Offenburg University of Applied Sciences
Media Faculty

in cooperation with the

Federal Office of Information Security (BSI)

Bachelor’s thesis

Development of an API to request
security advisories for CSAF 2.0

by
Leon Schmidt
Enterprise and IT Security

Supervision

Prof. Dr. Daniel Hammer, Offenburg University of Applied Sciences
Dr. Klaus BiB, Federal Office for Information Security (BSI) Germany
Thomas Schmidt, Federal Office for Information Security (BSI) Germany

Submission date

August 04, 2022

Abstract

This work addresses the conceptualization, design, and implementation of an Application
Programming Interface (API) for the Common Security Advisory Framework (CSAF) 2.0,
introducing another method for distributing CSAF documents in addition to two already
existing methods. These don’t allow the use of flexible queries as well as filtering, which
makes it difficult for operators of software and hardware to use CSAF. An API is intended to
simplify this process and thus advance the automation goal of CSAF.

First, it is evaluated whether the current standard allows the implementation of an API. Any
conflicts are highlighted and suggestions for standard adaptations are made. Based on these
results, the API is designed to meet the previously defined requirements. Subsequently, a
proof of concept is successfully developed according to the design and extensively tested with
specially prepared test data. Finally, the results and the necessary standard adjustments are
summarized and justified.

The conceptual design and the implementation were successfully completed. However, during
the implementation of the proof of concept, some routes could not be fully implemented.

Contents

Abstract

List of Figures

List of Tables

List of Listings

List of Abbreviations

1

IT

Introduction
1.1 Motivation
1.2 Objective and methodology

Basics of CSAF 2.0

2.1 Goals of CSAF
2.2 Typedefinitions
2.3 Document properties
2.3.1 The /document property
2.3.2 The /product_tree property
2.3.3 The /vulnerabilities property
2,34 SUMMATY e
2.4 Document profiles
2.5 Intended architecture o o
Design
3.1 Requirements
3.2 APIdesign.
3.2.1 Introduction to OpenAPI
3.2.2 Component definitions
3.2.3 Route definitions oo
3.3 Design feasibility
3.3.1 Regularly used parameters L.
3.32 Routes

Vi

Vi

—_

co o = ot &

10
11
14
17
20

4 Proof of Concept
4.1 Testing environment
4.2 Test dataset
4.3 Implementation
4.3.1 CSAF document management
4.3.2 Configuration L
4.3.3 Implementation of the authentication middleware
4.3.4 Route implementation oo
4.3.5 APl operation
4.4 Testing and user interface Lo

5 Integration into the specification
5.1 Application requirements
5.2 Comparison with the existing distributions

6 Conclusion
6.1 Problems concerning the concept itself 0.
6.2 Problems concerning the proof of concept

6.3 SUMMAry
6.4 Outlook

Bibliography
Statutory Declaration
A OpenAPI specification

B API error codes

53
93
o4
55
56
58
99
60
63
63

67
68
70

73
73
74
76
76

79

81

83

101

I1I

List of Figures

IV

2.1
2.2
2.3

4.1
4.2

Manual process for handling security advisories without CSAF 5t
Process for handling security advisories with CSAF 6
Data flow when querying CSAF providers, listers and aggregators 21
HTTP request and response handling process with middleware 59
Testing of the GET /csaf-documents/by-cve route in Postman 64

List of Tables

2.1

3.1
3.2
3.3
3.4
3.5

4.1

5.1

CSAF document property suitability (S) and usability (U) summary 15
Informal requirements 24
Design requirementso 25
Implementation requirementso 27
Requirements for embedding in the CSAF infrastructure 28
Design specification adjustments 52
Implementation specification adjustments 0. 65
Specification adjustments summaryo 67

List of Listings

VI

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6

0.1
5.2

6.1

Simple example for the /product_tree/branches property 10
Access paths to the provider-metadata.json 21
Usage of component references in OpenAPI 3.0.1 30
Example of a JSON object of the AdvancedMatching schema 32
Format of the /metadata route response body 37
Example for the /role route response body 38
Example request for the /csaf-documents/match-property route 41
Example of a response body for the /csaf-documents/match-properties route 41
Example of a request to the /csaf-documents/from-device-list route . . . 43
Pseudocode for the GET /csaf-documents/by-cve implementation 47
Faulty request to the device list endpoint caused by conflicting parameters . . 49
Pseudocode for the POST /csaf-documents/from-device-list implementation 50
Complete product identification helper object 55
CSAFDocumentCollection struct responsible for handling CSAF documents . 56
Config struct used as unmarshalling target for the configuration file 58
Example configuation for the CSAF APl in api.toml 58
JSONPath query to search for CVE-2022-30190 in /vulnerabilities[] ... 61
Example configuration for nginx to mount the APl toapath 63
Proposed adjustments to the provider-metadata.json. 69
Proposed adjustments to the aggregator.json 69
CPE name subset matching with Microsoft Edge in Go 75

List of Abbreviations

API Application Programming Interface

CA Certificate Authority

CERT Computer Emergency Response Team
CGIl Common Gateway Interface

CORS Cross Origin Ressource Sharing

CPE Common Platform Enumeration

CSAF Common Security Advisory Framework
CSIRT Computer Security Incident Response Team
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
DBMS Database Management System

DNS Domain Name System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

NAT Network Address Translation

npm Node Package Manager

NTIA National Telecommunications and Information Administration
OAS OpenAPI Standard

PoC Proof of Concept

PURL Package URL

REST Representational State Transfer

ROLIE Resource-Oriented Lightweight Information Exchange

VII

SBOM Software Bill of Materials

SKU Stock Keeping Unit

SNI Server Name Indication

SOC Security Operations Center

SSH Secure Shell

TLP Traffic Light Protocol

TLS Transport Layer Security

TOML Tom’s Obvious, Minimal Language
URI Unique Ressource Identifier

URL Unique Ressource Locator

VEX Vulnerability Exploitability eXchange
VM Virtual Machine

YAML YAML Ain’t Markup Language

VIII

IX

1 Introduction

1.1 Motivation

In the industrial environment, there is a large number of vendors with a correspondingly
diverse range of products. Over their lifecycle, usually security vulnerabilities are discovered.
As an administrator of a large company, it can be difficult to keep track of mitigating them,
as the corresponding security advisories are usually published in a human-readable format.
This requires the manual retrieval and processing of these advisories, which gets more difficult
with every product — or deviating product version. This can result in multiple delays before
an asset owner can respond to a vulnerability. This can lead to it remaining exposed after
disclosure and being exploited by an attacker, potentially leading to a corporate disruption.

This problem is to be solved by the Common Security Advisory Framework (CSAF). Currently,
the framework offers two methods for the distribution of security advisories. However, these
only serve the purpose of finding all existing documents of a manufacturer — a search for
advisories that are relevant for one’s own operation is currently not possible with them before
downloading. An Application Programming Interface (API) as a third distribution method is
intended to address and solve this problem.

1.2 Objective and methodology

In this work, it is evaluated whether the current CSAF standard 2.0 allows the implementation
of an API with extensive search and filter options. The necessary adjustments are to be named.
A Proof of Concept (PoC) will also be developed, which is based on the source code of the
CSAF distribution PoC [25] and extends it accordingly. Furthermore, it is briefly explained
what added value an API has compared to the current distribution methods. The API is
intended to be used in the CSAF 2.1 standard.

1 Introduction

This leads to the following guiding questions, which are answered in this thesis:

o What are the benefits of establishing a CSAF API and which Computer Emergency
Response Teams (CERTSs) / Computer Security Incident Response Teams (CSIRTS)
would use it?

o Are the contents of the current CSAF standard suitable for running an API on it?
o What needs to be adjusted to ensure operation and enable complex search queries?

o How well can an API be integrated into the current PoC?

This thesis is divided into the following sections in order to answer these guiding questions:

In chapter 2 “Basics of CSAF 2.0”, the recent CSAF standard is discussed first. In order to
lay the foundation for the following chapters, the areas which are relevant for the development
of an API will be worked out and described. In this work, the Committee Specification 02 [17]
is used as a reference, since the product branch type category product_version_range was
added here. This allows products to be identified by a version range instead of just a specific

version only [17, section 3.1.2.3.2] which can be of great advantage for the development of an
APL

The following areas of the standard will be described:

Schema Element Definitions [17, section 3.1]
Schema Element Properties [17, section 3.2]
CSAF Document Profiles [17, section 4]

Distributing CSAF documents [17, section 7]

Tests and Conformance (partially) [17, sections 6, 9]

In addition, at the end of this chapter, the envisaged CSAF infrastructure will be described
in order to show the areas of application of an API. It will become clear who the actors and
profiteers are.

The following chapter 3 “Design” deals with the conceptual design of the API based on the
basics explained in chapter 2.

First, the requirements for the development of an API are worked out. This is followed by the
actual conceptual design of the API routes. It is important to mention that these are designed
according to the black box principle. This means that the actual functionality of the API is
not yet in the focus. Only the interface to the outside is defined. This ensures that access to
the API is logical and independent of the actual technical conditions behind it. Accordingly,
the conceptual design follows the “spec-first” approach: This means that the implementation
is done after a specification has been created. The design will be produced in the OpenAPI 3.0
format [20] with the help of the Swagger online editor [23].

1.2 Objective and methodology

Subsequently, the feasibility of the design will be evaluated and it will be checked to which
degree the requirements are fulfilled. If necessary, adaptations to the standard will be sug-
gested informally. Here, a possible implementation will be explicitly discussed. It will also
be considered to which degree the design would fit into the standard and how comprehensible
it is to end users. With the help of this methodology, the design is continuously revised and
adjusted.

A proof-of-concept will be developed and documented in chapter 4 “Proof of Concept”. This
will be based on the source code of the CSAF distribution PoC [25] and extends it accord-

ingly.

First, the CSAF distribution PoC will be used to set up a test environment with a CSAF
provider and, ideally, a CSAF aggregator. This will be followed by the actual implementation
and its documentation.

When the implementation is complete, a basic user interface will be prepared with which the
API can be accessed for test purposes. The user interface will not be implemented by the
developer itself, but will be set up with the help of existing tooling for creating API clients,
such as Swagger Ul [24].

Subsequently, the informal change proposals in the “Design” chapter are taken up again.
Explicit standard adaptations are to be derived from them in chapter 5 “Integration into the
specification”, which are to be incorporated into the next version of the CSAF standard. This
will result in the specific requirements that the next version must meet so that the selected
route design can be applied to it.

The resulting new standard will initially include all three distribution methods: Directory-
based, Resource-Oriented Lightweight Information Exchange (ROLIE) feed, and the API.
Finally, these are set up against each other in order to make the advantages and disadvantages
of the API visible again.

Finally, the results of the work are summarized in chapter 6 “Conclusion and Outlook™. It is
explained again which weaknesses the standard currently has in connection with the API and
which improvements and adjustments are necessary. Likewise, it is described how it must be
extended to allow the implementation.

The difficulties that arose during the work are considered and evaluated in the follow-up.
Finally, it is explained how the results of this work can be dealt with and what added value
is created as a result.

2 Basics of CSAF 2.0

This chapter examines the goal of CSAF, as well as the basics about the components of the
standard. It serves as the basis for all further chapters.

The CSAF standard describes the format of a single security advisory or similar document
(hereinafter "CSAF document") and their distribution. The sections 2.1 - 2.4 deal specifically
with the document format, while section 2.5 focuses on with the distribution system.

2.1 Goals of CSAF

“The Common Security Advisory Framework (CSAF) Version 2.0 is the definitive reference
for the language which supports creation, update, and interoperable exchange of security
advisories as structured information on products, vulnerabilities, and the status of impact
and remediation among interested parties.” [17, Abstract]

Severity of advisory
low

Manual process || medium
|| high
B critical
cw ruplcaton e L BE | [GEEE [E
A . / L
: [S)e:“rlcnrlgrszbsnes for new / updated advisories . .. @ @ . . .
J
orionitine « Sift criticality of vulnerabilities .. . @ @ . . .)
. 7
: [;gg:ss::::q:;ftected products? E a ﬁ E E n .
« Decision which actions should be taken)

Figure 2.1: Manual process for handling security advisories without CSAF. Finding, prioritiz-
ing and evaluating advisories must be done manually. [18]

Figure 2.1 shows the manual process for handling security advisories. This describes how they
are currently handled. Finding, prioritizing and evaluating security advisories today has to
be done manually. First of all, the advisories must be searched for on the manufacturer’s
website or retrieved by any other means. Depending on the size and heterogeneity of the

2 Basics of CSAF 2.0

infrastructure, this can be very difficult and, above all, time-consuming. A major problem
here is the inconsistent format used by manufacturers to issue their security warnings. Once
all the advisories have been found, they have to be processed and prioritized. Likewise, of
course, vulnerabilities that do not affect products in the infrastructure must be sorted out.
This process also has to be done manually. This does not scale well as the business grows.

Severity of advisory

. low
Process with CSAF] medium
|| high
B critical
pantaton e eesoplesasen 23] Eme]7] s o M2 M4

« Search websites for new / updated advisories _ . .. IEI @ . . .

- Download

+ Do you have affected products? 7] 9 Iﬂm m
- Risk assessment (static) => adopt criticality _ 7
B« s [

(static) 1M Criticality of the vulnerability

- Sift of advisories with affected products sort by criticality

« Decision which actions should be taken

Figure 2.2: Process for handling security advisories with CSAF with the automated steps
“Find” and “Prioritize” [18§]

With CSAF, the “Find” and “Evaluate” steps can be fully automated, as shown in figure 2.2.
How the advisories are handled must and should continue to be decided by the customers
themselves. This makes update management easier and scales with the size of the company.

CSAF supports the creation and exchange of security advisories in the machine-readable
JavaScript Object Notation (JSON) format. The goal is to allow security advisory retrieval
and processing to be automated. As a first step, an operator determines his product inventory.
With the help of simple queries, security advisory information related to this inventory can
be requested. This information can be used to carry out a more detailed risk assessment.
Furthermore, the time frame between the design and dissemination of an advisory by the
manufacturer to its retrieval by the consumer is significantly shortened by automation.

The CSAF 2.0 standard currently specifies two ways to distribute CSAF documents: the
ROLIE-based and directory-based distribution. In this work, an API is introduced as a third
distribution method.

2.2 Type definitions

2.2 Type definitions

This section explains the individual type definitions for a CSAF document [17, section 3.1].
They serve as reusable schemas which are later used in the property definitions of a CSAF
document. These are addressed in the next section.

acknowledgments_t Array containing objects. Each object represents an acknowledgment,
which can contain any number of names and Unique Ressource Locators (URLs), as well
as an organization name and a summary.

branches_t Array containing objects, which itself can contain an element of type branches t
under the property branches. If it is not specified, the object is considered the leaf el-
ement of that branch. The property product must be filled with an element of type
full product_name_t. Each branch must end with a leaf containing a product. Adja-
cent to those properties, an enumerated category and a name must be specified. This
results in a tree whose branches each represent a complete product.

full_product_name_t Object representing a product. The properties name and product_id
are mandatory. The latter one has the type product_id_t. Thus, the type
full product_name_t is used to assign a unique product ID to a product. In addi-
tion, the property product_identification_helper can be specified to make it easier
to identify this product in an asset database. A Common Platform Enumeration (CPE),
Hashes, Model Numbers, a Package URL (PURL), Software Bill of Materials (SBOM)
URLs, Serial Numbers, Stock Keeping Units (SKUs) and generic Unique Ressource Iden-
tifiers (URIs) can be specified here.

lang_t String specifying a language based on IETF BCP 47 / RFC 5646 [2].

notes_t Array with notes that allows the input of free text. A note category must also
be selected from the following enumeration: description, details, faq, general,
legal_disclaimer, other and summary. Additionally, audience and title can also
be specified for a note.

product_group_id_t String, which uniquely identifies a product group.

product_groups_t Array containing only elements of type product_group_id_t. Therefore,
it lists product group IDs.

product_id_t String, which uniquely identifies an element of type full_product_name_t.
products_t Array containing elements of type product_id_t, listing product IDs.

references_t Array containing objects. Each object represents a reference. For each refer-
ence, a url and a summary must be specified. A reference to the current document can
also be specified. For this, the property category must have the value self.

version_t String which allows the specification of a version number. Either integer or se-
mantic versioning [15] must be used here.

2 Basics of CSAF 2.0

2.3 Document properties

In this section, the individual properties of a CSAF document are briefly explained. This
has the purpose of initially evaluating which of the properties would be suitable as search or
filter parameters for an API. The parameters that define the initial data set before filtering
are described as search parameters. They contain values that are easy to find in the CSAF
document and that are independent of other parameters. Filter parameters, on the other hand,
are suitable for reducing the acquired data set. They are mostly parameters that depend on
other search parameters, such as the existence of a specific remediation (filter parameter) for
a vulnerability (search parameter).

The primary concern of this section is to recognize whether the properties are machine-readable
and thus parsable. Especially for filter options, it is indispensable that the property values,
which serve as data source, are deterministic. This is achieved primarily by string enumerations
or standardized formats. Properties that contain free text are difficult to parse, or at least lower
the quality of search results significantly. This is also true for properties whose approximate
value is deterministic, but they do not follow a fixed format or enumeration. In this and the
following sections and chapters, this problem will be discussed in detail.

2.3.1 The /document property

The /document property contains metadata about the CSAF document itself. It is the only
property required by the CSAF JSON schema [17, section 3.2]. The following subproperties
are mandatory:

/document/category Specifies the type and profile of the CSAF document. It defines which
properties are required in addition to the /document property. Since this field defines
how a CSAF document must be structured, it is of great importance.

/document/csaf_version Defines the CSAF version of the document. Its value is always
2.0 in the current standard.

/document/publisher Provides information about the publisher of the document. The
name, category and namespace (e.g. website) of the issuing party is mandatory.

/document/title Title of the CSAF document.

/document/tracking This field contains all the management attributes required for track-
ing the document. At least the following properties must be specified here: id,
current_release_date, initial release_date, revision_history, status and
version. The dates can be particularly useful as search parameters, because they can
be used to narrow down the search to a specific time period. The id is also part of the
global identifier used in the CSAF network. The status property, which is enumerated,
can also be used to determine whether a security advisory is complete.

2.3 Document properties

In addition, the following subproperties can be specified optionally:

/document/acknoledgements Other persons or organizations that contributed to the content
of the CSAF document are referenced here.

/document/aggregate_severity Defines the criticality of the document. It conveys the
urgency with which the one or more vulnerabilities reported should be addressed and
must be specified as free text in the text property. Optionally, a namespace can be
supplied.

/document/distribution Here, the rules for distributing the document are defined. These
can be specified either as free text in the distribution/text subproperty or by assigning
a Traffic Light Protocol (TLP) [1] label to distribution/tlp/label.

/document/lang Sets the language of this document.

/document/source_lang Sets the language of the original document, if this document is a
translation.

/document/notes Provides the possibility to record annotations to the document as free text.

/document/references External reference documents (also non-CSAF) can be listed here.

Most of the fields in the /document property are searchable or deterministic, since
the values are defined as string enumerations. Many of them are therefore suitable
to act as data sources for simple filter functions. Searching for a specific manufac-
turer should be trivial, especially because of the /document/publisher/namespace prop-
erty. Likewise, global findability should be possible and unproblematic. The properties
/document/publisher/namespace and /document/tracking/id are used to globally iden-
tify a single CSAF document [17, section 3.2.1.12.4].

However, it becomes problematic with the optional properties
/document/aggregate_severity and /document/distribution: The first one requires only
the subproperty text, in which a severity level of the document can be specified using free
text. This may make it difficult to process. The latter one has the subproperties text and
tlp, but only one of them is required. The t1lp subproperty is easy to parse because its label
subproperty is standardized and enumerated [1]. In the text subproperty, on the other hand,
free text is allowed. This makes it impossible for a computer to deterministically determine
whether a document may be distributed or not. To prevent information leakage, a restriction
according to TLP:RED must be assumed if only the text subproperty is set!

The optional /document/lang property, on the other hand, has to conform to the
IETF BCP 47 / RFC 5646 standards [2], and is therefore suitable as a data source for fil-

ter functions.

The remaining properties /document/{acknowledgments,notes,references,source_lang}
are not useful as a source for filter functions. Despite them having a high importance inside
the CSAF document itself, it is uncommon for them to be used as search parameters.

2 Basics of CSAF 2.0

2.3.2 The /product_tree property

The /product_tree property is used in the document as a definition point for products. Here,
all products are defined that are, for example, affected by or related to a vulnerability. Each
object receives a unique ID [17, section 3.2.2], which can be used to reference it elsewhere in
the document.

Products can be defined in these ways:

/product_tree/full_product_names Allows the uncomplicated specification of a single
product including all necessary information (manufacturer, product name, version).
Each defined product receives a unique product ID. This is the simplest way to specify
products.

