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Abstract: Since the inception of blockchain-based cryptocurrencies, researchers have been fascinated
with the idea of integrating blockchain technology into other fields, such as health and manufacturing.
Despite the benefits of blockchain, which include immutability, transparency, and traceability, certain
issues that limit its integration with IIoT still linger. One of these prominent problems is the storage
inefficiency of the blockchain. Due to the append-only nature of the blockchain, the growth of the
blockchain ledger inevitably leads to high storage requirements for blockchain peers. This poses a
challenge for its integration with the IIoT, where high volumes of data are generated at a relatively
faster rate than in applications such as financial systems. Therefore, there is a need for blockchain
architectures that deal effectively with the rapid growth of the blockchain ledger. This paper discusses
the problem of storage inefficiency in existing blockchain systems, how this affects their scalability,
and the challenges that this poses to their integration with IIoT. This paper explores existing solutions
for improving the storage efficiency of blockchain–IIoT systems, classifying these proposed solutions
according to their approaches and providing insight into their effectiveness through a detailed
comparative analysis and examination of their long-term sustainability. Potential directions for future
research on the enhancement of storage efficiency in blockchain–IIoT systems are also discussed.

Keywords: blockchain; IIoT; scalability; storage efficiency; storage optimization; compression;
summarization; machine learning

1. Introduction

Blockchain technology holds great promise for various applications, such as Internet
of Things (IoT) and edge computing [1–4]. Since it was brought into the public mainstream
through the inception of cryptocurrencies such as Bitcoin [5] and Ethereum [6], blockchain
technology has become a major research direction [7]. Over the years, it has garnered
many applications and proposed works in fields such as health [8,9], agriculture [10], and
manufacturing [11], and it continues to inspire works.

IoT also has many applications in many areas, such as smart homes for consumers [12,13],
agriculture [14–16], health [17], energy management [18,19], manufacturing [20,21], and
supply chain management [22,23]. The adoption of IoT in the collection, monitoring, and
analysis of data and the control of industrial operations is referred to as Industrial Internet
of Things (IIoT) [24]. At the heart of IoT is the use of centralized storage systems, such
as with cloud computing platforms, to aggregate and analyze large amounts of data to
gain insight and make well-informed decisions. This can, however, lead to privacy and
security concerns, especially with data sharing among many industrial participants, such
as in supply chains.
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On their own, IoT and blockchain have contributed to massive advancements in the
fields to which they have been applied [25,26]. The benefits of the blockchain, which
include enhanced security, transparency, and greater traceability [27], make it a promising
technology for integration with IIoT, which has long had issues with security [28–32]. How-
ever, there are several issues that limit the integration of blockchain into IIoT systems [25,33].
One of these issues is the huge storage requirement of the blockchain. The immutable
nature of the blockchain ledger means that it is append-only; information stored on the
ledger cannot be deleted. Thus, the volume of data stored on the blockchain increases over
time as new blocks are added.

With the Hyperledger Fabric platform, which is a permissioned enterprise-grade
blockchain platform, in medium- to high-level transaction environments, storage for the
blockchain alone could be as high as 197 Tb or more per year, according to IBM [34]. IIoT
systems generate data much in a greater volume than financial transaction data and at a
faster rate [35,36]; thus, the storage volume required to store the ledger recording the data
would also increase over time [34]. The huge storage requirement restricts the participation
of resource-constrained devices, such as sensors and other low-power IoT devices [37].
The growing data volume also reduces the storage efficiency of the underlying database
and causes delays in reading and writing to the database [38]. This affects the scalability
and performance of the blockchain system [38,39]. Eventually, the decentralization of the
ledger will also be affected, since fewer and fewer nodes will be able to join the network
due to the high storage requirements.

Therefore, there is a need for blockchain architectures or storage models that alleviate
the drawbacks of the blockchain’s append-only approach. Various works have been
proposed to improve the storage efficiency of blockchain systems. This paper attempts
to explore the viability of these works in relation to IIoT by asking relevant questions
about how these works approach the storage inefficiency problem, how effective they are
at handling the storage of the ledger, and how they deal with the exponential growth of
the ledger.

There has been a rapid accumulation of data in many areas, such as scientific research,
manufacturing, and production in the era of big data; the data need to be made full use
of [40]. This has contributed to the rapid progress and remarkable results of machine
learning in regards to theory, methods, and applications. Although there are works that
have proposed the use of machine learning in blockchain optimization, there is a distinct
lack of focus on the optimization of the storage schemes used in these systems. This
paper also explores the potential of machine learning for augmenting storage optimization
schemes on the blockchain.

The main contributions of this survey include:

• Investigating the need for storage optimization schemes in blockchain–IIoT systems.
• Establishing a taxonomy for the various approaches to storage optimization in

blockchain systems.
• Examining the contributions and shortcomings of various works proposed under

each approach.
• Establishing the potential of machine learning to augment storage optimization in

blockchain systems.
• Presenting open issues and directions for future work.

The rest of this paper is organized as follows: Section 2 presents the review method-
ology, Section 3 discusses the storage and scalability concerns of blockchain–IIoT integra-
tion, Section 4 presents a review of the approaches to ensuring storage efficiency in the
blockchain, Section 5 discusses some works for blockchain optimization using machine
learning techniques, Section 6 discusses the challenges faced in ensuring storage efficiency
in blockchain–IIoT systems and explores the possibility of future works, and Section 7
concludes the paper.



