP compared to the reference system (a) Stirling engine-based CHP (b) 

Combustion engine-based CHP. Negative values indicate saving.   

In Figure 3, results for (a) a grid-only HP system and (b) a PV supported HP system are shown. The 

HP based system has lower PEC and CO2 emission, compared to the reference system in all cases. The 

magnitude in savings cannot be compared directly between both systems, as the load profiles varied 

significantly. However, it is clearly observed that the PV supported system leads to lower purchase of 

electricity from the grid, i.e. higher savings. The grid-only HP system has higher operating costs in 

Germany due to the higher purchase price of electricity.  

 

 
Figure 3 Results for HP compared to the reference system (a) Grid-HP system (b) PV-HP system. 

Negative values indicate saving. 

4.  Conclusion 

The analysis showed that country-specific factors have a significant impact on ecologic and economic 

aspects of the different hybrid energy systems. An energy system which reduces two or more criteria in 

one country, can show negative impacts in another country. A preliminary investigation revealed that 
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good knowledge of system design and operation of the hybrid systems is needed to ensure its efficient 

operation compared to conventional systems, and justify its higher complexity and investment costs. 

While CHP systems only receive subsidies in Germany, it is shown that they would also be beneficial 

in France and Switzerland. However, the design and control of these systems must incorporate a high 

electrical and overall efficiency of the prime mover and high full load operating hours. The heat pump 

showed good results in all three countries, especially when combined with PV. For comparative studies 

in the European context, an in-depth discussion of cross-national evaluation criteria is necessary for 

providing meaningful recommendations on regionally interconnected energy systems in the future 

energy grid. 
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