/product_tree/branches Enables the hierarchical specification of products. For example,
several versions of a single product or several products from a single product family can
be specified. This results in branches, which in the end results in a complete product
with its own ID. Listing 2.1 shows an example of the branches property.

Listing 2.1: Simple example for the /product_tree/branches property with Product XY from
Vendor XY in version 2

"branches": |
"name": "Vendor XY",
"category": "vendor",
"branches": |

{

0O U W+

"name": "Product XY",
9 "category ": "product_name",
10 "branches": |
11 {
12 "name"': "2",
13 "category ": "product_version",
14 "product ": {
15 "'name": "Product XY v2",
16 "product_id": "SP1",
17 "product__identification__helper": {

19 },

10

2.3 Document properties

Each step on the branch requires the properties name, category and branches. The
only exception is the last element of the branch (“leaf element”): Here the product
property with the type full product_name_t must be specified instead of branches.
The type is the same as the one that must be used in the full product_names property.
Consequently, the product_id is assigned here.

To avoid complications when parsing this representation, the standard recommends
the approximate order of categories: vendor -> product_name -> product_version.
However, this is just a recommendation and not a requirement. There is an informa-
tive test that states that the other categories (architecture, host_name, language,
legacy, patch_level, product_family, product_version_range, service_pack and
specication) [17, section 3.1.2.2] can be used before, in between or after the recom-
mended order [17, section 6.3.9]. All categories can also be defined multiple times in a
branch, which could complicate parsability in a real world scenario.

/product_tree/relationships Within this array, previously defined products can be
placed in relation to each other. For example, this is necessary for a soft-
ware which is only affected by a vulnerability if it is part of another system or
is otherwise connected to it. The relationship categories that can be used are:
default_component_of, external component_of, installed_on, installed_with
and optional component of. A relation yields a new product ID that can be
used to reference it like a product defined in the branches or full product_names
property. [17, section 3.2.2.4]

/product_tree/product_groups Additionally, the defined products can be grouped in the
property product_groups. Compared to the other properties, the group does not create
a new ID of type product_id_t, but a group ID of type product_group_id_t.

2.3.3 The /vulnerabilities property

The /vulnerabilites property contains an array of vulnerability information for this CSAF
document. More than one can be specified, since e.g. during a security audit several vulnera-
bilities can be discovered at once, which are then all distributed in a single security advisory.

Each entry in the vulnerability property can be of any kind: it can be a fully parsable element
containing Common Vulnerabilities and Exposures (CVE), Common Weakness Enumeration
(CWE) and references, or just free text information about the vulnerability. According to
the standard, the only requirement is that at least one of the following subproperties must be
included. However, the document profiles provide further rules on how a vulnerability object
must be structured (see section 2.4).

/vulnerabilities[]/acknowledgments The acknowledgments property contains a list of
parties associated with the vulnerability. It is not important in this thesis as it is not
suitable to be used in search queries.

11

2 Basics of CSAF 2.0

/vulnerabilities[]/cve Contains the MITRE standard Common Vulnerabilities and Ex-
posures (CVE) string to identify the vulnerability. Only one can be specified per item in
the /vulnerabilities array. This property is eligible to be used as a search parameter.

/vulnerabilities[]/cwe Contains the MITRE standard Common Weakness Enumeration
(CWE) Weakness ID and its name. Like the /vulnerabilites/cve property, it can be
used as a search parameter.

/vulnerabilities[]/discovery_date Date on which the vulnerability was discovered.
This may be a better alternative to the /document/tracking/initial_release_date
property for date filtering, as it relates specifically to the vulnerability.

/vulnerabilities[]/flags Allows setting machine-readable flags to specify the impact of a
vulnerability on a specific product or product group. The following values in the label
subproperty are possible:

e component_not_present

e inline mitigation_already_exist

e vulnerable_code_cannot_be_controlled_by_adversary
e vulnerable code_not_in_execute_path

e vulnerable_code_not_present

In addition to this, the respective product or product group can then be specified via
its ID, as well as the date when the flag was assigned.

The flags usually provide a justification as to why a product is not affected by a vulner-
ability. It is unusual for such information to be used as a search parameter. However,
the property can be useful as a filter parameter.

/vulnerabilities[]/ids The /vulnerabilites/ids property is a list of arbitrary IDs or
labels, if any. They serve the purpose of identifying a vulnerability which, for example,
have not yet been assigned a CVE. Each list entry requires the properties system_name
and text. The former specifies the ID system and the latter the actual ID inside this sys-
tem (e.g. system_name="Github Issue", text="oasis-tcs/csaf#210"). Both prop-
erties are defined as free text here. Thus, a reliable search for CSAF documents using
these ID systems is problematic. An enumeration is presumably hardly realizable, since
this property has the function to assign IDs on the basis of arbitrary systems. Never-
theless, this property can be useful as a search parameter as the values of system_name
are somewhat deterministic although they are not enumerated.

/vulnerabilities[]/involvements This property can be used to specify third parties
(coordinator, discoverer, other, user or vendor) who were involved in the vulner-
ability disclosure process. Furthermore, the status of the communication (completed,

12

2.3 Document properties

contact_attempted, disputed, in_progress, not_contacted or open) must be spec-
ified for each party. Additionally, a date of involvement and a free text summary can
be provided. Eventually, the use case of finding CSAF documents in which a particular
party was involved may arise from this property. However, it is unlikely that this will
add value to the goal of automating advisories.

/vulnerabilities[]/notes This property can be used to store free text notes for the
/vulnerability entry. FEach note has to choose from the following selection in the
category subproperty to categorize the note: description, details, faq, general,
legal disclaimer, other and summary. Additionally, the audiences subproperty
can be used to specify the target audience of the note. The notes property, like the
/document/notes property, is not suitable to be used as a search parameter for the same
reason.

/vulnerabilities[]/product_status Describes the status of whether and how a prod-
uct is affected by this vulnerability. The following states can be specified
by creating subproperties from the following selection under /product_status:
first affected, first fixed, fixed, known affected, known not affected,
last_affected, recommended and under_investigation. The product IDs from the
/product_tree property are then specified under the respective properties. When re-
questing CSAF documents, these states can be useful as a filter option when transferring
your own device lists. Thus, the following search query is created as an example “Find
all CSAF documents that (possibly) affect my devices ({known,first,last}_affected
(or under_investigation))”.

/vulnerabilities[]/references Lists references to the vulnerability (e.g. documentation
in other formats, details from other sources, etc.). Like the /document/references
property, this is not suitable to be used as a search parameter.

/vulnerabilities[]/release_date Contains the date when the vulnerability was pub-
lished. It may be used as a fallback to the /vulnerabilities/discovery_date prop-
erty.

/vulnerabilities[]/remediations Under this property, remediations for the vulnerability
can be specified with respect to one or more products or product groups, if applica-
ble. The following categories can be selected: workaround, mitigation, vendor fix,
none_available and no_fix_planned. Free text details and at least one product or
product group must be provided. Since this information is basically what you would
expect as the result of a query, this property is also rather unsuitable as a search pa-
rameter. But when submitting a device list, for example, it can be useful to filter for
vulnerabilities, for which a mitgation is available.

/vulnerabilities[]/scores Contains a list of Common Vulnerability Scoring System
(CVSS) scores. CVSS v2, v3 or both can be specified. For each specified score, the
products that are affected by it must be specified. The fact that multiple CVSSs can be

13

2 Basics of CSAF 2.0

specified here could make it difficult to use them as search parameters. However, they
are indispensable as filter parameters.

/vulnerabilities[]/threats This property allows specifying multiple threats with the fol-
lowing categories: exploit_status, impact or target_set. Thus, it is possible to spec-
ify how mature exploits already are (exploit_status), what influence the vulnerability
can have (impact), or which group of persons or devices could be affected (target_set).
In addition to these properties, products or product groups can be referenced here again,
and a date can be set. It is intended that the values of each entry in threats can
change over time. Like /vulnerabilites[]/remediations, this property is not suit-
able as a search parameter for the same reason. Other than the remediations however,
the details property is non-parsable which makes the /vulnerabilities[]/threats
unsuitable as a filter parameter.

/vulnerabilities[]/title Allows to specify a canonical name for the vulnerability. May
be used for direct document search (“Find the CSAF document where this vulnerability
is listed with this title”).

2.3.4 Summary

The following table 2.1 summarizes the detailed descriptions of the CSAF document properties
and their search parameter suitability. For each property, it is indicated whether it is suitable
(S) and useful (U) as a specification in a request to the API. The decisions are briefly justified
in each case.

The decision of suitability is mainly based on properties like parsability and clearness. Usabil-
ity, on the other hand, has more of a non-technical basis. For example, a user’s expectation is
important here: some properties are simply expected to be part of a response rather than a
query. Likewise, some values are static, so they are of no use as part of a request. Generally,
a property is marked as usable as soon as it has an informational added value as a search or
filter parameter for the user.

14

2.3 Document properties

Table 2.1: CSAF document property suitability (S) and usability (U) summary

CSAF document property suitability (S) and usability (U) summary

Property under /document S | U Reason
/category v | v | Defines document category
/csaf _version v | X |Isalways 2.0 @
/publisher v | v | Part of global ID
/title v | v/ | Title of the document
/tracking v | v | Part of global ID and contains docu-
ment status
/acknowledgments X | X | Usually expected as response
/aggregate_severity X | v | Useful for filtering, but non-parsable
/distribution v | Source for access control decisions,
TLP property not required
/lang v | v | Usetul for filtering
/source_lang v | X | Usually expected as response
/notes X | X | Usually expected as response
/references X | X | Usually expected as response
Property under /product_tree S | U Reason
/full_product_names v | v/ | Easy to parse
/branches v | v | Hard to parse, missing default order of
categories
/relationships v | v | Easy to parse
/product_groups v | v | Easy to parse
Property under /vulnerabilities[] | S | U Reason
/acknowledgments X | X | Usually expected as response
/cve v | v | Easy to parse
/cwe v | v | Easy to parse
/discovery_date v | v | Alternative for dates in /document
/flags v | v | Expected as response, but also useful
as filter parameter
/ids X | v | Useful as search parameter; system_id
not enumerated, but guessable
/involvements X | X | Usually expected as response

()Based on the current CSAF version; changes in later versions

15

2 Basics of CSAF 2.0

Property under /vulnerabilities[]

Reason

/notes
/product_status
/references
/release_date
/remediations
/scores

/threats

/title

N X NSNS X N X|®»

N X NSNS X SN X|a

Usually expected as response
Useful as filter parameters
Usually expected as response
Alternative for dates in /document
Useful as filter parameter

Useful as filter parameter

details property is non-parsable

Useful for filtering

In theory, many of the properties are suitable for implementing an API on top of them.
However, it becomes problematic with the properties that are marked as not suitable (S: X)
but usable (U: V). For some of these, specification adaptations are suggested in the following

chapters.

16

2.4 Document profiles

2.4 Document profiles

In addition to the single requirement that a CSAF document must have only the /document
property, so-called document profiles are defined that specify further requirements for a docu-
ment. A profile defines a use case that requires the necessary fields in the document to fulfill it.
Inheritance of profiles is also possible, but an inheriting profile may only add further required
properties to the inherited profile.

The individual profiles of the standard are briefly explained below. The resulting use cases
can be used to make better decisions regarding the importance or suitability of individual
properties.

The following profiles are defined by the standard [17, section 4]:

CSAF Base This profile lays the absolute foundation for a CSAF document. All other profiles
inherit the properties of this profile. Furthermore, it serves as a “catch all” if the profile
specified in /document/category does not exist and the document therefore does not
belong to any other profile.

It is required that the document specifies a document category, CSAF version and a
title. It is also required to specify the publisher and some tracking information in
/document/tracking:

e /document/category must be csaf_base
o Publisher category, name, and namespace
« Tracking release date (current and initial)
o Tracking revision history

» Tracking status and version

CSAF Base documents therefore must only transport metadata about the publisher and
the document itself, but must not contain any useful security information. The properties
provided for that purpose are only enforced by the subsequent profiles. However, all non-
enforced properties can still be set.

Security Incident Response This profile serves the use case to provide response for a security
breach or incident. For example, a vulnerability in another vendor’s product can be
conveyed if it affects one of the vendor’s own products.

The following rules are enforced by this profile:

e /document/category must be csaf_security_incident_response.

o At least one element in /document/notes with a category of description,
details, general or summary must exist.

17

2 Basics of CSAF 2.0

o At least one element in /document/references with a category of external must
exist.

Informational Advisory This profile is suitable for transporting information that is not related
to a vulnerability. For example, it can be used to point out misconfigurations.

The following rules are enforced by this profile:

e /document/category must be csaf_informational_advisory.

o At least one element in /document/notes with a category of description,
details, general or summary must exist.

o At least one element in /document/references with a category of external must
exist.

o The property /vulnerabilities shall not exist.

If the property product_tree exists, it must also be assumed that all specified products
are affected. The property /vulnerabilities must not be specified.

Security Advisory This profile is suitable for transporting vulnerability information and its
remediations - in other words, it represents the classic security advisory. This is to
inform about vulnerabilities and their effects, and how they can be mitigated by users.

The following rules are enforced by this profile:

e /document/category must be csaf_security_advisory.

o All products related to this advisory must be listed in /product_tree regardless
of their state. Thus, it works differently from the Informational Advisory profile,
where all products in the /product_tree must be assumed to be affected.

« Each vulnerability object in /vulnerabilities[] must have a notes property.

o Each vulnerability object in /vulnerabilities[] must have a product_status
property.

VEX This profile is suitable for transporting information according to the Vulnerability Ex-
ploitability eXchange (VEX) concept. The goal of VEX is to provide operators with
additional information about whether a product is affected by a vulnerability or not and
what countermeasures can be taken if necessary. In many cases, indicated vulnerabilities
are not exploitable at all because, for example, the affected component is not present,
or another security measure prevails against it. [10]

VEX was originally conceptualized by the National Telecommunications and In-
formation Administration (NTIA) to find out whether a software is affected by
an existing vulnerability via SBOM documents. Accordingly, a CSAF feed can
be stored in an SBOM document for each software component. In the case

18

2.4 Document profiles

of the SBOM format CycloneDX this specification is located in the property
/components []/externalReferences [type="advisories"]/url [5].

VEX is implemented in CSAF by the profile of the same name as follows:

e /document/category must be csaf_vex

o All products related to this advisory must be listed in /product_tree regardless
of their state

« Each vulnerability in /vulnerabilities[] must be assigned either a CVE or an
ID as mentioned in chapter 2.3.3: /vulnerabilities[]/ids. In addition, details
must be provided in /vulnerabilities[]/notes.

e The products must be appropriately placed in the /vulnerabilities[]/
product_status/{fixed, known_affected, known_not_affected,
under_investigation} properties to set their status.

o For each product in /vulnerabilities[]/product_status/known affected
there must be either a machine-readable flag in /vulnerabilities[]/flags or
a human-readable justification in /vulnerabilities[]/threats with a category
of impact. This is called an impact statement.

o For each product in /vulnerabilities[]/product_status/known_not_affected,
product-specific information must be specified in
/vulnerabilities[]/remediations as to why the product is not affected.
This is called an action statement.

These specifications are used to set a status for each product. In addition, reasons are
given for the definite states known_affected and known _not_affected.

The fact that the profiles provide some kind of scheme ensures the combination
of certain properties that would otherwise not provide any added value on their
own. For example, the /vulnerabilities[]/remediations property is only enforced
if /vulnerabilities[]/product_status/known_affected also exists. Otherwise, the
remediations property would have no value, since it is not clear whether the product is
affected by the named vulnerability at all.

However, the fact that the result of a request to the CSAF API cannot be guaranteed to consist
only of homogeneous document types could be problematic. This could significantly limit the
effectiveness of filter parameters, as some of these cannot be applied to CSAF documents of a
particular profile. For example, filtering by VEX product status can only be effectively applied
to documents that also satisfy the VEX profile.

19

2 Basics of CSAF 2.0

2.5 Intended architecture

A CSAF infrastructure consists of the components “CSAF publisher”, “CSAF provider”,
“CSAF trusted provider”, “CSAF lister” and “CSAF aggregator”. These components are
also called roles in the standard [17, section 7.2]. They can be divided into the two groups “is-
suing parties” and “mirroring parties”. The former group is responsible for creating and issuing
CSAF documents. It includes the CSAF publisher, provider and trusted provider. Usually,
all documents originate from these entities. They can be operated by a manufacturer and
therefore publish only those documents, which correlate with the products of this manufac-
turer. In addition, coordinators or discoverers can also distribute CSAF documents. A CSAF
provider — in contrast to a CSAF publisher — additionally provides options that facilitate the
automated retrieval of these documents. This includes above all the provider-metadata. json
file, which must be located in a known or well-defined directory on a web server. It contains
all the information about the provider itself, as well as the methods for distributing its CSAF
documents.

The CSAF 2.0 standard currently defines two options to provide CSAF documents in a struc-
tured manner to allow their distribution [17, sections 7.1.11 - 7.1.17]: The ROLIE feeds and
the directory-based distribution. ROLIE is a resource-oriented approach for security automa-
tion information publication, discovery, and sharing [7, Abstract]. It is built on top of the
Atom Publishing Format and Protocol to ease discovery of security content as web-addressable
resources and follows the Representational State Transfer (REST) architectural style. The
CSAF standard currently uses the JSON representation of ROLIE feeds. These are refer-
enced in the provider-metadata. json file instead of forcing the use of service documents
mentioned in the ROLIE standard [7, section 5.1]. However, they are listed as an optional
requirement [17, section 7.1.16]. The directory-based distribution only dictates where in the
web directory the CSAF documents must be located. They must be sorted by year and TLP
label.

Both methods intentionally do not provide search or filter functions to avoid information
leakage to the server. All CSAF documents must always be downloaded and processed locally
to obtain the relevant information. An API is to provide more flexible ways to query CSAF
providers and aggregators.

Within the issuing parties, it is conceptually possible to implement an API without any
issues. It only needs to be listed as a distribution method in provider-metadata. json so
that queriers of this party can discover it. Each issuing party will accordingly operate its own
API endpoint.

The mirroring parties ensure that these documents from the issuing instances can be retrieved
at a single point. Operators of these parties decide by themselves which issuing parties are
to be mirrored. A distinction is made between CSAF listers and aggregators. The former
simply lists the issuing parties’ provider-metadata. json file in its own aggregator.json
file so that they can be found more easily. However, requests for documents must still be made

20

2.5 Intended architecture

directly to the issuing party. A CSAF aggregator, on the other hand, mirrors all documents
under a separate namespace on itself, so that CSAF documents can be requested directly from
it. These namespaces are also listed in the aggregator. json file. The mirrored documents
must be updated regularly.

The resulting namespace is composed of the name of the publisher, which is stored at the
issuing party to be mirrored. An example for the publisher “Some CERT” can be seen in
listing 2.2.

Listing 2.2: Access paths to the provider-metadata.json on a provider versus on
an aggregator

Provider: /. well—known/csaf/provider—metadata.json
Aggregator: /.well—known/csaf/Some CERT/provider—metadata.json

This might introduce a problem later on: A single aggregator must then operate as many API
endpoints as the underlying providers do. This also means that the APIs cannot communicate
with each other, and thus the use case to find CSAF documents by publisher name might be
more complicated to achieve. Since the API approach means that there are no longer any
direct access paths to the CSAF documents, this problem can easily be circumvented by the
implementation. An aggregator, like a provider, would therefore only need to access its local
database of CSAF documents and merge them into a single API response.

The API will first be designed for CSAF providers only and adapted to aggregators after
completion. The reason for this is that a provider functions completely independently and
potential exchange functionality is only required by an aggregator. Basically the difference of
the API routes between provider and aggregator should be minimal.

CSAF provider CSAF provider CSAF provider CSAF provider [«
------ > <
A A A A
lists provider-metadata.json lists provider-metadata.json mirrors in namespace mirrors in namespace
CSAF Lister | CSAF Aggregator
mirrors in namespace
A A
s queries =~ -----ssmmmmss-oo asks queries
CSAF
Querier queries

Figure 2.3: Data flow when querying CSAF providers, listers and aggregators

21

2 Basics of CSAF 2.0

In summary, the diagram in figure 2.3 shows the simplified data flow of a CSAF infrastructure.
It originates from a querier (red oval) and shows which options there are for requesting CSAF
documents. The querier might be representative for an enterprise’s Security Operations Center
(SOC) or a similar facility.

The API to be conceptualized should not significantly change this data flow. A querier must
still be able to request both providers and aggregators. As described, the API should not be
implemented for listers, as they should only reference the implementations in the providers.
CSAF publishers are also not considered, since they do not distribute CSAF documents in an
automatable manner.

22

3 Design

This chapter covers the design and conception of the API. First, requirements are defined
which must be fulfilled in order to serve the purpose of automating CSAF. The resulting
design requirements are then fulfilled by the route design. Finally, it is evaluated and checked
whether and how it can theoretically be implemented with the current standard.

The result of this chapter is a complete concept of the API, which is implemented by the Proof
of Concept in chapter 4.

3.1 Requirements

The following requirements are not to be confused with the requirements defined in the stan-
dard for the CSAF roles [17, section 7.1] and are therefore not to be adopted into it. They
serve as a methodology and guide for the design and implementation.

The methodology to set requirements is intended to define the “utopian end product” of the
API. In the course of this thesis, this end product is to be conceptualized and then evaluated
to what extent the requirements can actually be fulfilled by the standard. If this is not possible
in a certain point, a change proposal is suggested. It should contain standard adjustments,
by which the fulfillment of the requirement is made possible.

The following naming convention is used to define the requirements:

o <category>-R<integer>: a requirement (example: INF-R10: informal requirement 10)

o <category>-R<integer>-A: a change proposal by which the fulfillment of a requirement
is made possible (example: INF-R10-A: Adjustment for informal requirement 10)

In the following, the requirements are divided into four categories. In the individual steps of
this thesis, the requirements of the categories are to be fulfilled.

« Informal requirements (INF): Basic requirements for a REST API. They have to be
fulfilled by the operator of the server.

o Design requirements (DES): These will be fulfilled solely by the route design made in
section 3.2 - thus independent of the actual implementation. The category contains all
requirements for the interface to the end user. Accordingly, only these are visible to the
outside.

23

3 Design

o Implementation requirements (IMP): These are to be observed and fulfilled in
chapter 4. They only concern the implementing authority of the API, not the end

user or the operator of an existing implementation.

+ Requirements for embedding in the CSAF infrastructure (EMB): These require-
ments define rules for the API so that it can be embedded in the CSAF infrastructure

and standard.

The informal requirements as defined in table 3.1 are not discussed further in this thesis.
They are to be taken as given or fulfilled purely by the operator of the API. Nevertheless, it is
important to mention them here in order to better understand design decisions. Although these

requirements are to be taken as given, they still influence the design and implementation.

Table 3.1: Informal requirements

Informal requirements

Naming

Description

INF-R1

INF-R2

INF-R3

The entire API endpoint must be TLS encrypted according to modern
standards.

Requests to the API must be idempotent: Two identical requests must
generate an identical response. However, depending on the timing of the
request, the response may vary, since the API is intended to serve the
purpose of obtaining up-to-date CSAF documents.

The API must accept all Hypertext Transfer Protocol (HTTP) methods

from RFC 7231 [16] — including Cross Origin Ressource Sharing (CORS)
preflight requests with the OPTIONS method.

Important in the selection of the design requirements as defined in table 3.2 was the evaluation
of each property. Not every property is useful to be used in a search query. If possible, the
use of properties that were marked as non-suitable should be avoided. However, as many use
cases as possible should be covered, which form the interface to the user of the API. The
following implementation requirements should not play a role in the definition of the design

requirements.

24

3.1 Requirements

Table 3.2: Design requirements

Design requirements

Naming Description

DES-R1 All API routes must be versionable.

DES-R2 There must be a route that returns the CSAF role of the server. This
is mainly for the purpose of distinguishing between aggregators and
providers.

DES-R3 There must be a route that returns aggregator. json in the case of an
aggregator, or provider-metadata. json in the case of a provider.

DES-R4 The API must allow at least one form of authentication on the routes,
whose purpose is to return CSAF documents. However, this must not be
enforced.

DES-R5 The routes must provide the ability to specify zero or more filter options
in a single request. For example, these search queries must be possible
in a single request:

 Search for CSAF documents. (zero filter options)
 Search for CSAF documents published after 2020. (one filter op-
tion)

o Search for CSAF documents published between 2020 and 2021.
(two filter options)

DES-R6 There must be a filter option to match CSAF documents released before
a specific time based on te initial release date.

DES-R7 There must be a filter option to match CSAF documents released after
a specific time based on the initial release date.

DES-R8 There must be a filter option to match CSAF documents with a specific
tracking state.

DES-R9 There must be a filter option to match CSAF documents of a specific
document profile.

DES-R10 | There must be a boolean parameter that specifies whether the hashes for
each CSAF document should be included in the response.

DES-R11 | There must be a boolean parameter that specifies whether the signature

for each CSAF document should be included in the response.

DES-R12 | There must be a function to pass a device list to the API to request all

relevant documents.

25

3 Design

Naming Description

DES-R13 | When providing a device list to the API there must be a filter option to
only match the CSAF documents where the provided devices have the
specified VEX status.

DES-R14 | When providing a device list to the API there must be filter options
to only match the CSAF documents, where any of the products have a

CVSS score for any vulnerability in a specific score range. Both version
2 and 3 must be supported.

DES-R15 | When providing a device list to the API there must be a filter option
to only match the CSAF documents that provide a remediation of the
specified type for any of the devices.

DES-R16 | There must be a function to access arbitrary JSON properties to find
CSAF documents with matching property values.

DES-R17 | There must be a function to find the latest version of a CSAF docu-
ment by its globally unique ID (/document/publisher/namespace +
/document/tracking/id).

DES-R18 | All API requests should contain an /error property signaling a machine-
readable error code, even on responses not returning a status code in the
range of 200-299. If no error occured, the property should have a value
of null or be omitted.

DES-R19 | The API must always return complete CSAF documents.

Implementation requirements as defined in table 3.3 must be selected very carefully, as they
determine how well the API integrates with the current implementations of the other CSAF
components. They also form the guideline after the PoC implementation is made in this thesis
in chapter 4.

In addition, the definition of the design requirements in table 3.2 already specifies how authen-
tication must take place. Contrary to the original idea of providing different API endpoints
for each TLP label [17, section 7.1.15], the approach chosen here was to optionally transmit
authentication data. The API uses this data to decide which documents may be included in
the calculation of the response. This response can then be filtered by TLP label, for example
by using URL parameters. This simplifies the integration of the API into an automation pro-
cess: An end user would no longer need to address multiple API endpoints to find all relevant
documents. Similarly, access to documents that are not intended for the public, or where it
is not obvious if they are, must remain denied to users without valid authentication data.
The reason for this may be, for example, a missing TLP label in the document. To avoid
information leakage, this needs to be well tested and verified.

26

3.1 Requirements

Table 3.3: Implementation requirements

Implementation requirements

Naming Description

IMP-R1 The API uses only the HTTPS request and the existing CSAF documents
stored in the file system as data source.

IMP-R2 | The API does not use a Database Management System (DBMS).

IMP-R3 Unauthenticated requests to the API may only process CSAF documents
with a TLP:WHITE label.

IMP-R4 Authentication data, if available, must be verified before CSAF docu-
ments are processed. The permission level of the authentication data
is used to decide which CSAF documents may be used to compute the
response.

IMP-R5 If authentication data is submitted and it is not known to the server
or it does not match the specified format, a 401 Unauthorized error
should be reported. In this case, not even TLP:WHITE documents should

be processed.

The requirements for embedding in the CSAF infrastructure as defined in table 3.4 serves
to ensure that the API, as a third distribution method, fits in well with the existing ones.
Among other things, this involves designing the API in such a way that it can function as
far as possible in the same way on both CSAF (trusted) providers and aggregators without
complex adaptations.

This can become a problem under certain circumstances, since the ROLIE feeds
are already provided under their own namespace by aggregators and thus multiple
provider-metadata. json files exist. However, the goal here should be that there is only
one APT endpoint per aggregator, which processes the documents of all (trusted) providers
it mirrors. As it is at the moment, it is common for each provider to operate its own CSAF
trusted provider. Should several of these be aggregated by a CSAF aggregator, it would thus
also be possible to request documents from several manufacturers at once. This is especially
helpful in infrastructures, where products from several vendors are used. Users having infras-
tructures with products mainly from a single vendor can still use the API of a CSAF (trusted)
provider.

27

3 Design

28

Table 3.4: Requirements for embedding in the CSAF infrastructure

Requirements for embedding in the CSAF infrastructure

Naming Description

EMB-R1 The implementation of the API must work on both CSAF (trusted)
providers and aggregators. Listers do not require an implementation,
as they only reference the CSAF (trusted) provider instances, running
the API.

EMB-R2 The API endpoint must be able to be stored in the
provider-metadata. json file.

EMB-R3 The JSON schema of the provider-metadata.json must be adapted
accordingly due to EMB-R2.

EMB-R4 The API endpoint must be able to be stored in the aggregator.json
file.

EMB-R5 The JSON schema of the aggregator. json must be adapted accordingly

due to EMB-R4.

3.2 API design

3.2 API design

Since the main goal of the AP is to drive the automation of CSAF, the REST-JSON paradigm
was chosen. REST is a very flexible paradigm that is, above all, easy to understand, well
documentable, and offers a high level of compatibility with existing infrastructure and tooling.
It is based on the HT'TP and therefore allows easy integration into existing applications. REST
can use any structured language to transport information, but JSON was chosen here because
it is also the native language of CSAF. This ensures the uncomplicated transport of CSAF
documents.

The design of the APT is based on Microsoft’s REST API guidelines [4], but the final product is
not fully compliant with them. The reason for this is that the guideline is specifically oriented
towards the transport of simple and hierarchically flat resources. The filtering of deeply-nested
objects, as they occur in CSAF, is not intended. Consequently, the section of the guideline,
which defines how to handle collections [4, section 9], is not considered. Furthermore, the
recommendations on JSON standardizations [4, section 11] are not taken from the guideline,
but directly from the CSAF standard. Advanced features such as delta queries [4, section 10],
long running operations [4, section 13] and push notifications via webhooks [4, section 15] are
also not considered, due to not being used.

3.2.1 Introduction to OpenAPI

The route designs are created using the OpenAPI Standard (OAS) version 3.0.1 [20] and the
online editor “Swagger Editor“ [23] suitable for this purpose. The latter enables automatic
syntactic checking of the OpenAPI document. The creation is done in YAML Ain’t Markup
Language (YAML) format, while the final product is exported to the JSON format. Writing
the specification in YAML is easier because of the syntax, but the native OpenAPI format is
JSON. The Swagger editor supports this approach.

The resulting API specification is intended to serve as a single source of truth and is the
source for the subsequent documentation in Hypertext Markup Language (HTML), as well as
for the user interface for testing the API. Likewise, the specification defines the authentication
requirements for the API routes.

The specification file should later be provided by the web server adjacent to the API endpoint
URL — and thus to the provider-metadata. json file. This approach allows a requester to
know the API route versions supported by the CSAF provider or aggregator and thus helps
in prevailing the requirement DES-R1. A URL for this could look like this, for example:

https://www.example.com /. well—known/csaf/swagger. json

Using the tool “Swagger Ul” [24], a browser-based client can be created based on the specifi-
cation file. The interface can also be used to access the API directly and test authentication
flows. Thus, it serves not only as API documentation, but also as an interface for directly

29

3 Design

calling the API. For this purpose, the endpoints in which the API has been implemented,
must be specified in the OpenAPI specification.

Since there is no production-ready API during the design phase in this thesis, the
swagger . json file is only examined in the Swagger Editor preview or in the local browser. A
suitable test server can be started for this purpose with the following command:

npx open—swagger—ui /path/to/swagger.json

The open-swagger-ui package is temporarily downloaded from the Node Package Manager
(npm) registry using npx. It creates a local webserver that displays a Swagger UI based on
the given API specification. This is how the API documentation was reviewed in this thesis
as well as how the API was tested. If npm is not installed, the official Docker image with the
local specification can also be used:

docker run —p 8080:8080 —v /path/to/openapi.json:/app/openapi.json \
—e SWAGGER,_JSON=/app/openapi.json swaggerapi/swagger—ui

The API documentation and client can then be accessed at http://localhost:8080.

3.2.2 Component definitions

The OpenAPI specification allows the definition of so-called components under the
/components property. They can be reused later in the definition of the API paths in the
/paths property at almost any place.

This makes it possible to define frequently occurring design elements in advance. Only their
utilization (= referencing) in the /paths property may differ. This creates a unified interface
for processing these types in API requests and responses. Referencing works similar to JSON
schema type definitions. First, the # symbol is used to indicate that it is a reference inside the
current document. This is followed by the hierarchical path to the component. A example for
referencing the schema component “Response” is shown in listing 3.1.

Listing 3.1: Usage of component references in OpenAPI 3.0.1

"$ref': "#/components/schemas/Response’

The following component types can be specified [22]:

schemas Allows the definition of data models as in a JSON schema. They can also be used
in other component types.

examples Allows specification of sample data for a given schema. These are useful for users of
the browser-based client generated from the specification to see prebuilt datasets without
actually having to perform a request.

30

3.2 API design

parameters Allows the definition of reusable parameters for a HT'TP request. Query, header,
and path parameters can be created independently of the actual route and HTTP
method.

securitySchemes Specifies possible authentication methods that can be assigned either to
individual routes or to all routes at once.

requestBodies Allows the definition of reusable request bodies independent of the actual
route and HTTP method. For instance, schema components can be used here to define
a request body.

responses Allows the definition of reusable responses including response bodies. Schema
components can also be used here in a meaningful way. In addition, a single response
can also contain multiple content-type definitions.

headers Enables specification of reusable request and response headers.

links Enables non-technical linking of values across API requests. For example, a value of a
response from route X can be marked as a usable value for a request for route Y.

callbacks Allows the non-technical tagging of callback URLs for documentary purposes. The
use case for this would be, for example, a subscription mechanism in which a custom
URL can be submitted to the API to receive status updates from it. This is generally
known as a webhook.

The component types links and callbacks are not utilized in this design. The same applies to
header component type, since only the Authorization header is used, which is automatically
set by the securitySchemes component.

All components defined in the design are described in the following. The complete OpenAPI
specification including the components can be found in appendix A.

Schema components

CSAFDocument Simple entity that is to represent a CSAF document according to the current
standard. There are only the three top level properties of a CSAF document defined
with the required /document property.

Error Type containing detailed API error information. An enumerable error code should be
placed in the /errcode property. Detailed free text information is stored in the optional
/errmsg property.

CSAFDocumentResponse The type returned by all API routes used to request CSAF doc-
uments. It contains a nullable /error property of the schema Error, and an array
of objects which contain the plain content of the document after the CSAFDocument
schema in the /content property. Optionally, the document’s hash and signature can

31

3 Design

be specified in /documents[]/hash and /documents[]/signature, respectively. For
more convenient processing, the length of this array is also specified.

DeviceList Array type containing objects that schematically resemble the property
product_identification_helper of the full product_name_t type from the CSAF
standard (see section 2.2) [17, section 3.1.3.3]. This can be used to define a device for
the request body in one of the API routes.

AdvancedMatching Type that allows complex matching of multiple JSON properties. It is
intended to be used in the route where CSAF documents are to be matched based on
arbitrary JSON properties. A JSON document following this scheme could look like
displayed in listing 3.2.

Listing 3.2: Example of a JSON object of the AdvancedMatching schema which matches the
TLP:WHITE label and searches for CVEs beginning with CVE-2018-

1] o
2 "matching_default": "exact",

3 "operator": "and",

4 "matches": |

5 {

6 "path": "$.document. distribution.tlp.label",
7 "type": "string",

8 "value": "WHITE'

9 b

10 {

11 "path": "$.vulnerabilities [*]/cve",

12 "value": "CVE—2018—",

13 "matching": "begins—with",

14 "include__missing ": false

15 }

16]

17 }

The /matches property contains match objects that can match the value, type, or both
of a property. The /matches[]/matching and /matching_default properties spec-
ify the matching mechanism. The following values are allowed here: exact, regex,
begins-with, ends-with and contains.

All match objects can be logically linked as specified in the /operator property. For
example, it can be set that all match objects or only one of them must match. This
is to make complex search operations possible. It can also be specified whether match
objects should be evaluated to true if the specified property does not exist with the
/matches[]/include_missing property. This can be useful if it is unknown whether it
exists, since it may be optional.

It is also possible to search arrays by using square brackets with an asterisk (see line 11
in listing 3.2). In doing so, all properties in the array are matched. As soon as one of
them matches, the match object evaluates to true.

32

3.2 API design

Example components

Example components (/components/examples) can be used to represent specific example
data. These can, for example, fill a schema, but can also be used completely independently.
Example components can be used wherever working with data that could also correspond to
a schema, which includes response and request bodies. The defined examples can later be
viewed in the browser-based client to get a better understanding of the data.

In this design, the following four example components are defined:

CSAFDocumentResponseODocuments Represents sample data for the CSAFDocumentResponse
scheme, which returns no documents.

CSAFDocumentResponse2Documents Represents sample data for the CSAFDocumentResponse
scheme, which returns two documents.

CSAFDocumentResponse2DocumentsWithHashAndSignature Same as the example compo-
nent CSAFDocumentResponse2Documents, but with hash and signature for every docu-
ment in /documents[]/hash and /documents[]/signature, respectively.

DeviceListWindows10 Represents sample data for the DevicelList schema, which includes
only the CPE of Microsoft Windows 10.

DeviceListWindows10AndKeycloak Represents sample data for the Devicelist schema,
which includes the CPE of Microsoft Windows 10, as well as the CPE and an SBOM
URL of the software Keycloak.

The CSAFDocumentResponse* example components are used as response in almost every route.
The DeviceList* example components, on the other hand, serve as an example for the request
body for the search for CSAF documents based on a device list.

Parameter components

Request parameters can be defined under the /components/parameters property. The com-
ponents defined here are called filter parameters and are intended to be used to restrict the
search query in addition to the request URL path. These parameters can then be specified
in any route where filtering makes sense. This applies almost exclusively to all routes that
respond with CSAF documents.

The following parameters are defined.

Before Filters the response so that only documents initially published before the defined date
are included in the response. This parameter satisfies requirement DES-R6.

After Filters the response so that only documents initially published after the defined date
are included in the response. This parameter satisfies requirement DES-R7.

33

3 Design

TrackingStatus Filters the response for documents that have the specified tracking status.
This parameter satisfies requirement DES-R8.

ValueMatching Parameter that determines the filtering behavior of another parameter. For
example, if the title of the document is to be searched for, you can specify that the title
string should be matched exactly, or that it is a regex pattern. The same values used in
the AdvancedMatching scheme component can be specified here, as well.

ProductStatus Filter which filters transmitted device lists according to whether they are
affected by a specific vulnerability. The values from the VEX standard, which are also
used in the CSAF profile VEX, are used for this purpose.

Profile Filter that only includes documents of a certain document profile (see section 2.4).
It can be used, for example, to explicitly search for security advisories. The advantage
of this is that it gives an assurance that certain properties exist due to being enforced by
the respective profile. All values valid for the /document/category property that start
with csaf_ are accepted [17, section 4]. This parameter satisfies requirement DES-RO.

CVSSv3Range Allows the specification of a CVSSv3 base score range. For example, values
such as >8 (“score greater than 8”), >=8 (“score greater than or equal to 8”), or even
ranges like >5,<9 (‘scores greater than 5 and smaller than 9) can be specified. Specifying
this parameter only makes sense if the request contains either a device or a CVE, since
a CVSS score alone has no meaningfulness. This serves the following use cases: “Are
there vulnerabilities (unknown) that have a CVSS score of X in combination with my
devices (known)?” and “Which of my devices (unknown) are affected by a CVSS score
of X due to this vulnerability (known)?”.

CVSSv2Range Serves the same purpose as CVSSv3Range, but for CVSS version 2. The specifi-
cation of both parameters is possible and recommended, since only one of the two values
must be specified in a CSAF document [17, section 3.2.3.13].

RemediationCategory Allows the specification of a remediation category [17, section
3.2.3.12.1] for which at least one must exist for each specified device that is affected.
This covers the following use case: “Find all CSAF documents for which there is a ven-
dor fix, mitigation, etc. for the affected devices that were transmitted”. If the API does
not deliver any documents for one of the devices, there is no corresponding remediation.

WithHash Instructs the API to include each CSAF document’s hashes in the response. If
there are no hashes, /documents[]/hashes will be null. Otherwise, each hash will
be mapped to the algorithm used. As an example, a SHA256 hash would reside in
/documents[] /hashes/sha256. This parameter satisfies the requirement DES-R10.

WithSignature Instructs the API to include each CSAF document’s signature in the re-
sponse. If there is no signature, /documents []/signature will be null. This parameter
satisfies the requirement DES-R11.

34

3.2 API design

Security scheme components

In the OpenAPI format, the authentication flow can also be specified. In the browser-based
client generated from the specification, the authentication data may be specified to interact

with the API.

In order for DES-R4 to be fulfilled, a security scheme must be applied to all routes whose
purpose is to return CSAF documents. For illustration purposes, the Bearer authentica-
tion scheme was chosen as the only possible variant — authentication takes place using the
Authorization: request header in Bearer format. It is a suitable method for authentica-
tion API requests because, unlike cookie-based authentication, the token does not have to be
stored in the HTTP client’s memory whilst still requiring each request to be authenticated.
In addition, more complex mechanisms such as OAuth or OpenlD can also be permitted by
the CSAF server as a non-standard extension.

Request body components

The request body components can be used to map schema components to a specific con-
tent type. For this design, the DeviceListRequestBody components are defined for sending
device lists and AdvancedMatchingRequestBody for the route that matches arbitrary JSON
properties in the document.

The schema components DeviceList and AdvancedMatching are used to define the content
type application/json for both request body components, respectively. Furthermore, the
example components DeviceListWindows10 and DeviceListWindows10AndKeycloak are set
as examples for the DevicelListRequestBody component.

Response components

With response components, schemas can be assigned to a specific content type to define a
HTTP body, as in request components. It is important to note that the HT'TP status code
is defined by the route, not by the response component. However, they can be enriched with
examples to correspond to a certain HTTP status.

Basically, response components are only defined for routes that respond with CSAF documents
in this design. For all others, the response is specified inline without the help of components,
since no reusability is required here.

The response components 2000k, 400BadRequest, 401Unauthorized and 500UnknownError
are defined. All of them follow the schema set in the CSAFDocumentResponse compo-
nent. For the 2000k component, the two examples CSAFDocumentResponseODocuments and
CSAFDocumentResponse2Documents are specified, in which the error property is always null.

35

3 Design

The remaining components have a non-null error and set the corresponding error codes. A
list of all error codes can be found in appendix B.

This makes it easy for a user of the API to check if an error occurred during the request. If the
/error property is null, the request was successful. If not, the error code in /error/errcode
provides a machine-readable reason for the error.

3.2.3 Route definitions

First, the so-called base URL for the API must be defined. This contains the schema,
the host and optionally a path prefix for all routes. The route definitions are then based
on this URL. Since the standard requires the use of a /.well-known/csaf/ path for the
provider-metadata. json file [17, section 7.1.8], the API endpoint will also follow this re-
quirement. Accordingly, this path is part of the base URL. Since this design defines only the
first version of the API, the version prefix v1 is also part of the base URL.

This results in the following base URL, which is specified in the OpenAPI property
/servers[0] /url: https://example.com/.well-known/csaf/api/v1l . Of course, the host
must later be replaced by the host name of the respective CSAF server. This ensures the
versionability of the API and thus fulfills the requirement DES-R1. The definition of another
API version can then be done in a new OpenAPI document with a correspondingly adapted
base URL.

The current design only serves the purpose of requesting CSAF documents. Functions for
uploading or modifying documents are not available, since administrative use cases are not
part of this thesis. Nevertheless, a corresponding extension is conceivable and possible.

The route definitions are divided into the following categories:

Meta queries

Macro queries

Arbitrary queries

Special queries

Meta queries serve the use case of getting information about the CSAF server on which the
API is running. The routes within this category are the only ones that do not respond with
the CSAFDocumentResponse schema.

Macro queries describe routes that provide information that can also be requested via other
routes, but which serve a more general use case. They are used to improve readability and
simplify usability of the API by allowing only specific queries.

36

3.2 API design

Arbitrary queries comprise the routes that can be used to address nearly any properties in a
CSAF document. They are meant to be able to map many use cases at once. Complex queries
can be made, which other routes — especially the macro routes — would not allow.

Special queries describe the routes that can retrieve CSAF documents based on external
information. They are categorized separately to make it obvious that these queries may
operate outside the context of the CSAF server currently in use, e.g. by requesting external
sources. These routes usually require a special request body or deviating path parameters.

Both the macro queries and the special queries do not follow the Microsoft REST API guide-
lines in the naming approach section [4, section 17.1]. In addition to the usual addressing of
the property to be processed (/csaf-documents), the search action (for example /by-id) is
appended to the route. This approach is not in the sense of the guideline, however, it creates
a higher clarity in the case of CSAF, as the processed properties are fairly big.

In the following, the individual routes are named. They are partially accompanied by a literal
description of some of the use cases that are to be addressed by them. The possibilities that
arise through the specification of filter parameters are also taken into account. Through the
totality of all routes, a collection of all use cases for this design is created, which can finally
be evaluated.

[Meta queries]
GET /metadata

Parameters: -

This route returns the contents of the provider-metadata.json or aggregator. json file,
depending on whether the request is made to a CSAF (trusted) provider or aggregator. It
thus satisfies requirement DES-R3. The content is transported under a separate JSON property
as described in listing 3.3 to determine which of the two files is returned. Only one of the
metadata files will be contained in the response, as the API always corresponds to a single
CSAF instance. If the server provides both (trusted) provider and aggregator capabilites, two
API endpoints must be operated. An error according to the Error scheme is also supplied.

Listing 3.3: Format of the /metadata route response body

1] |
2 "error": null,

3 "provider_metadata": {...},
4 "aggregator": {...}

51}

This route ignores authentication data of any kind.

37

3 Design

[Meta queries]
GET /role

Parameters: -

This route returns which role this CSAF server fulfills, which satisfies DES-R2. Possible val-
ues are csaf_provider, csaf_trusted_provider and csaf_aggregator. An error property
according to the error scheme is also provided here. The values are returned as described in
listing 3.4.

Listing 3.4: Example for the /role route response body returning the role of a CSAF trusted

provider
I
2 "error": null,
3 "role": "csaf trusted_ provider'
4 1}

This route ignores authentication data of any kind.

[Macro queries]

GET /csaf-documents/by-id/{publisher_namespacel}/{tracking_id}
Parameters: publisher namespace, tracking id

Use cases: “Find the CSAF document with the global ID supplied”

This route finds CSAF documents by the global ID consisting of the publisher namespace and
the tracking ID [17, section 3.2.1.12.4]. Thus, requirement DES-R17 is satisfied. The response
always follows the CSAFDocumentResponse schema with either zero or one CSAF document.

In this route, the common filter parameters before, after, profile, and tracking status cannot
be specified because it addresses a single document in every case.

This route optionally accepts authentication data.

38

3.2 API design

[Macro queries]
GET /csaf-documents/by-title/{title}?matching=<string>
&before=<string>&after=<string>&profile=<string>&tracking_status=<string>

Parameters: title, matching, before, after, profile, tracking status

Use cases: “Find the CSAF document(s) having the title specified”, “Find the CSAF docu-
ment(s) whose title start with the one specified”

This route finds CSAF documents by the title in /document/title. It can also be used to
request multiple CSAF documents. The matching parameter allows to specify how the title
should be matched (see parameter component Matching). Thus, CSAF documents can also
be searched for whose titles contain or begin with a substring, for example, which may yield
multiple documents.

The response always follows the CSAFDocumentResponse scheme. This route optionally accepts
authentication data.

[Macro queries]

GET /csaf-documents/by-publisher/{publisher_name}?matching=<string>
&publisher_namespace=<string>&publisher_category=<string>
&before=<string>&after=<string>&profile=<string>&tracking_status=<string>

Parameters: publisher name, matching, publisher namespace, publisher category, before,
after, profile, tracking status

Use cases: “Find all documents from publisher X.”, “Find all security advisories from pub-
lisher X in this namespace that were published after date Y.”

This route finds all CSAF documents of a specific publisher, based on the properties in
/document/publisher. Only the publisher name must be specified. Optionally, category
and namespace can also be specified. The matching parameter applies only to the publisher
name, as the category is enumerated and the namespace matching is always exact.

The response always follows the CSAFDocumentResponse scheme. This route optionally accepts
authentication data.

39

3 Design

[Macro queries]
GET /csaf-documents/by-cve/{cve}?cvssv2=<string>&cvssv3=<string>
&before=<string>&after=<string>&profile=<string>&tracking_status=<string>

Parameters: CVE, CVSSv2, CVSSv3, before, after, profile, tracking status

Use cases: “Find the CSAF document(s) that contains the following CVE.”, “Which devices
have a CVSS score of X due to the vulnerability Y?”

This route finds CSAF documents that contain the specified CVE. It iterates over the
/vulnerabilities[] property of each CSAF document to determine if the specified CVE
is contained. The first encounter adds the entire document to the response. Specifying the
matching parameter is not possible in this route, since CVEs are always matched exactly.

To limit the search, the cvssv2 and cvssv3 parameters can be used to specify score rules
that must be met at least once by the CVE. Minimum, maximum or exact values can be
specified (see parameter component CVSSv2 and CVSSv3). Objects in /vulnerabilities[]
not containing the score property alongside the cve will not be included.

The response always follows the CSAFDocumentResponse scheme. This route optionally accepts
authentication data.

[Arbitrary queries]

GET /csaf-documents/match-property?path=<string>&type=<string>
&value=<string>&matching=<string>&include_missing
&before=<string>&after=<string>&profile=<string>&tracking_status=<string>

Parameters: path, type, value, matching, include_missing flag, before, after, profile, track-
ing status

Use cases: “Find all documents where the property has this value/type.”, “Find all documents
where the property has this value/type, include only the profile X and include documents
missing the wanted property.”

This route is used to address an arbitrary JSON property, which must occur in the searched
CSAF documents in a certain form. Thus, it satisfies DES-R16. The value, type or both can be
matched. Likewise, the non-existence of a property can be checked using the include_missing
flag. As in the GET /csaf-documents/by-title route, the matching parameter can be spec-
ified, for example to require only partial matching.

Furthermore, the search can be limited by searching only certain document profiles. For
this purpose, the desired profile can be specified with the profile parameter. This has the
advantage of having a higher confidence that the searched property really exists, since it may
be prescribed by the document profile.

40

3.2 API design

An example for a search query to find CSAF documents in the German language with the
VEX profile is listed in listing 3.5.

Listing 3.5: Example request for the /csaf-documents/match-property route to search for
german CSAF documents with the VEX profile (not URL-encoded)

GET /csaf—documents/match—property
?path=$.document . lang&value=de&profile=vex

The response always follows the CSAFDocumentResponse scheme. This route optionally accepts
authentication data.

[Arbitrary queries]
POST /csaf-documents/match-properties

Parameters: -

Use cases: “Find all documents where all of the properties have this value/type.”, “Find all
documents where at least one of the properties has this value/type.”

This route also allows the matching of arbitrary JSON properties, but here multiple properties
can be specified at the once. The request is made as a request body according to the schema
AdvancedMatching with the HTTP POST method. Although this is a GET-like request and no
data is created, the use of this method is allowed because the request body contains a search
statement, called a “command” [4, section 7.4].

In this route, the common search parameters before, after, profile, and tracking status cannot
be specified because they can also be manually matched in the request body.

The specified match objects can be logically linked. Thus, for example, it can be achieved
that a vulnerability object can be searched for without having to know which property is
actually set in it. This can be necessary when working with documents with the VEX pro-
file. It requires that either /vulnerabilities[]/ids or /vulnerabilities[]/cve must be
set [17, section 4.5]. An example query to search for either a CVE or a Github issue is shown
in listing 3.6.

Listing 3.6: Example of a response body for the /csaf-documents/match-properties
route to search for issue #210 in the oasis-tcs/csaf Github repository or
CVE-2018-16476 in VEX documents

1]
2 "matching_default': "exact",

3 "operator': "or",

4 "matches": |

5 {

6 "path": "$.vulnerabilites [«]/ids [x]/text",
7 "value": "oasis—tcs/csaf#210"

8 =

41

3 Design

9 {

10 "path": "$.vulnerabilites [x]/cve",
11 "value": "CVE—2018—-16476"

12 }

13]

14 }

The response always follows the CSAFDocumentResponse scheme. This route optionally accepts
authentication data.

[Special queries]

POST /csaf-documents/from-device-list?product_status=<string>
&cvssv3=<string>&cvssv2=<string>&remediation_category=<string>
&before=<string>&after=<string>&profile=<string>&tracking_status=<string>

Parameters: product status, CVSSv2, CVSSv3, remediation category, before, after, profile,
tracking status

Use cases: “Find all documents containing any device in the device list., “Find all documents
containing any device in the device list, which were released after X and before Y.”, “Find
all documents where any of the devices in the device list is known to be affected by any
vulnerability., “Find all documents where any of the devices in the device list is known to
be affected by any vulnerability with a CVSSv2/v3 score of at least Z.”, “Find all documents
where any of the devices in the device list is known to be affected and where at least one
remediation of category X exists.”

This route allows the transmission of a device list, which is used as the primary search pa-
rameter to locate all CSAF documents that have anything to do with the specified devices. It
is sent via the request body of the HTTP POST method following the DeviceList schema,
that describes an array of product_identification_helper objects, which are also contained
within full_product_name_t types in CSAF documents [17, section 3.1.3] [17, section 6.2.16].
This satisfies the requirement DES-R12.

Matching a single property within an object in this array adds the entire CSAF document to
the response. For example, for a single device, both a CPE and a serial number can be specified
in the request body. If the device is identified in CSAF solely by the CPE, it will still be added
to the response. This prevents a user from having to know exactly which identification helpers
were specified. For the request body the example components DeviceListWindows10 and
DeviceListWindows10AndKeycloak are defined.

The search can be further limited using additional URL parameters. For example, the VEX
status, the devices must belong to, can be set to fulfill requirement DES-R13. Affected devices
for which no remediation of a certain category exists can also be explicitly excluded from the
results. This satisfies requirement DES-R15. Likewise, the search can be restricted to specific
document profiles. Furthermore, a CVSS score can be specified to filter for documents, where a

42

3.2 API design

CVE exists, which affects the devices in the score range mentioned. This satisfies requirement
DES-R14. Objects in /vulnerabilities[] that do not contain the scores property are
explicitly included in the result. The reason for this is the intended use case: vulnerabilities
that affect the device are to be searched for. Consequently, vulnerabilities without CVSS
should not be left out of this search, since they can also potentially affect the device(s) to a
similar degree.

A more complex example of the following query can be seen in listing 3.7: Find all security
advisory documents containing known vulnerabilities of the software Keycloak version 1.2.0
with a CVSSv3 score of at least 8.

Listing 3.7: Example of a request to the /csaf-documents/from-device-1ist route to search
for security advisories containing critical vulnerabilites of Keycloak 1.2.0 (not
URL-encoded)

POST /csat—documents/from—device—list
?profile=csaf_ security_ advisory&product_status=known_ affected&cvssv3=>8

{
"cpe": "cpe:2.3:a:redhat:keycloak:1.2.0: —:ixixixrkriwix"
"sbom_urls": |
"https://raw. githubusercontent .com/CycloneDX /bom—examples/master/
SBOM/ keycloak —10.0.2/bom. json"
]
}

The response always follows the CSAFDocumentResponse scheme. This route optionally accepts
authentication data.

This complete route design satisfies the following remaining requirements: All routes whose
purpose is to return CSAF documents accept some form of authentication to satisfy require-
ment DES-R4. Similarly, filter parameters can be arbitrarily set according to requirement
DES-R5 as long as it is applicable and reasonable. Each response contains an optional error
property independent of the status code, thus satisfying requirement DES-R18. In routes that
respond with CSAF documents, these are always delivered as a whole to satisfy requirement
DES-R19.

Ultimately, the route design fulfills all design requirements.

43

3 Design

3.3 Design feasibility

In order to check the feasibility of the route design, the following methodology is adopted in
this section: First, it is worked out which properties are accessed by each individual route
when all filter parameters are set. This should show which problems can arise, for example,
due to the optionality of individual properties or other limitations. This section also serves as
an orientation for the implementation.

For each property, the optionality is stated. According to the standard, the following enforce-
ment types are possible, sorted by effectiveness:

« Required by schema: The property is enforced by the CSAF JSON schema and is
guaranteed to exist.

« Required by mandatory test: The property is enforced by a mandatory test
[17, section 6.1] and is guaranteed to exist.

e Required by profile X: The property is enforced by the document profile X and is
therefore present in documents of this profile. Setting the profile filter parameter is
recommended.

e« Required by optional test: The existence of the property can be assumed, since
optional tests are displayed as a warning [17, section 6.2].

o Optional: The existence of the property cannot be ensured. Searches based on optional
properties may be unreliable.

3.3.1 Regularly used parameters

First, the reliability of the regularly used parameters is examined. In the following, the
relevant CSAF document paths and corresponding enforcement type are listed for each of
these parameters.

before / after
/document/tracking/initial_release_date (required by schema)

profile
/document/category (required by schema)

tracking_status
/document/tracking/status (required by schema)

44

3.3 Design feasibility

with_hash / with_signature

These parameters do not access the contents of the CSAF documents. However, an
attempt is made to read the hash and signature files of these. They are located on the
file system in the same place, but with an additional suitable file suffix .sha256, .sha512
for hash files and .asc for ASCII-armored PGP signatures [17, sections 7.1.18, 7.1.19].
The presence of these files is mandatory for CSAF trusted providers. Aggregators only
have to copy already existing signatures and hashes. If they are not available on the
mirrored server, the aggregator must create them itself. For normal CSAF providers
and CSAF publishers, specifying with_hash and with_signature will return null in
the corresponding response properties (see schema component CSAFDocumentResponse).
However, this is not a major problem, since this response indicates the obvious non-
existence of the signature or hash.

In conclusion, it can be said that all regularly used parameters are based on properties that
are required by the document schema or do not access the document contents at all. Thus,
they are reliable and their usage is deterministic.

3.3.2 Routes

Next, the individual routes will be examined. Both the required parameters and the route-
specific, optional parameters are considered. Route-specific parameters are all additional
parameters that are not already covered by the regularly used parameters mentioned in the
previous section.

In this route evaluation, both path and query parameters are omitted from the route name
for better readability. Only the method and path are specified.

GET /metadata
This route is necessary because it is the only measure to implement requirement DES-R3. It

requires read access to the respective file in the file system of the web server, which is basically
given. No CSAF documents need to be read or otherwise processed.

GET /role

This route is the only measure to implement requirement DES-R2. It does not require any
access to the file system. The response is composed exclusively of runtime variables.

45

3 Design

GET /csaf-documents/by-id

Relevant properties without specifying parameters:

o /document/tracking/id (required by schema)
o /document/publisher/namespace (required by schema)
Additional relevant properties with specification of route-specific parameters:
e none
This route requires only the specification of the mentioned path parameters. Both are enforced

by the CSAF JSON schema. Consequently, this route can be implemented reliably.

GET /csaf-documents/by-title

Relevant properties without specifying parameters:
o /document/title (required by schema)

Additional relevant properties with specification of route-specific parameters:
e mnone

The additional matching parameter does not access or read any document property. This
route only relies on properties enforced by the CSAF JSON schema. It is unlikely that this
level of enforcement in going to change in future versions of CSAF. Thus, this route can be
implemented reliably.

GET /csaf-documents/by-publisher

Relevant properties without specifying parameters:
o /document/publisher/name (required by schema)
Additional relevant properties with specification of route-specific parameters:

o /document/publisher/namespace (publisher namespace parameter, required by
schema))

o /document/publisher/category (publisher_ category parameter, required by
schema))

46

3.3 Design feasibility

The additional matching parameter does not access or read any document property.
This route only relies on properties enforced by the CSAF JSON schema, like the GET
/csaf-documents/by-title route. Furthermore, the use of the route is flexible, since only
the publisher name has to be specified, which allows a more “open” search. If the search is to
be restricted to a unique publisher, the namespace and category can be specified optionally,
which are also enforced by the schema. This route can be implemented reliably.

GET /csaf-documents/by-cve

Relevant properties without specifying parameters:

o /vulnerabilities[]/cve (partially required by mandatory test and profile VEX,
checked by informative test)

Additional relevant properties with specification of route-specific parameters:

o /vulnerabilities[]/scores[]/cvss_v3/baseScore (cvssv3 parameter, optional)

o /vulnerabilities[]/scores[]/cvss_v2/baseScore (cvssv2 parameter, optional)

The specification of the CVE in a CSAF document is basically optional. There is a
mandatory test which checks whether either a CVE or an ID exists for each vulnerability
object [17, section 6.1.27.8]. The ID allows the unique identification of newly discovered vul-
nerabilities that have not yet been assigned a CVE. It can therefore be assumed that operators
of CSAF providers also include a CVE in the vulnerabilities object as soon as one has been
assigned to it. The search for a CVE presupposes the existence of it and corresponds to the
use case of the route. Although the mandatory test is only applied to documents with the
VEX profile, the assignment of a CVE is also advised in other profiles if /vulnerabilities[]
contains at least one object. As long as publishers and providers adhere to this, this route can
also be implemented reliably.

The procedure described in listing 3.8 shall apply when calculating the response for each
CSAF document. Filtering using the regularly used parameters before, after, profile and
tracking_status are omitted in the code example.

Listing 3.8: Pseudocode for the GET /csaf-documents/by-cve route implementation (exclud-
ing regularly used parameters)

for vuln object in "/vulnerabilties []
if "cve" in vuln_object and "cve" is searched_cve
if searched_cvss_ v3 or searched_ cvss_ v2
at least one cvss score specified
if searched cvss_ v3
if "scores/cvssv3"' in vuln_object
if "scores/cvssv3/baseScore' is seached_ cvss_v3
add__to_response (document)
continue

© 00 O T Wi+~

47

3 Design

10 if searched cvss v2

11 if vuln_object has "scores/cvssv2'
12 if "scores/cvssv2/baseScore" is searched_cvss_ v2
13 add__to_response(document)
14 continue

15 continue

16 # document was not added to response
17 else

18 # cve matches and cvss not specified
19 add_to_ response (document)

20 continue

21 else

22 # cve does not match

23 continue

GET /csaf-documents/match-property

This route is redundant. Its function can be completely replaced by POST
/csaf-documents/match-properties, but the call is simpler since no request body is re-
quired. It can access arbitrary properties. Consequently, the general feasibility cannot be
evaluated and depends entirely on the usage.

POST /csaf-documents/match-properties

This route serves as a general purpose route. Theoretically, it can be used to imitate the
functions of the other routes and to implement more specific use cases. Here it is important
that the user determines the feasability of the route based on his own request. The general
feasability cannot be determined for the same reasons as for the previous route.

POST /csaf-documents/from-device-list

Relevant properties without specifying parameters:

e /product_tree/branches[] (/branches[])*/product/
product_identification_helper (required by optional test)

e /product_tree/full product_names[]/
product_identification_helper (required by optional test)

e /product_tree/relationships[]/full product_name/
product_identification_helper (required by optional test)

48

3.3 Design feasibility

Additional relevant properties with specification of route-specific parameters:

o /vulnerabilities[]/scores[]/cvss_v3/baseScore (cvssv3 parameter, optional)

o /vulnerabilities[]/scores[]/cvss_v2/baseScore (cvssv2 parameter, optional)

Using the product_identification_helper property may be unreliable here, since it is only
required by optional tests. Documents that lack this property are not considered invalid. At
this point, a standard adjustment would be necessary to enforce the property, for example,
by a mandatory test or document profile specification. This will be tracked as DES-R12-A:
“Require the specification of a product identification helper in every product.”. The only
question is whether this constraint can be implemented at all, since there may be an edge case
where a product does not have a product identification helper.

The product identification helpers that match an object of type full product_name_t are
resolved to the product ID specified in it. The value of the product_status parameter is
then used to search for this product ID in the corresponding property, which is required by
the Security Advisory and VEX profiles. For the Informational Advisory profile, however,
the /vulnerabilities property must not exist — all products in /product_tree must be
assumed to be affected [17, section 4.3]. So in this case the following exception arises: If
product_status has the value known_affected and the search hits a CSAF document of
the Informational Advisory profile, all defined products are treated as affected without con-
sidering the /vulnerabilities[]/product_status/known_affected property. On all other
document profiles, this parameter should have no effect. They will be skipped if this parameter
is specified.

With regard to the CVSS scores, similar rules apply as for the GET
/csaf-documents/by-cve route. However, the existence of the associated properties
/vulnerabilities[]/scores[]/cvss_v3 and /vulnerabilities[]/scores[]/cvss_v2 is
optional as stated in the route definition in section 3.2.3.

If the remediation_category parameter is set, it is checked if a remediation of
the specified category exists within the same vulnerability object for each product in
/vulnerabilities[]/product_status/known_affected. In some circumstances, the use of
the remediation_category parameter is not possible. For example, if the product_status
parameter has the value known not affected, there are no remediations. If then
remediation_category is set to the value mitigation, a conflict arises and no CSAF docu-
ments are returned in any case. An example for such a faulty request can be seen in listing 3.9.
Here, the implementation of a suitable error response is advised.

Listing 3.9: Faulty request to the device list endpoint caused by conflicting query paramter
values (ommited request body)

POST /csaf—documents/from—device—list
?product__status=known_ not_ affected&remediation_ category=mitigation

49

3 Design

The procedure described in listing 3.10 shall apply when calculating the response for each
CSAF document. Filtering using the regularly used parameters before, after, profile and
tracking status are omitted in the code example.

Listing 3.10: Pseudocode for the POST /csaf-documents/from-device-list route imple-

mentation (excluding regularly used parameters)

1 product_tree_object = document.product_tree

2 products = find_all_full product_names_recursively (product_tree_object)

3

4 for product in products:

)

6 matched = False

7 for searched_ product in searched_products:

8 # compare every property of product with searched__product

9 if any prop_ matches(product, searched product):

10 matched = True

11 break

12 if not matched:

13 # do not add document to response

14 continue

15

16 vuln_objects = find_vuln_objects__with_ product (product)

17 # filter wvuln__objects depending on parameters set im the request

18 to_remove = |[]

19 for vuln_object in vuln_objects:

20 if is_set(product_status):

21 if product not in vuln_object.product_status[product_status]:

22 to_remove.append (vuln_object)

23 continue

24 if is_set(remediation_category):

25 contains_matching remediation = False

26 for remediation in vuln_object.remediations:

27 if remediation.category is remediation_category and product
in remediation.product_ids:

28 contains__matching remediation = True

29 break

30 if not contains_matching_ remediation:

31 to_remove.append (vuln_object)

32 continue

33 if is_set(cvssv3) or is_set(cvssv2):

34 cvss__matched = False

35 for score in vuln_object.scores:

36 if product in score.products:

37 if is_set(cvssv3) and score.cvss_v3:

38 if in_range(score.cvss_v3.baseScore, cvssv3):

39 cvss _matched = True

40 break

41 # cvss_v8 already matched, ignoring cvss_v2

42 if is_set(cvssv2) and score.cvss v2:

43 if in_range(score.cvss_v2.baseScore, cvssv2):

44 cvss__matched = True

20

3.3 Design feasibility

45 if not cvss matched:

46 to_remove.append (vuln_object)

47 continue

48 vuln_objects.remove(to_remove)

49

50 if len(vuln_objects) > 0:

51 # at least one matched vuln__objects left after filtering
52 # —> add document to response

53 add_to_response (document)

54 continue

With the current design of this route, products that do not have a product identification helper
cannot be matched and thus cannot be found.

A possible alternative for solving this problem would be to specify the product names instead
of the properties in product_identification_helper in the POST request body. However,
this would result in further problems and challenges. The way versions and product names
are specified by CSAF publishers or providers is unpredictable. This means that all version
schemes available must be compatible with each other in order to be comparable and thus
allow a reliable usage of this route. Similarly, string matching of product names must not be
too strict, otherwise minor input errors such as case-sensitivity can lead to unexpected errors.
In this case, fuzzy search algorithms would be unavoidable. Regular expressions would also
be comparatively inappropriate for such a search, since this algorithm also partially requires
knowledge of the search target — and especially its format.

A compromise would be to specify the product name and the version separately. This way
the product name can be found using fuzzy search. The associated branches_t objects with
category product_version or product_version_range can be found using the version spec-
ification variants. The CSAF standard currently proposes two variants for this purpose:
Version Range Specifier (vers) and vers-like Specifier (vls), with the former being strongly
recommended [17, section 3.1.2.3.2]. vers is a community project tasked with parsing and
comparing versions and version ranges across packaged ecosystems such as PyPi and npm. A
concrete implementation of vers is “univers” [11].

In this thesis, however, such a route has not been implemented, since CPEs as well as PURLs
can be defined in the product identification helper, which can also contain a version number
themselves. It is assumed that only documents in which all products contain a product
identification helper are worked with.

51

3 Design

The following standard adjustments were defined in this section while evaluating the design
feasability:

Table 3.5: Design specification adjustments

Design specification adjustments

Naming Description

DES-R12-A | Require the specification of a product identification helper in every

product.

52

4 Proof of Concept

4.1 Testing environment

A test infrastructure fulfills the purpose of being able to test and implement the API in
a running CSAF environment. It should integrate seamlessly with the function of CSAF
(trusted) providers and aggregators. In addition, a certain number of CSAF documents must
be available as a data source.

The infrastructure was assembled from the components of the official CSAF PoC [25]. To
ensure a disruption-free and at the same time traceable environment, a fork of the Git repos-
itory was created at the commit hash 006£088082f615dfd975e024a7da9869f4fac2b4. This
ensures that any breaking changes in the upstream repository that may occur while work-
ing on the infrastructure will not interfere with the original repo. The fork is located at
https://github.com/MexHigh/csaf_distribution on the dev-api branch.

The environment consists of a trusted provider and an aggregator that mirrors the provider.
In general, the operation of an aggregator which mirrors only one other instance is not
allowed [17, section 7.1.22]. However, the PoC implementation also allows operation with
only one instance for testing purposes.

The entire infrastructure is implemented on Virtual Machines (VMs) using VirtualBox to sim-
ulate an IP network on a single computer. The network is set up using VirtualBox’s Network
Address Translation (NAT) driver in a 10.0.2.0/24 subnet. A Caddy web server [3] is run
in a dedicated VM, which acts as a reverse proxy. It takes care of Transport Layer Secu-
rity (TLS) termination with certificates from a local Certificate Authority (CA) and forwards
the requests to the respective CSAF component based on the Domain Name System (DNS)
name using Server Name Indication (SNI). Thus, the endpoints https://provider-1.csaf
and https://aggregator-1.csaf @ are provided. The HTTPS endpoint of the web server
and the Secure Shell (SSH) services of the VM are exposed to the VirtualBox host via port
forwarding.

The trusted provider was set up using the guide in the README.md file in the repository [25].
Fulfilling the standard requirement 10 to locate the provider-metadata.json via a well-
defined DNS hostname [17, section 7.1.10] was skipped, as it is not relevant to the imple-
mentation of the API. The aggregator was also set up according to this guide. However,

()These hostnames are used for local testing only. .csaf is not an officially approved top-level-domain!

93

https://github.com/MexHigh/csaf_distribution
https://provider-1.csaf
https://aggregator-1.csaf

4 Proof of Concept

periodically querying the data to be mirrored via the crontab was not necessary — the mirror-
ing process was manually executed when changes were made to the trusted provider.

In the course of the implementation, the provider-metadata.json file must be adapted.
Since this would then no longer conform to the provider JSON schema, all validation
measures within the aggregator code have been temporarily commented out. The changes
can be viewed and revised via GitHubs compare feature: https://github.com/csaf-poc/
csaf_distribution/compare/006£088082f615dfd975e024a7da9869f4fac2b4. . .MexHigh:
csaf_distribution:dev-api.

4.2 Test data set

The provider was partially filled with slightly modified documents copied from the
Siemens CSAF endpoint at https://cert-portal.siemens.com/productcert/csaf/ using
the csaf_downloader [25]. Only CSAF documents from the TLP:WHITE feed and that were
released in 2022 were used, resulting in a total of 70 documents. In each document, the
/document/publisher field was replaced with that of the test provider. Checksums and
signatures were created by the test provider itself.

Of the TLP:WHITE documents, five were selected to serve as copies in a TLP:RED feed as
sample data. For this purpose, the value of the /document/distribution/tlp/label field
was changed to "RED". It is intended that two documents with the same tracking ID exist
as a result. This makes it easier to test certain routes, even if this does not represent a real
scenario. All documents were uploaded with the csaf_uploader [25].

Since only a few product identification helpers were found in the Siemens CSAF documents,
some more were added for testing the POST /csaf-documents/from-device-1list route. For
this, the first document ssa-111512. json of the TLP:WHITE feed was modified. The following
products were assigned these randomly chosen CPEs:

o Product with ID 1:
cpe:2.3:a:ntp:ntp:4.2.8:p3:kkikrkrkk

e Product with ID 2:
cpe:2.3:0:microsoft:windows_7:—:Sp2:k ik ik ik ikxk

o Product with ID 3:

cpe:2.3:a:microsoft:internet_explorer:8.0.6001:beta:*:*:x:x:x:x

In addition, the remaining properties in the product identification helper were set for the
product with product ID 1. The resulting product_identification_helper object is shown
in listing 4.1.

o4

https://github.com/csaf-poc/csaf_distribution/compare/006f088082f615dfd975e024a7da9869f4fac2b4...MexHigh:csaf_distribution:dev-api
https://github.com/csaf-poc/csaf_distribution/compare/006f088082f615dfd975e024a7da9869f4fac2b4...MexHigh:csaf_distribution:dev-api
https://github.com/csaf-poc/csaf_distribution/compare/006f088082f615dfd975e024a7da9869f4fac2b4...MexHigh:csaf_distribution:dev-api
https://cert-portal.siemens.com/productcert/csaf/

4.3 Implementation

Listing 4.1: Complete product identification helper object excluding x-generic-uris for the
test data set

1 "product__identification_helper": {

2 "cpe": "cpe:2.3:a:ntp:ntp:4.2.8:p3kikikrkikrk"
3 "hashes": [{

4 "filename": "ntp.exe',

5 "file_hashes": |

6 {

7 "algorithm": "sha256",

8 "value": "c¢8133b84dlchccHced08..."
9 }

10]

1 M.

12 "model _numbers": |

13 "1234"

14 "5678"

15 .

16 "purl": "pkg:github/package—url/purl—spec@244f{d47e¢07d1004f0aed9c",
17 "sbom_urls": |

18 "https://example.com/sbom. json"

19 .

20 "serial numbers": |

21 "1234"

22 "5678"

23 I,

24 "skus": |

25 "UGG-BB-PUR—07"

26]

27 }

4.3 Implementation

The PoC repository uses the module system introduced in Go 1.11. The root of the repository
is also the root of the Go module. In the file go.mod all dependencies are listed. The folder
csaf/ forms the library, which provides the functions and constants for all CSAF components.
The cmd/ folder contains the packages for each component. An independent executable file is
created from each of these packages when the Go module is compiled.

The API is implemented as a separate component package in cmd/csaf_api/. Thus, a large
part of the implementation takes place in its own segregated area of the repository.

The intent of this implementation is to add as few dependencies to the module as possible
and to use the ones already included in a prioritized way. For the API development, however,
a routing framework is required to facilitate the implementation and readability of the code.
For this, Gorilla Mux [9] is used, as its way of designing HTTP handlers is very close to Go’s

95

4 Proof of Concept

standard library net/http. This makes the code easier to understand for users who have no
knowledge of specific routing frameworks. The dependency of Gorilla Mux was added to the
go.mod file.

4.3.1 CSAF document management

At the time of the fork, there was no data structure for deserialized CSAF documents. The
content of them was always stored in the interface datatype, because access to the contained
properties was rarely required. For small queries to document properties, the gval library [12]
with JSONPath extension [13] was used. However, since the API needs to access the properties
frequently and also wants to make use of Go’s type-safety, a Go model had to be made for it,
which facilitates the filtering of CSAF documents.

First, an attempt was made to automatically generate a Go model using the official JSON
schema. After several failed attempts, the tool github.com/atombender/go-jsonschema
achieved satisfactory results after some adjustments. This resulted in the CsafJson
data type, which, as seen in listing 4.2, finds application in the documents field of the
CSAFDocumentCollection. CsafJson was added to the csaf/ package.

In order to fulfill the implementation requirements IMP-R1 and IMP-R2 defined in section 3.1,
a suitable data structure was developed. It is responsible for finding, loading, filtering and
reading CSAF documents and is accordingly named CSAFDocumentCollection. The schema
of the data structure can be seen in listing 4.2. It is implemented in the csaf/ package as
well and should be used in all API routes that process CSAF documents.

Listing 4.2: CSAFDocumentCollection struct responsible for finding, loading, filtering and
reading CSAF documents with function signatures

1 // CSAFDocumentWrapper contains the actual document payload
2 // and it ’s hashes, signatures and a path relative to the
3 // CSAFDocumentCollections basePath.

4 type CSAFDocumentWrapper struct {

5 Path string

6 Document *CsafJson

7 Hashes smap|string|string

8 Signature *string

9|}

10

11 // CSAFDocumentCollection holds all CSAF documents for the
12 // provider or aggregator and provides methods to interact
13 // with them.

14 type CSAFDocumentCollection struct {

15 documents [] CSAFDocumentWrapper

16 filters [] func(doc *CsafJson) (bool, error)

17 }

18

26

github.com/atombender/go-jsonschema

4.3 Implementation

19 // AddFilterFunc adds at least one filter function to the collection object

20 // without ezxecuting it. It can be called multiple times or with more than
21 // ome function at once.
22 //

23 // To execute all filter functions, call StartFiltering().

24 func (dc *CSAFDocumentCollection) AddFilterFunc(f ...func(doc *xCsafJson) (
bool, error))

25
26 // ClearFilterFuncs removes all filter functions. When calling
27 // StartFiltering (), the filter functions get cleared

28 // automatically afterwards.

29 func (dc *CSAFDocumentCollection) ClearFilterFuncs ()

30
31 // StartFiltering executes all filter functions registered by
32 // AddFilterFunc () and returns the result. Afterwards, the

33 // registered filter functions are deleted.

34 func (dc *CSAFDocumentCollection) StartFiltering (verbose bool) (
[[CSAFDocumentWrapper , error)

35
36 // NewCSAFDocumentCollection walks the basePath directory recursively to
37 // gather all CSAF documents within it and returns a new

38 // CSAFDocumentCollection instance.

39 func NewCSAFDocumentCollection (basePath string, verbose bool) (
*CSAFDocumentCollection, error)

The function NewCSAFDocumentCollection recursively traverses the basePath specified in
the configuration. All JSON documents that match the schema are transferred as CSAF
documents to the generated Go model. The hash and signature files, if any, are also loaded.

With AddFilterFunc, filters can be added in the form of the specified function signature.
The filter function receives the filled CSAF document model as a function parameter for each
loaded document, which can then be examined in there. The boolean return value is used
to instruct the filtering engine whether the document should be included in the response or
not. Any number of filter functions can be added. All given functions must return true
for this document to be included in the response. With the StartFiltering function, all
previously specified filters are executed, and the filter result is returned. Afterwards, the
previously defined filters are removed again, as it would also be possible manually via the
ClearFilterFuncs function.

Due to the way CSAF documents are loaded from the file system, the problem mentioned
in sections 2.5 and 3.1 regarding the operation of the API on an aggregator is no longer
applicable. The structure of how the documents are stored there on the file system is fully
compatible with the loading algorithm of the CSAFDocumentCollection. Thus, it is possible
to operate a single API endpoint on an aggregator, which mirrors several providers, as initially
intended. The differentiation of the providers takes place thereby exclusively with the help of
the properties in /document/publisher in each individual document.

o7

4 Proof of Concept

4.3.2 Configuration

To follow the practice of the other CSAF components, the configuration of the API is done in its
own Tom’s Obvious, Minimal Language (TOML) file api.toml. The path to the file is passed
to the binary via the -c¢ / --config flag. The TOML library github.com/BurntSushi/toml
already used in the other components is used to deserialize the file. The associated data
structures are listed and explained in listing 4.3. A suitable example configuration can be seen
in listing 4.4.

Listing 4.3: Config struct used as unmarshalling target for the configuration file api.toml

1 type AuthData struct {

2 // The token without the "Bearer' part

3 Token string ‘toml:"token"

4 // Slice containing all TLP labels this token has clearence for

) // (TLP:WHITE is always implicitly included)

6 AllowedTLPLabels [] csaf.TLPLabel ‘toml:"allowed_tlp_labels"®

T

8

9 type Config struct {

10 // Whether to print verbose logs

11 Verbose bool ‘toml:"verbose'"*® // default: false (implicit)

12 // The address with port, the API should listen on

13 BindAddress string ‘toml:"bind address'"‘ // default: 0.0.0.0:8080

14 // The path, where all CSAF documents reside in

15 // (see ’‘web’ provider option (https://github.com/csaf—poc/
csaf_distribution/blob/main/docs/csaf provider.md))

16 CSAFDocumentsPath string ‘toml:"csaf documents_path'‘ // default: /var/
wWww

17 // Slice containing tokens that can be used to request

18 // TLP:GREEN, TLP:AMBER or TLP:RED documents

19 Auth [] AuthData ‘toml:"auth"®

20 // Defines, in which CSAF component the API is wused in

21 UsedIn csaf.MetadataRole ‘toml:"used in"*

22 }

Listing 4.4: Example configuation for the CSAF API in api.toml on a trusted provider with
two valid authentication tokens

1 verbose = true

2 bind address = "0.0.0.0:8081"

3 used_in = "csaf_ trusted_provider"
4 csaf__documents_path = "/var /www'
5

6 [[auth]]

7 token = "abcl123"

8 allowed__tlp_labels = ["GREEN"]

9

10 [[auth]]

11 token = "def456"

12 allowed__tlp_labels = ["GREEN", "AMBER', "RED"]

ot
0]

github.com/BurntSushi/toml

4.3 Implementation

A validation mechanism for the configuration file was not implemented in the proof
of concept.

4.3.3 Implementation of the authentication middleware

The used routing framework Gorilla Mux supports the implementation of middleware [9,
section “Middleware”]. Middleware is used to modify incoming requests before they reach the
appropriate route implementation. A schematic of this process is shown in figure 4.1. It can
be chained and is executed in the order they were added to the router object.

client

request—» middleware request———>» middleware request’——» route

response

Figure 4.1: HTTP request and response handling process with middleware and routing. A
client’s request can be intercepted by any number of middleware handlers.

In Gorilla Mux middleware can be implemented using Go functions. Such a function receives
the next handler in the chain as parameter, which again can be a middleware or the route
implementation. A handler must be returned, which receives the response writer and a pointer
to the original request object as parameters. This function to be returned can now modify
the request object as desired before it is passed on to the next handler.

The authentication mechanism prescribed by the requirements IMP-R3, IMP-R4 and IMP-R5
is implemented as middleware. It reads the Authorization request header and compares it
to the tokens specified in the configuration file. If the token matches, the respective per-
missions for the TLP labels are granted. The following cases are specifically covered by the
middleware:

e Authorization header is empty or not present: authorization for TLP:WHITE is granted
(satisfies requirement IMP-R3)

e Authorization header holds a valid token: authorization for TLP:WHITE and all addi-
tionally specified labels is granted (satisfies requirement IMP-R4)

e Authorization header contains an invalid token: Middleware chain is interrupted with
error 401 Unauthorized — no authorization is granted (satisfies requirement IMP-R5)

99

4 Proof of Concept

As mentioned in section 2.3.1, the middleware will sort out CSAF documents without a TLP
label — a TLP:RED label will be assumed. This can lead to unpredictable errors, since im-
portant documents may be excluded from queries even though they are actually intended
for the public. To address this problem, TLP labels should always be considered. This
is tracked in the IMP-R3-A and IMP-R4-A standard adaptations: “The specification of the
/document/distribution/tlp/label should be enforced by the JSON schema or a manda-
tory test.”

The permissions calculated in the middleware have to find their way to the route implemen-
tation. For this purpose, Go’s context API is used. Among other things, it can be used
to transport request-scoped values across API boundaries [6]. Each request object has a
context by default, to which the permission values are added and passed to the next han-
dler. In the route implementation, the context permission values can be retrieved using the
getContextVars helper function. It can then be used for document filtering.

The authentication middleware is used for all routes under the /csaf-documents
namespace.

4.3.4 Route implementation

The meta routes do not reside under the /csaf-documents namespace. Consequently, they
do not follow the same response scheme. The GET /metadata and GET /role routes each
define their own scheme here, as defined in the OpenAPI specification. Both route implemen-
tations depend on the mandatory used_in configuration parameter. The GET /role returns
it directly, while GET /metadata uses it to determine whether to return the contents of the
provider-metadata. json or aggregator. json file. The respective files, unlike the CSAF
documents, are read at route execution, not beforehand. They are also validated using the
validation functions from the csaf/ package. The paths used by the csaf_provider, or
csaf_aggregator are used to locate the files.

If the value of used_in is not correct or cannot be read for other reasons, the error code
ROLE_UNDEFINED is returned.

The implementation of the meta routes was uncomplicated.

The implementation of the macro routes was also largely unproblematic. Only for the GET
/csaf-documents/by-cve route the implementation of the CVSS score range parameters
became complex. For the comparison of the CVSS ranges, gval was used with the languages
Basic and Arithmetic to allow for statements like cvss > 8.0 or cvss != 6.5. Go’s typing
system also complicated the parsing of scores, since some of them are deeply nested in the
CSAF standard. This is also evident from the pseudocode in listing 3.8. Likewise, only
the CVSS base scores can be handled so far — for more complex information matching like
environmental score or the attack vector there is no implementation yet.

60

4.3 Implementation

In general, the approach of filtering via the CSAFDocumentCollection makes sense and could
also be implemented almost uniformly in each route. Finally, the implementation was suc-
cessful for this route group.

During the implementation of the arbitrary GET /csaf-documents/match-property and
POST /csaf-documents/match-properties routes, some difficulties arose due to Go’s type-
safety. The following rules apply to the parameterization of the routes:

e path is required

o either type, value or both must be specified

In the type parameter, the JSON type must be specified as a string, not the Go type. If
only path and type were specified, the Go type must be evaluated via type assertion and by
using the reflect package from the standard library. A mapping from Go type to JSON type
had to be created. This problem can possibly also affect other strongly-typed programming
languages and make implementation more difficult.

It was also necessary to decide in which syntax the path should be specified. In the
other CSAF components and the csaf/ package, gval with the JSONPath language was
used. This was adopted for both the GET /csaf-documents/match-property and POST
/csaf-documents/match-properties route. At this point the problem arose, that the JSON-
Path language is actually responsible for the request of paths in JSON documents, as well as
for the matching of the JSON values. Accordingly, it can also be used to address arrays or
whole objects. However, the design of this route only allows it to handle primitive JSON
types, such as strings or numbers. Matching is then handled by the route, not by JSONPath
itself. Accordingly, value matching with an array or object cannot take place. Also, with the
current approach, it is not possible to search for a specific property in an array of objects.
This becomes necessary, for example, when searching for a CVE in the /vulnerabilities
array. The result of such a JSONPath query, as shown in listing 4.5, would in any case be
an array that could not be mapped using either the ?value= query parameter or the current
AdvancedMatching scheme. To cover these cases as well, JSONPath must be fully available
to the API user. In this design, JSONPath is just used as a path specification. Addressing
directly accessible properties like /document/title, however, works without any problems.

Listing 4.5: JSONPath query to search for CVE-2022-30190 in /vulnerabilities[]
$.vulnerabilities [? @.cve=="CVE—2022-30190"]

Finally, the arbitrary routes can only partially fulfill their purpose.

The implementation of the special query POST /from-device-list required the implemen-
tation of many auxiliary functions, but could be implemented comparatively effortlessly. The
following procedure for filtering the documents takes place:

61

4 Proof of Concept

1. Adding the TLP filter from the authentication middleware.

2. Adding the before, after, profile and tracking status filters.

3. Recursively find all objects of type full product_name_t in the CSAF document.
4. Check if a product identification helper exists in each of these objects.

5. If yes, check for each defined product in the request body whether at least one of the
specified properties matches one in the product identification helper.

6. If the product_status parameter is set, find all objects in /vulnerabilities[] in
which the matched product is listed with the given status. Otherwise, find all objects
in /vulnerabilities[] in which the matched product occurs at all.

7. Filter the objects from /vulnerabilities[] using the score property, as performed in
the GET /csaf-documents/by-cve route.

8. If the remediation_category parameter is specified, check if this category occurs at
least once in the remaining objects from /vulnerabilities[]. If not, discard the
object.

9. If at least one of the objects from /vulnerabilities[] remains after filtering, add the
entire CSAF document to the response.

Problems occurred especially in step five. Matching the properties proved to be non-trivial,
since some of the product identification helpers formed deep nestings. An example of this
is the hashes property. It is an array containing objects whose properties partially contain
arrays with objects again. This requires deep nesting of for loops to parse due to Go’s
type-system.

Matching one-dimensional arrays in the product identification helper, on the other hand,
proved to be very helpful. Specifying a single entry in this array would be sufficient to
match the product. For example, products with multiple model numbers could be matched
by specifying only one of them in the request body. The accuracy of the device list increases
accordingly.

In the end, however, this route could also be fully implemented.

62

4.4 Testing and user interface

4.3.5 API operation

Unlike the other CSAF components, the csaf_api binary is a long-running task. The
csaf_provider acts as a Common Gateway Interface (CGI) process whose lifetime is only
as long as the HTTP request and response. The csaf_aggregator is normally called via a
regular cronjob. The csaf_api, on the other hand, must listen permanently on the port for
HTTP requests. Theoretically, a CGI implementation of the API would also be possible, but
this would result in CSAF documents being read on every request. In high-traffic environ-
ments, the load on the file system would therefore be very high. Thus, the operation of the
API process is not possible in stateless environments, such as on WordPress or with simple
static web hosting.

The csaf_api component does not support TLS encryption of HTTP traffic. Accordingly, it
relies on a TLS-terminating reverse proxy. In this way, the API is also included in the path
of the CSAF server host, as described in listing 4.6 for nginx as an example. In addition, the
Access-Control-Allow-Origin response header must be set to the value to avoid blocking
cross-origin access. This is especially necessary if a web application, for example a graphical
frontend for CSAF, wants to include the API. In this case, cross-origin requests are issued
by the application. When testing the API with the web client generated from the OpenAPI
specification, this is also necessary.

Listing 4.6: Example configuration for nginx on how to mount the API reverse proxy to a path
server {
location /.well—known/csaf/api/ {

add__header Access—Control—Allow—Origin "x";
proxy_pass http://localhost:8081/;

0 O T W+

}

During the implementation, all implementation requirements could be covered. However, due
to the matching difficulties in the arbitrary routes, the purpose behind the design requirement
DES-R16 could not be fully satisfied.

4.4 Testing and user interface

The OpenAPI format, in which the API was specified, is a well-known standard that is sup-
ported by many applications. For extensive testing of the API, popular testing tools such as
SoapUI / ReadyAPI [19] or Postman (see figure 4.2) can be used. Likewise, as mentioned in
section 3.2.1, the Swagger UI client [24] can be used for testing. All of them also provide a
graphical interface.

63

4 Proof of Concept

Retrieves documents containing t [3) save -~ oo
GET - {baselr’}}/csaf-documents/by-cvelicve?cvssv3=>9,1=9.18after=2022-06-15T00:00:00Z&tracking_status=final&v m
Params @ Authorization Headers (8) Body Pre-request Script Tests Settings Cookies
cvssv3 =8,1=81 Arithmetic expressions to match the CVSSv3 ..
after 2022-06-15T00:00:00Z Matches documents with dates after "/docum...
tracking_status final Matches documents with tracking status in /d...
with_hashes true Whether to include each documents hashes in ...
Path Varlables
KEY VALUE DESCRIPTION eec Bulk Edit
Cve CVE-2022-33139 (Required) CVE enumeration to find CSAF doc...
Body Cookies Headers (6) TestResults @ Status: 200 0K Time: 7 ms Size: 756 KB Save Response -~
Pretty Raw Preview Visualize JSON v = mQ
1 d
2 "error": null,]
3 "documents_found": 1_|
4 "documents": [
5 i
6 ¥ "content": §-

280 1.

281 "hashes": {

282 "sha256": "3305cbafe8a3ab22830fb7f5aa851bB250L2b841b6e59c7E07I831efabl91663",

283 "shaB512":
"5fd447dca¥i381832104358a04c9d48393Taf39add9dchb2199a0bad25661f27566d422168e6619ed9bB844T365%ca
f65ebBaabc779e553cfdbThd0265064balbs”

284 1

Figure 4.2: Testing of the GET /csaf-documents/by-cve route in Postman after importing
the OpenAPI specification

Only Postman and Swagger Ul were used for testing. It was important to test every possible
combination of query parameters in every route. The required parameters however were set
to a fixed value, so that checking the correctness of the response when arbitrarily setting
the filter parameters is easier and more unambiguous. All routes for which this was possible
were tested with randomly selected documents from the test data set (see section 4.2). Less
attention was paid to the more modified documents in order to retain the real scenario of
Siemens as much as possible, where the documents originally came from. For testing the
POST /csaf-documents/from-device-1list route, however, almost exclusively the modified
documents could be used due to the frequent lack of product identification helpers.

64

4.4 Testing and user interface

The tests were performed manually using Postman. The parameters with_signature
and with_hashes, as well as the regularly used parameters before, after, profile and
tracking status were not tested separately, because they are implemented the same for
each route. Only the path parameters and route-specific parameters were tested for each
route. The tests of the routes were carried out according to the expected response prin-
ciple. That means, first a CSAF document was selected, which should be found by a de-
fined API query. In some cases, a certain number of documents was also expected, for ex-
ample in the case of the GET /csaf-documents/by-publisher route. This route was also
used to test the authentication middleware, since the number of returned documents alone
provides information about whether it works correctly. In addition, it was ensured that
no non-TLP:WHITE documents were included if no token was transmitted. For testing the
POST /csaf-documents/from-device-1list route, the product identification helper objects
added to the test data set in section 4.2 were searched for in different configurations in the
response body.

Except for the arbitrary route problems mentioned in 4.3.4, all tests were successful.

During this implementation chapter, the following standard adjustments were defined in this
section while developing the proof of concept:

Table 4.1: Implementation specification adjustments

Implementation specification adjustments

Naming Description

IMP-R3-A | The specification of the /document/distribution/tlp/label should be
enforced by the JSON schema or a mandatory test.

IMP-R4-A | See IMP-R3-A.

The two adjustments are enforced by the same amendment. Both IMP-R3 and IMP-R4 are
dependent on the presence of a TLP label in each CSAF document.

65

66

5 Integration into the specification

This chapter will look at the design and the implementation as a whole. It will be examined

which adjustments are necessary to transition the API to the next version of the standard and
which conflicts could arise in the process.

The previously mentioned standard adjustments (tables 3.5 and 4.1) are revisited, as well as
the satisfiability of the requirements for embedding in the CSAF infrastructure (table 3.4).
These are summarized once again in the following table 5.1:

Table 5.1: Specification adjustments summary

Specification adjustments summary
Naming Description
DES-R12-A | Require the specification of a product identification helper in every
product.
IMP-R3-A | The specification of the /document/distribution/tlp/label should be
enforced by the JSON schema or a mandatory test.
IMP-R4-A | See IMP-R3-A.

EMB-R1 | The implementation of the API must work on both CSAF (trusted)
providers and aggregators. Listers do not require an implementation,
as they only reference the (trusted) provider instances, running the API.

EMB-R2 The API endpoint must be able to be stored in the
provider-metadata. json file.

EMB-R3 The JSON schema of the provider-metadata.json must be adapted
accordingly due to EMB-R2.

EMB-R4 The API endpoint must be able to be stored in the aggregator.json
file.

EMB-R5 The JSON schema of the aggregator. json must be adapted accordingly
due to EMB-R4.

67

5 Integration into the specification

5.1 Application requirements

Specification changes

The specification adjustments and embedding requirements DES-R12-A, IMP-R3-A, IMP-R4-A,
EMB-R3, and EMB-R5, as summarized in table 5.1, describe requirements for standardization.
Accordingly, they must be enforced by the OASIS Open CSAF TC if the design proposed in
chapter 3 is to be implemented. These mentioned requirements will thus not be discussed
further in this thesis. The specific adaptations that must be made in order to fulfill the
requirements EMB-R3 and EMB-R5 are described below in this chapter.

APl implementation in aggregators

During the proof of concept implementation and the subsequent testing of the API, it was
found that the operation of the API on the aggregator is unproblematic. The prerequisite for
this is that the configuration parameter csaf documents_path has been set to the directory
to which the CSAF documents are mirrored. The implementation finds all valid documents
on its own. There are no routes or functions in the current design that work exclusively on
aggregators. Accordingly, no further measures need to be taken here.

Thus, the requirement EMB-R1 is completely fulfilled.

Adjustment of provider-metadata.json

The provider-metadata. json already provides an array with the different distribution meth-
ods under the /distributions[] property. It makes sense to specify the API method here
as well. To do this, an object with the single property api is added to the array. It specifies
the base URL, as well as all supported versions of the endpoint. An example is shown in
listing 5.1. A client that intends to use the API of this (trusted) provider must now concate-
nate the base URL, as well as the highest version it supports, in order to be able to access the
routes.

As with specifying the path to a ROLIE feed, for example, the API endpoint does not have
to reside within the /.well-known/ directory. Any path and even a different host can be
specified as well.

The matter of whether a (trusted) provider gives permission to an aggregator to
use its CSAF documents in the aggregator’s API endpoint should be covered by the
/mirror_in CSAF_aggregator property already. If only listing is allowed, the API end-
point of the (trusted) provider must be used. Consequently, running the API in a lister is
redundant.

68

5.1 Application requirements

Listing 5.1: Proposed adjustments to the provider-metadata. json to allow the discovery of

N

00 J O Ut i W

11
12
13
14
15
16
17

the API endpoint

"canonical url": "https://provider —1.csaf:4431/. well—known/csaf/
provider —metadata.json ",
"metadata_ version": "2.0",
"distributions": |
{
"rolie": { ... }
|
{
"api': {
"url": "https://provider —1.csaf:4431/.well—known/csaf/api",
"supported_versions": ["vl']
}
}

I
"last__updates": "2022—07—18T11:34:197Z",

Adjustment of aggregator.json

For the adjustment of the aggregator.json the same structure is used as in the

provider-metadata. json as mentioned above. However, there is no dedicated distribution

array, since they are already defined in the mirrored provider-metadata. json files in the

/csaf_providers[]/mirrors[] property. However, since the API should unify all mirrored

providers into one endpoint, embedding the configuration structure as a top-level property is

proposed. A complete aggregator. json file could look like shown in listing 5.2 accordingly.

Listing 5.2: Proposed adjustments to the aggregator. json to allow the discovery of the API

W N =

S Ot

10
11

endpoint
"aggregator": { ... },
"aggregator_version': "2.0",
"canonical url": "https://aggregator —1.csaf:4431/. well—known/csaf—

aggregator /aggregator.json",
"csaf_providers': [...],

n a‘pill: {
"url": "https://aggregator —1.csaf:4431/. well—known/csaf—aggregator/
api',
"supported versions": ["vl'"]
I

"last updated": "2022—-07—17T10:16:217Z"

69

5 Integration into the specification

If aggregators should later be extended by more distribution methods, which combine the
documents from all mirrored providers, the use of a /distributions[] array would also
be useful here. The schema could be similar to the one in the provider-metadata. json.
However, this would be a major adaptation and is not part of this thesis.

As noted before, the PoC implementation of the aggregator in the test infrastructure com-
pletely omits validating the provider-metadata. json of the providers being mirrored. Ac-
cordingly, the customizations of the two metadata files must be incorporated into the JSON
schema to re-enable validation. This is tracked in EMB-R3 and EMB-R5.

Specification of the API routes

Irrespective of the adaptations and requirements listed in table 5.1, the API design must of
course also be specified so that CSAF infrastructure operators have the option of setting up
their own implementation. The easiest variant would be to continue to provide the OpenAPI
specification with additional descriptions and explanations for the individual components and
routes and then to prescribe the implementation of it in the standard. Alternatively, the
OpenAPI specification could be adopted in the format of the current standard, but this would
cause the standard to grow considerably in size.

It is important to explain the behavior of all parameters in each route, as they may well behave
differently. This is particularly evident from the cvssv3 and cvssv2 parameters in the GET
/csaf-documents/by-cve and POST /csaf-documents/from-device-list routes: the first
one requires the existence of the /vulnerabilities[]/scores properties, while the second
one does not. Such a distinction is not apparent from the route naming alone. An inaccurate
or even missing documentation of the parameters could accordingly lead to unequal behavior
of two implementations.

5.2 Comparison with the existing distributions

It is clear that the API is currently the only distribution method capable of filtering based
on the contents of the CSAF documents. This feature is especially important for the vul-
nerability management and SOCs, as they no longer have to search for the relevant CSAF
documents themselves. Likewise, the API can also be more easily embedded into existing
infrastructure — for example, in alerting systems or the process management systems for ad-
ministrators.

However, one of the major problems with using the API are the privacy concerns, which would
not occur in the other distribution methods. In principle, the added value of the API is that
the filtering of CSAF documents is outsourced from the requesting client to the server. The
consequence of this is that in some cases sensitive data must be sent to the server. This
includes above all the device list, which allows conclusions to be drawn about the hardware

70

5.2 Comparison with the existing distributions

and software used by the client. When using the API on a (trusted) provider belonging to
the vendor category, this is rather negligible, since the provider usually only receives device
lists with products from its own repertoire. On an aggregator, this has a much higher impact,
as it combines all vendor endpoints and therefore also allows conclusions to be drawn about
the “vendor hererogeneity” of the customer network. Most likely, the entire product inventory
is transmitted to the aggregator. The route POST /csaf-documents/from-device-list is
particularly affected by this, but also the macro route GET /csaf-documents/by-cve. The
latter could indicate that a certain vulnerability has been found in the company and the
impact of this is now being investigated.

However, whether these routes are used — and thus the information is transmitted — is
left entirely to the user. The API also allows requesting all advisories at once to fil-
ter them locally, as the ROLIE feed distribution does. The following request would re-
turn all documents of a provider or aggregator without conveying any crucial informa-
tion: GET /csaf-documents/match-property?path=$.document&type=object. This cir-
cumstance should be made clear in the standard.

Furthermore, this raises the question of how the API should be integrated into the distribution
roles. For example, the CSAF provider must support either a ROLIE-based or directory-
based distribution [17, section 7.2.2]. The API could also be added here as an optional
variant. Alternatively, the specification of a new role would be conceivable, such as “CSAF
filterable provider”, which would be based on the trusted provider role. The advantage of this
would be that a CSAF querier would know in advance whether the server actually supports
document filtering. For the purpose of convincing manufacturers to use CSAF, the operation
of the CSAF API must not be enforced in principle, which is why it is important to make its
existence known if it is provided. Additionally, since the API basically works most sensibly
and efficiently within an aggregator, it would also be conceivable to enforce it only in the
aggregator role instead of defining a new role. This already has the requirement to provide
hashes and signatures for each CSAF document, as does the trusted provider.

However, the API lacks one important feature in its current state: tracking document up-
dates. With the directory-based distribution, the existence of a changes.csv file is pre-
scribed [17, section 7.1.13], in which the current release date of each document must be
indicated. This changes accordingly with updates. ROLIE feeds also carry the update date
in the /feed/entry[]/updated property. The API only reveals this information through
the /document/tracking/current_release_date property required in the CSAF document.
However, there is no meta-dating outside the document, as in the other distribution meth-
ods.

Another difference, which has been pointed out several times in this work, is that the API does
not keep different feeds per TLP label. Due to the design, distinctions can be easily matched
at runtime to enforce access control, for example. Both the ROLIE-based and directory-based
distribution methods keep all CSAF documents separated by TLP label.

71

5 Integration into the specification

The biggest problem with the integration into the CSAF standard will most likely be the
standardization of the API routes, as there is no obviously practical way to implement this.
The adaptations of the respective metadata files and their JSON schemas is not problematic.
The PoC can also be run in all relevant CSAF components without any problems. If the
adjustments from DES-R12-A, IMP-R3-A and IMP-R4-A are not realizable, alternatives can
also be introduced in the route design.

In conclusion, it can be said that the API integrates well with the standard.

72

6 Conclusion

This chapter concludes the results of this work. It elaborates on the remaining problems of
the concept, as well as the implementation of the proof of concept. The guiding questions are
answered in the summary section. The end of this chapter covers opportunities for further
research on the CSAF API, as well as other ways to enhance the CSAF ecosystem.

6.1 Problems concerning the concept itself

Although the route design allows the arbitrary arrangement of different parameters according
to requirement DES-R5 as defined in section 3.1, certain use-cases can still not be fulfilled in
one query. For example, if all vulnerabilities are to be found for a product for which either a
vendor fix or a workaround exists, the corresponding route must be called twice with different
parameter values. The reason for this is that the remediation_catgory parameter only allows
a single value. So the route must be called twice with different values for this parameter. This
is problematic because there might be overlaps in the two results, which would force the user
to build a union from the results to avoid duplicates. This case should ideally also be mapped
by the API.

Another conspicuous aspect that emerged during testing of the PoC was that some queries
generated very large responses with sometimes more than 50000 lines after JSON formatting.
The reason for this is the consequence of requirement DES-R19. The number can of course
increase indefinitely, depending on the number of CSAF documents handled by the API.
This can lead to performance issues in larger aggregators, which could be addressed via the
pagination principle mentioned in the Microsoft REST API guidelines [4, section 9.8]. Only
a subset of the CSAF documents, along with a token for the next subset, would be sent. A
client can now “paginate” over these records with multiple requests, either until the end of
results or until the searched document is found. However, such an implementation would be
more complex.

The specification of a filter parameter referring to the /vulnerabilities[]/flags property
is not provided in this design. The property is used to convey a justification for the VEX
status known_not_affected. While the VEX status is more important in the first place, the
flags can additionally be used to reduce the response size and to narrow down the request.

A major problem also arose when testing the PoC. When searching for CSAF documents using
the product identification helper, it became apparent that the use case of searching for the

73

6 Conclusion

product name did exist, as already mentioned in section 3.3.2. In contrast to the properties in
the product identification helper, the search for the product name is less deterministic, since
neither the format nor the spelling is specified. However, it can be useful to allow both at
the same time, especially to counteract the case that a product has no product identification
helper.

As already documented in section 4.3.4, the implementation of the GET
/csaf-documents/match-propery and POST /csaf-documents/match-properies routes
was not completely possible due to the inappropriate design not matching the intended
usage of JSONPath. The problem here was that the concept always assumed path-type, or
path-value pairs. However, this use-case is not supported by JSONPath, since it is not only
an addressing mechanism but also a querying mechanism. Since the type of every property
is mostly ensured by the schematization of CSAF documents, the type parameter can be
omitted. JSONPath should therefore be used for addressing and matching standalone and
not only as a path in path-value pairs.

Another thing that may not be obvious by design is the composition of the CSAF documents
in the response. While no errors were found during testing of the PoC, it was sometimes
difficult to comprehend why some documents were included in the response. Some search
and filter options search for sometimes very deep lying properties, which can also be located
in multidimensional arrays. As a result, the entire document also contains many objects
that do not match the query at all, since an advisory can also contain several products and
vulnerabilities. A suitable data structure next to the CSAF documents in the response, which
indicates the reason for the inclusion, would be conceivable, although not necessary.

On the other hand, the implementation of the macro routes turned out to work very well. Due
to the narrower scope, these were easier to understand and implement. The device list route
was also implemented well and works good, except for the aforementioned problem that the
search for product names is not possible by design.

6.2 Problems concerning the proof of concept

The proof of concept is fully functional, except for the problems with the matching routes
mentioned in section 4.3.4. The points mentioned below serve as subsequent improvements
and as a guideline for an own implementation.

The CSAFDocumentCollection data structure for managing CSAF documents loads all doc-
uments from the file system into memory when the API binary is started in order to access
them faster. Two problems arise from this: First, for very large aggregators, RAM usage can
become correspondingly high. Similarly, the CSAF documents on the file system can also not
be reloaded at runtime. Here, the implementation of a periodic refetch or file watcher would
be necessary to quickly apply changes. This is particularly useful for new security advisories,
which are still updated very regularly.

74

6.2 Problems concerning the proof of concept

Another performance problem could arise from the filter mechanism. As described in
section 4.3.1, several filter functions can be created, which are then applied to each CSAF
document. It is required that all filter functions return ‘true‘ for a document to be included
in the response. Currently, a filter function does not dilute the dataset, but only marks the
document for exclusion. Thus, the next filter function processes all documents again. Here,
it would make more sense algorithmically to remove documents directly as soon as the first
filter determines its exclusion. Functionally, however, this makes no difference.

Currently, the PoC lacks the capability to handle version ranges as they are not part
of the API design. These ranges are located in branches_t objects with the category
product_version_range in the name property, but these are not utilized. Instead, only
the product identification helper in full product_name_t objects is considered. The CPEs
that can be stored there also allow version matching. For example, if a security advisory exists
with a product X with an arbitrary version, it can also be matched if a CPE containing the
version is provided, since the latter is a subset of the CPE of product X. This is made possible
by the CPE Name Matching specification [14]. In listing 6.1 an example implementation in
Go with the library “go-cpe” [8] is described.

Listing 6.1: Checking, if the CPE of Microsoft Edge with any version is a subset of the CPE
of Microsoft Edge in version 8.0.6001-beta in Go

1 package main

2

3 import (

4 "fmt "

)

6 "github.com/knqyf263/go—cpe/matching"

7 "github.com/knqyf263/go—cpe/naming"

8 1)

9

10 func main() {

11 winSuperset , _ := naming.UnbindFS(

12 ‘cpe:2.3:a:microsoft:edge:x:xixikikikikik ‘)

13 winSubset, _ := naming.UnbindFS(

14 ‘cpe:2.3:a:microsoft:edge:8.0.6001: beta:*:*x:x:xik:k)
15 fmt. Println (

16 matching . IsSubset (wfnSubset , wfnSuperset)) // true
17 }

In the current PoC, CPEs are matched by string comparison. An implementation of CPE
name matching would be a useful improvement. However, it should be noted that version
matching only works with the CPE product identification helper. If products are searched for
by serial number, the version matching is omitted, depending on the manufacturer’s rules.

During implementation, the use of group IDs in all documents was dispensed with for reasons
of simplicity. It was noticed that in an object in /vulnerabilities[]/remediations[] both
product IDs and group IDs can be stored, to which the remediation applies. The product
matching however resolves the respective found product only to its product ID. It will then

75

6 Conclusion

be searched in /vulnerabilities[]/remediations[]/product_ids[] in order to match the
remediation object. However, if a product is part of a product group and only the group ID
is specified in /vulnerabilities[]/remediations[]/group_ids[], the remediation is not
matched. This must be corrected in the implementation.

Ultimately, however, the proof of concept fulfills its purpose and succeeds in following the
design. The only exception is the aforementioned matching routes, which are a design issue.
After the adjustments to CSAF 2.1 have been made, the implementation is ready to act as
part of the overall proof of concept. The API can already be used as a non-standard extension
for CSAF 2.0.

6.3 Summary

This work aimed to answer the question whether an API can be built on top of CSAF as
an additional distribution method. If yes, necessary adaptations should be documented and
discussed. Despite the problems with the concept and implementation listed in this chapter,
it could be shown that an API is both possible and useful. It serves as a feasible and flexible
extension to the current distribution methods with the potential to replace them.

For both CERTs and CSIRTs, a CSAF API is a useful addition. The target group is primarily
the companies that already use CSAF and those that intend to do so. The complexity and
the effort, which are caused by the operation of the API, do not apply to the users. They can
familiarize themselves with CSAF and obtain security advisories more easily and quickly, as
there is no longer any need for local searching or filtering, as it would be the case with ROLIE
feeds and the directory-based distribution. The entry barrier is thus slightly lower.

It turned out that only a few adjustments to the CSAF standard are necessary to run an API
on it. These are listed in chapter 5 and are partially optional. Using the implementation as a
PoC for CSAF 2.1 would probably also be possible after making the necessary adjustments.

The conceptual and implementation problems that arose have been extensively documented
in this work and will help to eliminate them in subsequent work.

6.4 Outlook

As explained in chapter 5, the API can also function as a privacy-preserving alternative to the
ROLIE feeds, if certain filtering mechanisms are not transmitted. Similarly, the API could also
function as the primary exchange mechanism between (trusted) providers and aggregators — or
even aggregators among themselves — if the concept is extended accordingly. Also, the func-
tions of the entry point files provider-metadata. json and aggregator. json could be re-
placed by API routes. However, this approach would be impractical at the current state, as the
advantage of static files would be lost. More than just a simple web server would be required,

76

6.4 Outlook

which would greatly increase the inhibition for many vendors to run a CSAF endpoint. As an
alternative, however, this function can be considered.

What the overall CSAF ecosystem is still missing — and what has also come up through
the API’s authentication mechanism — is a suitable management system, both for CSAF
documents themselves, and a system for controlling access to non-TLP: WHITE documents. The
API uses bearer tokens in this implementation, which allows granular access to specific TLP
labels. So far, these are specified in the api.toml configuration file. However, a central
place to specify them would make more sense, since the access rights could be extended to
the other distribution methods as well. Furthermore, access rights can also be scoped for
user identities — for example, from an Active Directory — which would make the authorization
model more flexible. Accordingly, the authentication scheme was intentionally not specified
with requirement DES-R4 in section 3.1, since the mechanism in general was also not defined
specifically [17, section 7.1.5]. This leaves open how an access control system will handle this
in the future. This topic, as well as the conceptualization of a management system for CSAF
documents, offers much room for further research.

Another idea to extend the functionality of the API would be to use a subscribe mechanism in
conjunction with a device list. This would allow the specification of an own URL as webhook
endpoint, to which the CSAF API server regularly sends updates to advisories about the
submitted devices. This could be new advisories as well as updates to them. OpenAPI allows
documentation of this behavior via callback components [21]. This would further shorten the
time to react to vulnerabilities. Again, there is much room for further research.

Finally, it can be said that this work offers far-reaching possibilities for further research. It
lays the foundation for the API-based distribution of CSAF documents for the CSAF 2.1
standard.

7

78

Bibliography

FIRST Traffic Light Protocol Special Interest Group (TLP-SIG). Traffic Light Protocol
(TLP). Version 1.0. FIRST. URL: https://wuw.first.org/tlp/.

Ed. A. Phillips et al. Tags for Identifying Languages. RFC 5646. Sept. 2009. URL: https:
//datatracker.ietf.org/doc/html/rfc5646.

Caddy. Caddy Webserver Homepage. https://caddyserver.com/. 2022.

Dave Campbell et al. Guidelines.md in microsoft/api-guidelines. https://github.com/
microsoft/api-guidelines/blob/8465bf242ad1743beb49caad0abal36c9190dc648/
Guidelines.md. 2022.

CycloneDX. Version 1.4. OWASP, Jan. 2022. URL: https://cyclonedx.org/docs/1.
4/json/.

Golang Package Documentation. context (standard library). July 12, 2022. URL: https:
//pkg.go.dev/context (visited on 07/28/2022).

J. Field et al. Resource-Oriented Lightweight Information Exchange (ROLIE). RFC 8322.
Feb. 2018. URL: https://datatracker.ietf.org/doc/html/rfc8322.

Teppei Fukuda. knqyf263/go-cpe. https://github.com/knqyf263/go-cpe. 2020.
gorilla. gorilla/mux. https://github.com/gorilla/mux. 2022.

Derek Kruszewski. Understanding Vulnerability Exploitability eXchange (VEX). https:
//www.csa.gov.sg/-/media/Csa/Documents/Events/0TCEP-2021/aDolus-White-
Paper--Introduction-to-VEX--V0100.pdf. aDolus Technology Inc., Sept. 2021.

nexB. nexB/univers. https://github.com/nexB/univers. 2022.
PaesslerAG. PaesslerAG/gual. https://github.com/PaesslerAG/gval. 2022.
PaesslerAG. PaesslerAG /jsonpath. https://github.com/PaesslerAG/jsonpath. 2022.

Mary C. Parmelee et al. Common Platform Enumeration: Name Matching Specification.
Version 2.3. National Institute of Standards and Technology (NIST), Aug. 2011. URL:
https://nvlipubs.nist.gov/nistpubs/Legacy/IR/nistir7696.pdf.

Tom Preston-Werner. Semantic Versioning. Version 2.0.0. June 2013. URL: https://
semver.org.

Ed. R. Fielding et al. Hypertezt Transfer Protocol (HTTP/1.1): Semantics and Content.
RFC 7231. June 2014. URL: https://datatracker.ietf.org/doc/html/rfc7231.

79

https://www.first.org/tlp/
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc5646
https://caddyserver.com/
https://github.com/microsoft/api-guidelines/blob/8465bf242ad1743beb49caa90a5a36c9190dc648/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/8465bf242ad1743beb49caa90a5a36c9190dc648/Guidelines.md
https://github.com/microsoft/api-guidelines/blob/8465bf242ad1743beb49caa90a5a36c9190dc648/Guidelines.md
https://cyclonedx.org/docs/1.4/json/
https://cyclonedx.org/docs/1.4/json/
https://pkg.go.dev/context
https://pkg.go.dev/context
https://datatracker.ietf.org/doc/html/rfc8322
https://github.com/knqyf263/go-cpe
https://github.com/gorilla/mux
https://www.csa.gov.sg/-/media/Csa/Documents/Events/OTCEP-2021/aDolus-White-Paper--Introduction-to-VEX--V0100.pdf
https://www.csa.gov.sg/-/media/Csa/Documents/Events/OTCEP-2021/aDolus-White-Paper--Introduction-to-VEX--V0100.pdf
https://www.csa.gov.sg/-/media/Csa/Documents/Events/OTCEP-2021/aDolus-White-Paper--Introduction-to-VEX--V0100.pdf
https://github.com/nexB/univers
https://github.com/PaesslerAG/gval
https://github.com/PaesslerAG/jsonpath
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7696.pdf
https://semver.org
https://semver.org
https://datatracker.ietf.org/doc/html/rfc7231

Bibliography

[17]

[18]

80

Langley Rock, Stefan Hagen, and Thomas Schmidt, eds. Common Security Advisory
Framework. Version 2.0 Committee Specification (CS) 02. OASIS, June 2022. URL:
https://docs.oasis-open.org/csaf/csaf/v2.0/cs02/csaf-v2.0-cs02.html.

Thomas Schmidt and Jens Wiesner. Securing the Supply Chain Together - Through
Automation of Advisories and Vulnerability Management. FIRST. June 27, 2022. URL:
https://www.first . org/conference /2022 /program#pSecuring - the - Supply -
Chain - Together - Through - Automation - of — Advisories - and — Vulnerability -
Management (visited on 07/28/2022).

Smartbear. SoapUI Docs: Working With REST Services and WADL. https ://www .
soapui.org/docs/rest-testing/working-with-rest-services/. 2022.

Swagger. OpenAPI Specification. Version 3.0.3. Swagger, Feb. 2020. URL: https://
swagger.io/specification/.

Swagger. OpenAPI Specification: Callbacks. Version 3.0.3. Swagger, Feb. 2020. URL:
https://swagger.io/docs/specification/callbacks/.

Swagger. OpenA PI Specification: Components Section. Version 3.0.3. Swagger, Feb. 2020.
URL: https://swagger.io/docs/specification/components/.

Swagger. Swagger editor. https://editor.swagger.io/. 2022.
Swagger. Swagger Ul https://swagger.io/tools/swagger-ui/. 2022.

Sascha L. Teichmann et al. csaf-poc/csaf _distribution. https://github.com/csaf -
poc/csaf_distribution. 2022.

https://docs.oasis-open.org/csaf/csaf/v2.0/cs02/csaf-v2.0-cs02.html
https://www.first.org/conference/2022/program#pSecuring-the-Supply-Chain-Together-Through-Automation-of-Advisories-and-Vulnerability-Management
https://www.first.org/conference/2022/program#pSecuring-the-Supply-Chain-Together-Through-Automation-of-Advisories-and-Vulnerability-Management
https://www.first.org/conference/2022/program#pSecuring-the-Supply-Chain-Together-Through-Automation-of-Advisories-and-Vulnerability-Management
https://www.soapui.org/docs/rest-testing/working-with-rest-services/
https://www.soapui.org/docs/rest-testing/working-with-rest-services/
https://swagger.io/specification/
https://swagger.io/specification/
https://swagger.io/docs/specification/callbacks/
https://swagger.io/docs/specification/components/
https://editor.swagger.io/
https://swagger.io/tools/swagger-ui/
https://github.com/csaf-poc/csaf_distribution
https://github.com/csaf-poc/csaf_distribution

Statutory Declaration

I herewith declare that I have composed the present thesis myself and without use of any other
than the cited sources and aids. Sentences or parts of sentences quoted literally are marked
as such; other references with regard to the statement and scope are indicated by full details
of the publications concerned. The thesis in the same or similar form has not been submitted
to any examination body and has not been published. This thesis was not yet, even in part,
used in another examination or as a course performance.

Leon Schmidt

Offenburg, August 2, 2022

81

82

A OpenAPI specification

This is the full OpenAPI specification document specifying the API in YAML format.

QU = W N~

© 00

10

12
13
14
15
16
17
18
19
20
21
22

23
24

25
26

27
28
29
30
31

32

openapi: 3.0.1

info:
title: Common Security Advisory Framework (CSAF) 2.0 Distribution API
description: ’This is the OpenAPI definition of the CSAF 2.0 Distribution
API vl designed to be implemented in (trusted) providers and
aggregators.’
termsOfService: https://example.com/pending
contact:
email: pending@example.com

version: 0.1.0

#externalDocs:
description: Swagger documentation (JSON)
url: https://example.com/.well—known/csaf/swagger.json

servers:
— url: http://localhost:8080/. well—known/csaf/api/vl
— url: https://provider —1.csaf:4431/. well—known/csaf/api/vl
— url: https://aggregator —1.csaf:4431/.well—known/csaf—aggregator/api/vl

tags:
— name: Meta queries
description: These queries are used to retrieve information for the
CSAF server itself. They do not convey any CSAF documents and do not
offer authentication.
— name: Macro queries
description: These queries (under the ‘/byx‘ path) can be used as
shorter variants of the arbitrary queries.
— name: Arbitrary queries
description: These queries are more flexible and can query almost every
property in a CSAF document.
#externalDocs:
description: Docs pending
url: https://example.org/pending
— name: Special queries
description: These queries (under the ‘/fromx‘ path) use external
informations to retrieve CSAF documents.

83

A OpenAPI specification

33 paths:

34

35 /metadata:

36 get:

37 tags:

38 — Meta queries

39 summary: Retrieve the provider—metadata.json or aggregator.json file

40 description: Retrieve the ‘provider—metadata.json‘ or ‘aggregator.
json ¢ file from this server. This depends on the role (see ‘/role
route) .

41 operationld: getMetadata

42 responses:

43 200:

44 description: Object containing either a ‘provider—metadata.json *

or ‘aggregator.json‘ file

45 content :

46 application/json:

47 schema :

48 type: object

49 properties:

50 error :

51 $ref: ’#/components/schemas/Error’

52 provider__metadata:

53 type: object

54 description: "See https://docs.oasis—open.org/csaf/csaf

/v2.0/provider__json_schema. json"

55 aggregator:

56 type: object

57 description: "See https://docs.oasis—open.org/csaf/csaf

/v2.0/aggregator_json_ schema.json"

58 400:

59 description: Bad request

60 content :

61 application/json:

62 schema :

63 type: object

64 properties:

65 error :

66 $ref: ’#/components/schemas/Error’

67 example :

68 error :

69 errcode: BAD REQUEST

70 errmsg: "...'

71 # do not yield 401, as there is no authentication

72 500:

73 description: Server error

74 content :

75 application/json:

76 schema :

77 type: object

78 properties:

84

79
80
81
82
83
84
85
86
87
88
89
90
91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

error :
$ref: ’#/components/schemas/Error’
example:
error :
errcode : UNKNOWN_ERROR
errmsg: '..."
/role:
get:
tags:

— Meta queries
summary: Get the role of the CSAF server
description: Returns the role of this CSAF server. See
the CSAF standard for details.
operationld: getRole
responses:
200:
description: Role of this CSAF server
content:
application/json:
schema :
type: object
properties:
error :
$ref: ’#/components/schemas/Error’
role:
type: string
enum :
— csaf__publisher
— csaf_ provider
— csaf_trusted__provider
— csaf lister
— csaf_aggregator
default: csaf_ trusted_ provider
400:
description: Bad request
content:
application/json:
schema :
type: object
properties:
error :
$ref: ’#/components/schemas/Error

)

example:
error :
errcode: BAD REQUEST
errmsg: "..."
do not yield 401, as there is no authentication

500:
description: Server error
content:

section 7.2 of

85

OpenAPI specification

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

86

application/json:
schema:
type: object
properties:
error :
$ref: ’#/components/schemas/Error’
example:
error:
errcode : UNKNOWN ERROR

n n

errmsg :

/ csaf—documents/by—id /{publisher__namespace}/{tracking_id}:
get:
tags:
— Macro queries
summary: Retrieves documents matching the globally unique document ID
description: Retrieves CSAF documents matching the globally unique
document ID according to sections 3.2.1.8.5 and 3.2.1.12.4 of the
standard. Matching is always exact.
operationld: getByID
security:
— bearerAuth: []
parameters:
— name: publisher_ namespace
in: path
required: true
schema:
type: string
format: wuri
— name: tracking_id
in: path
required: true
schema :
type: string
— S$ref: '#/components/parameters/WithHashes’
— S$ref: ’'#/components/parameters/WithSignature’
responses:
200:
$ref: ’#/components/responses/2000k’
400:
$ref: ’#/components/responses/400BadRequest’
401:
$ref: ’#/components/responses /401 Unauthorized’
500:
$ref: ’#/components/responses/500UnknownError’

/csaf—documents/by—title /{title }:
get:
tags:
— Macro queries
summary: Retrieves documents matching its title

178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221
222
223

description: Retrieves CSAF documents matching its title.

exact by default.
operationld: getByTitle

security:
— bearerAuth: []
parameters:
— name: title
in: path
required: true
schema:
type: string
— S$ref: '#/components/parameters/ValueMatching’
— $ref: '#/components/parameters/Before’
— $ref: ’#/components/parameters/After’
— $ref: ’#/components/parameters/Profile’
— S$ref: '#/components/parameters/TrackingStatus’
— $ref: ’'#/components/parameters/WithHashes’
— $ref: '#/components/parameters/WithSignature’
responses:
200:
$ref: ’#/components/responses/2000k’
400:
$ref: ’#/components/responses/400BadRequest’
401:
$ref: ’#/components/responses /401 Unauthorized’
500:
$ref: ’#/components/responses/500UnknownError’

/csaf—documents /by—publisher /{publisher_name }:

get:

tags:
— Macro queries

summary :

description:

Retrieves documents matching the publisher name
Retrieves CSAF documents documents matching the
publisher name and optionally the publisher namespace and
publisher category. The matching paramter only applies to the

querying an aggregator.

operationld: getByPublisher

security :
— bearerAuth: []
parameters:

name :

publisher__name

in: path
required: true
schema :

type: string

$ref:

name:

'#/components/parameters/ValueMatching’
publisher__namespace

in: query

schema :

Matching is

3

publisher_name ¢ parameter. This route only makes sense when

87

A OpenAPI specification

224 type: string

225 format: uri

226 — name: publisher_category

227 in: query

228 schema :

229 type: string

230 — $ref: '#/components/parameters/Before’

231 — $ref: '#/components/parameters/After’

232 — S$ref: ’#/components/parameters/Profile’

233 — $ref: '#/components/parameters/TrackingStatus’

234 — S$ref: ’'#/components/parameters/WithHashes’

235 — S$ref: '#/components/parameters/WithSignature’

236 responses:

237 200:

238 $ref: ’#/components/responses/2000k’

239 400:

240 $ref: ’#/components/responses/400BadRequest’

241 401:

242 $ref: ’#/components/responses /401 Unauthorized’

243 500:

244 $ref: ’#/components/responses/500UnknownError’

245

246

247 /csaf—documents/by—cve /{cve }:

248 get :

249 tags:

250 — Macro queries

251 summary: Retrieves documents containing the CVE specified

252 description: Retrieves CSAF documents containing the CVE specified.
Matching is always exact.

253 operationld: getByCVE

254 security :

255 — bearerAuth: []

256 parameters:

257 — name: cve

258 in: path

259 description: CVE enumeration to find CSAF documents for

260 required: true

261 schema :

262 type: string

263 — $ref: '#/components/parameters/CVSSv3Range’

264 — $ref: '#/components/parameters/CVSSv2Range’

265 — $ref: ’#/components/parameters/Before’

266 — $ref: ’#/components/parameters/After’

267 — 8$ref: ’#/components/parameters/Profile’

268 — S$ref: '#/components/parameters/TrackingStatus’

269 — $ref: '#/components/parameters/WithHashes’

270 — $ref: '#/components/parameters/WithSignature’

271 responses:

272 200:

273 $ref: ’#/components/responses/2000k’

88

274
275
276
277
278
279
280
281
282
283
284
285

286

287
288
289
290
291
292
293

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

313
314
315
316
317

400:

$ref: ’#/components/responses/400BadRequest’
401:

$ref: ’#/components/responses /401 Unauthorized’
500:

$ref: ’#/components/responses/500UnknownError’

/csaf—documents /match—property :
get:
tags:
— Arbitrary queries
summary: Retrieve documents matching arbitrary properties by value
and/or type
description: Retrieve CSAF documents matching an arbitrary property
by value and/or type. Documents not containing the property will
be skipped from evaluation by default. For combining multiple
property—value pairs, use the ‘/match—properties‘ route.
operationld: getDocumentByJSONMatch
security:
— bearerAuth: []
parameters:
— name: path
in: query
description: Path to the JSON property in JSONPath syntax (see
https://tools.ietf.org/id/draft—goessner—dispatch—jsonpath —00.
html)
required: true
schema :
type: string
example: $.document. distribution.tlp.label
— name: type
in: query
description: Type of the property definded in ‘path°
schema:
type: string
enum :
— string
— number
— object
— array
— boolean
example: string
— name: value
in: query
description: Value of the property definded in ‘path‘. To match °
null ‘', use ‘type=object&value=null *.
schema :
type: string
example: WHITE
— S$ref: '#/components/parameters/ValueMatching’
— name: include__missing

89

OpenAPI specification

318
319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

344

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

90

in: query
description: Whether to include documents in the result that do
not have the property specified in ‘path*®
schema:
type: boolean
default: false
ref: '#/components/parameters/Before
ref: ’#/components/parameters/After’
— $ref: '#/components/parameters/Profile
— $ref: ’'#/components/parameters/TrackingStatus
— S$ref: ’'#/components/parameters/WithHashes’
— S$ref: '#/components/parameters/WithSignature’
responses:
200:
$ref: ’#/components/responses/2000k’
400:
$ref: ’#/components/responses/400BadRequest’
401:
$ref: ’#/components/responses /401 Unauthorized’
500:
$ref: ’#/components/responses/500UnknownError’

$)
$

9

/csaf—documents /match—properties:
post:
tags:
— Arbitrary queries
summary: Retrieve documents matching arbitrary properties by value
and/or type
description: Retrieve CSAF documents matching arbitrary properties by
value and/or type. Documents not containing the property will be
skipped from evaluation by default.
operationld: getDocumentByJSONMatches
security :
— bearerAuth: []
parameters:
— S$ref: ’'#/components/parameters/WithHashes’
— $ref: '#/components/parameters/WithSignature’

requestBody:
$ref: '#/components/requestBodies/AdvancedMatchingRequestBody’
responses:
200:
$ref: ’#/components/responses/2000k’
400:
$ref: '#/components/responses/400BadRequest’
401:
$ref: ’#/components/responses /401 Unauthorized’
500:

$ref: ’#/components/responses/500UnknownError’

/csaf—documents/from—device—1list :
post:

365
366
367
368

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

404
405
406
407
408
409
410
411

tags:
— Special queries

summary: Retrieves documents matching the provided device list
description: Retrieves CSAF documents matching the provided device
list . With the ‘product_status‘ parameter, the product status

according to section 3.2.3.9 of the standard can be used to filter

the results.
operationld: getDocumentsByDeviceList
security:
— bearerAuth: []
parameters:
— $ref: '#/components/parameters/ProductStatus
— $ref: '#/components/parameters/CVSSv3Range’
— $ref: '#/components/parameters/CVSSv2Range’

)

— $ref: '#/components/parameters/RemediationCategory’

)

— S$ref: '#/components/parameters/Before
— $ref: ’'#/components/parameters/After’
— $ref: '#/components/parameters/Profile
— $ref: '#/components/parameters/TrackingStatus
— $ref: ’#/components/parameters/WithHashes’

— S$ref: '#/components/parameters/WithSignature’

)

)

requestBody :
$ref: '#/components/requestBodies/DeviceListRequestBody’
responses:
200:
$ref: ’#/components/responses/2000k’
400:
$ref: '#/components/responses/400BadRequest’
401:
$ref: ’#/components/responses /401 Unauthorized’
500:

$ref: ’#/components/responses/500UnknownError’

components:
parameters:
Before:

name: before
in: query

description: Matches documents with dates before ‘/document/tracking/

initial release date *

schema :
type: string
format: date—time

After:
name: after
in: query

description: Matches documents with dates after ¢/document/tracking/

91

A OpenAPI specification

initial release date ¢

412 schema :

413 type: string

414 format: date—time

415

416 ValueMatching :

417 name: matching

418 in: query

419 description: Sets the mechanism how values are matched with the
acutal value. This is only applied if the value that is to be
matched is of or can be inferred to type string. Otherwise
matching is always exact.

420 schema :

421 type: string

422 enum :

423 — exact

424 — regex

425 — begins—with

426 — ends—with

427 — contains

428 default: exact

429

430 ProductStatus:

431 name: product_status

432 in: query

433 schema :

434 type: string

435 enum :

436 — first_affected

437 — first fixed

438 — fixed

439 — known__affected

440 — known_ not_affected

441 — last_affected

442 — recommended

443 — under_investigation

444

445 Profile:

446 name: profile

447 in: query

448 schema :

449 type: string

450 enum :

451 — csaf base

452 — csaf_security_incident_response

453 — csaf__informational advisory

454 — csaf_security__advisory

455 — csaf vex

456

457 TrackingStatus:

458 name: tracking_ status

92

459
460

461
462
463
464
465
466
467
468
469
470

471
472
473
474
475
476
477
478

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

499
500
501
502
503

in: query
description: Matches documents with tracking status in /document/
tracking/status according to section 3.2.1.12.7 in the standard.
schema :
type: string
enum :
— draft
— final
— interim

CVSSv3Range:

name: cvssv3

description: "Arithmetic expressions to match the CVSSv3 with.
Specify more than one to match (AND relation) with ‘. Supported
operators are: ‘>°‘ ‘<‘) ‘== ‘>=¢ ‘<=

in: query

schema :
type: string

example: ">7,<9"

CVSSv2Range:
name: cvssv2
description: "Arithmetic expressions to match the CVSSv2 with.

Specify more than one to match (AND relation) with ‘. Supported
operators are: ‘>‘ ‘<‘) ‘== ‘>=¢ ‘<=

in: query

schema :

type: string
example: ">7,<9"

RemediationCategory :
name: remediation_ category
in: query
schema :

type: string
enum :
— mitigation
— no_ fix_planned
— none_available
— vendor_fix
— workaround

WithHashes:
name: with hashes
description: Whether to include each documents hashes in ‘/documents

[]/ hashes *
in: query
schema:

type: boolean

WithSignature:

93

A OpenAPI specification

504 name: with_signature

505 description: Whether to include each documents signature in ¢/
documents []/ signature °

506 in: query

507 schema :

508 type: boolean

509

510

ol1 schemas:

512

513 CSAFDocument :

514 type: object

515 properties:

516 document :

517 type: object

518 product_tree:

519 type: object

520 vulnerabilites:

521 type: object

522 required :

523 — document

524

925 Error:

526 type: object

527 default: null

528 properties:

529 errcode:

530 type: string

531 description: Parsable, enumerated error code

532 errmsg :

533 type: string

534 description: Stateful error message

935 required :

536 — errcode

537

538 CSAFDocumentResponse :

539 type: object

540 properties:

541 error :

542 $ref: ’#/components/schemas/Error’

543 documents_found:

544 type: integer

545 documents:

546 type: array

547 items:

948 type: object

549 required :

550 — content

551 properties:

552 content :

553 $ref: ’#/components/schemas/CSAFDocument’

94

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
973
574
575
576
LY
978
579
580
581
582
583
584
585
586
o87
588
589
590
591
592
593
594
595
596
997
598
599
600
601
602
603
604

signature:
type: string
hashes:

type: object
properties:
sha256 :
type: string
shab12:
type: string

DeviceList :
type: array
items:
type: object
properties:
cpe:
type: string
hashes:
type: array
items:
type: object
model numbers:
type: array
items:
type: string
purl:
type: string
sbom urls:
type: array
items:
type: string
serial numbers:
type: array
items:
type: string
skus:
type: array
items:
type: string
X__generic_ uris:
type: array
items:
type: string

AdvancedMatching :
type: object
properties:

matching default:
type: string
enum :
— exact

95

A OpenAPI specification

605 — regex

606 — begins—with

607 — ends—with

608 — contains

609 default: exact

610 operator:

611 type: string

612 enum :

613 — and

614 — or

615 default: and

616 matches:

617 type: array

618 items:

619 type: object

620 properties:

621 path:

622 type: string
623 example: $.document.distribution.tlp.label
624 type:

625 type: string
626 enum :

627 — string
628 — number
629 — object

630 — array

631 — boolean
632 default: string
633 value :

634 type: object
635 example: "WHITE"
636 matching :

637 type: string
638 enum :

639 — exact

640 — regex

641 — begins—with
642 — ends—with
643 — contains
644 include_missing:
645 type: boolean
646 default: false
647 required :

648 — path

649 — value

650 required :

651 — matches

652

653

654 examples:

655

96

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

684
685

686
687
688
689
690

691
692

693
694
695
696
697
698
699
700

CSAFDocumentResponse0Documents :
value:
error: null
documents_found: 0
documents: []

CSAFDocumentResponse2Documents :
value:
error: null
documents found: 2

documents: |
{
"content ": {}
’
{
"content ": {}
I

]

CSAFDocumentResponse2DocumentsWithHashesAndSignature:
value:
error: null
documents_found: 2
documents: |
{
"content ": {},
"hashes": {
"sha265": "998
¢2d8ede020bf881cfad80316a21ff58748409389011893calbf9e3e2e38e2

n

I
"signature": " BEGIN PGP SIGNATURE———\nabc123\n——FND
PGP SIGNATURE——
I
{
"content ": {},
"hashes": {
"sha265": "4
a4ad15670aefb7b9dcab5c5c4974b2ed250f2a719af30bc8ad15b41cTefcdbb
I
"signature": " BEGIN PGP SIGNATURE———\ndef456 \n——FND
PGP SIGNATURE——'
I
]
DeviceListWindows10:
value: |
{
"cpe": "cpe:2.3:0:microsoft:windows_10: —:s:k:k:ik:ik:x86 %"
¥

97

A OpenAPI specification

701]

702

703 DeviceListWindows10AndKeycloak :

704 value: |

705 {

706 "cpe": "cpe:2.3:0:microsoft:windows_10: —:k:k:xikik:x86 k"

707 },

708 {

709 "cpe': "cpe:2.3:a:redhat:keycloak:1.2.0: —:ixixrkrwix"

710 "sbom_urls": |

711 "https://raw.githubusercontent .com/CycloneDX /bom—examples/
master /SBOM/keycloak —10.0.2/bom. json "

712]

713 }

714]

715

716

717 requestBodies:

718

719 DeviceListRequestBody :

720 content :

721 application/json:

722 schema :

723 $ref: ’#/components/schemas/DeviceList’

724 examples:

725 Windows 10:

726 $ref: ’#/components/examples/DeviceListWindows10’

727 Windows 10 and Keycloak:

728 $ref: '#/components/examples/DeviceListWindowsl0AndKeycloak’

729

730 AdvancedMatchingRequestBody :

731 content :

732 application/json:

733 schema :

734 $ref: ’#/components/schemas/AdvancedMatching’

735

736

737 responses:

738

739 2000k

740 description: Success. ‘error ‘ is always ‘null ‘.

741 content :

742 application/json:

743 schema :

744 $ref: ’#/components/schemas/CSAFDocumentResponse’

745 examples:

746 No documents:

747 $ref: ’'#/components/examples/CSAFDocumentResponse0Documents’

748 Two documents:

749 $ref: ’#/components/examples/CSAFDocumentResponse2Documents ’

750 Two documents with hashes and signature:

98

751

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780
781
782
783
784
785
786
787
788
789
790
791

$ref: ’#/components/examples/
CSAFDocumentResponse2DocumentsWithHashesAndSignature’

400BadRequest :
description: Bad request
content:
application/json:
schema :
$ref: ’#/components/schemas/CSAFDocumentResponse’
example :
error:

errcode : BAD REQUEST

errmsg:

401 Unauthorized:
description: Bearer token is invalid
content:
application/json:
schema:
$ref: ’#/components/schemas/CSAFDocumentResponse’
example:
error:

errcode: AUTH INVALID

errmsg: "The specified API token is not known by the server'

500 UnknownError:
description: Server error
content:
application/json:
schema:
$ref: ’#/components/schemas/CSAFDocumentResponse’
example:
error:

errcode: SERVER ERROR

errmsg:

securitySchemes:
bearerAuth:
type: http
scheme: bearer

#bearerFormat: JWI # optional , arbitrary value for documentation

purposes

99

100

B API error codes

Error code

Usage

BAD_REQUEST

MISSING_PARAMETER
DUPLICATE_PARAMETER

URL_DECODE_ERROR

MISSING_ACCEPT_HEADER
AUTH_INVALID
SERVER_ERROR

UNKNOWN_ERROR
METHOD_NOT ALLOWED
NOT_FOUND

ROLE_UNDEFINED

Malformed request body, malformed parameter (e.g. enum ig-
nored), invalid format (e.g. dates, URI)

Lack of required parameter (suberror of BAD_REQUEST)

Parameter key was specified multiple times (suberror of
BAD_REQUEST)

URL parameter
BAD_REQUEST)

Accept header was not set (suberror of BAD_REQUEST)

not encoded correctly (suberror of

Authentication data is not valid or not known to the server

Server error that cannot be resolved by the user (e.g. unmar-
shalling, internal context exceeded)

Unknown error, fallback if other codes do not fit
A HTTP method was used that is not allowed for this route

The requested resource does not match a route with any HTTP
method

The CSAF role of the server, the API is used in, was not defined

Notes

o This list contains only error codes for CSAF API specific cases, not HT'TP specific cases

(e.g. host header mismatch). Errors of this type are handled by the web server or client

and might not return a response body of content type application/json or a response

body at all.

e FErrors like “method not allowed” and “route not found” also return error codes and are

of content type application/json, even if no route matched the request URL.

101

	Abstract
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Motivation
	Objective and methodology

	Basics of CSAF 2.0
	Goals of CSAF
	Type definitions
	Document properties
	The /document property
	The /product_tree property
	The /vulnerabilities property
	Summary

	Document profiles
	Intended architecture

	Design
	Requirements
	API design
	Introduction to OpenAPI
	Component definitions
	Route definitions

	Design feasibility
	Regularly used parameters
	Routes

	Proof of Concept
	Testing environment
	Test data set
	Implementation
	CSAF document management
	Configuration
	Implementation of the authentication middleware
	Route implementation
	API operation

	Testing and user interface

	Integration into the specification
	Application requirements
	Comparison with the existing distributions

	Conclusion
	Problems concerning the concept itself
	Problems concerning the proof of concept
	Summary
	Outlook

	Bibliography
	Statutory Declaration
	OpenAPI specification
	API error codes