Electronics 2022, 11, 2513 3 of 25

2. Methodology

A number of proposed works for the storage optimization of blockchain-based IIoT
applications and the performance optimization of blockchain systems using machine
learning are reviewed in this paper.

2.1. Data Sources

This review used literature from four electronic databases, which were:

• Google Scholar;
• Elsevier Scopus;
• IEEE Xplore;
• Springer SpringerLink.

The search in all the databases returned a total of 113,888 results from January 2016 to
May 2022. However, Google Scholar and SpringerLink returned many unrelated results,
which led to only the first 100 results of each search on these databases being considered
for the work. Thus, the total number of relevant results considered was 1747 results.

The keywords outlined in this paper were used to search through these databases.
The search strings used included:

• “blockchain” AND “IIoT” AND “scalability”—33,885 results;
• “blockchain” AND “storage” AND “optimization”—6400 results;
• “blockchain” AND “storage” AND “compression”—6655 results;
• “blockchain” AND “summarization”—20,036 results;
• “blockchain” AND “optimization” AND “machine” AND “learning”—46,912 results.

The search was conducted from September 2020 to May 2022. The search focused
on works concerned with optimizing storage for blockchain-based IIoT, as well as those
for generic blockchain systems. The works covered in this review are not exhaustive,
but provide a good overview of attempts to improve the storage efficiency of blockchain
systems for IIoT applications. A number of works regarding the use of machine learning in
blockchain systems are also explored to encourage blockchain storage optimization using
machine learning techniques.

2.2. Selection Criteria for Reviewed Works

The selection of works for review in this paper was achieved with the aid of a temporal
criterion to ensure that the state of the art in storage optimization for blockchain and
machine learning optimization of the blockchain were examined. To further narrow down
these works and improve the quality of the review, it was determined that works that
showed relevance to the subject of the review by focusing on the storage concerns of the
blockchain and the use of machine learning to improve blockchain performance would be
considered. Figure 1 shows the selection process undertaken for this review, and Table 1
describes the criteria used to select the works for review.

Table 1. Inclusion criteria for selected works.

No. Criterion

1 Publication date between 2018 and 2022

2 Emphasis on solutions for the storage and scalability of blockchain systems

3 Emphasis on blockchain performance optimization using machine learning techniques

4 Detailed descriptions of the proposed schemes and the underlying technologies
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Figure 1. Selection process.

The literature considered in the search results was selected based on a four-year
temporal criterion, from 2018 to 2022. The studies considered for 2022 were those available
at the time of conducting this research. The reason for choosing this criterion was to ensure
that the most recent and relevant studies were provided to enable great future research in
the field.

The selected works for this review were compiled after reviewing the complete text of
those works that fell within the temporal range specified. Some of the literature appeared
as duplicates in the different databases. Studies that were not closely related to the research
topic were also excluded from the review. The final list of works that were explored in
the review section of this paper were those that provided a clear and detailed description
of their approach and the underlying technologies. The works considered provide novel
solutions and architectures for the optimization of blockchain storage. Those works that
did not have enough implementation or design details were excluded from the review.
The works on the use of machine learning for optimization of blockchain performance that
were considered were those that focused directly on improving blockchain parameters such
as transaction throughput and transaction latency.

3. Storage and Scalability Concerns of Blockchain–IIoT Integration

The immutable nature of the blockchain and its reliance on consensus between par-
ticipating nodes give rise to several issues around the storage of the blockchain ledger.
The number of blocks that can be appended to the blockchain in a given period of time is
limited due to the consensus mechanism and data broadcast between nodes [41]; thus, the
throughput of transactions is much lower compared to more traditional database-based
systems [42–44].

IIoT connects many devices, all of which generate data and require management,
storage, and retrieval; the throughput of typical blockchain systems would be inadequate
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to deal with all of these connected devices. Full nodes on a blockchain network are required
to store the entire blockchain ledger. Since the ledger is append-only, the capacity of these
nodes to store the ledger will eventually be exceeded, and their storage capacity would
have to be expanded to adapt [45–49].

The growth of the blockchain ledger greatly affects the scalability of the blockchain
system. The number of full nodes on the blockchain is also restricted due to the high storage
requirements [50]. This increases centralization in the blockchain, which, in turn, affects the
security of the system. These three blockchain characteristics—decentralization, scalability,
and security—are considered crucial and are at the heart of the blockchain trilemma,
a concept first described by Vitalik Buterin, the co-founder of Ethereum, as shown in
Figure 2 [44].

Figure 2. The blockchain trilemma.

The blockchain trilemma proposes that tradeoffs among the decentralization, scalabil-
ity, and security of a blockchain system are inevitable [44,51]. The blockchain is, by nature,
decentralized, and security is an essential property in its operation. However, this affects its
scalability. A classic example is in the Bitcoin network, where reducing latency to improve
transaction throughput may result in weakened security due to a higher probability of
creating forks in the blockchain [44].

Some works, such as those of Xu et al. [52] and Nartey et al. [53], propose off-chain
solutions for reducing the storage demand on peers. The cloud service, as the off-chain
storage, improves the scalability of the blockchain system and allows resource-constrained
devices to join the network as peers. However, the cloud service introduces centralization
to the system and may compromise the security as well.

Many proposed works struggle to find a balance among the three essential charac-
teristics in pursuing solutions to the storage and scalability problems of the blockchain.
The integration of blockchain into IIoT can only be accelerated through the proposal of more
sophisticated solutions for the storage inefficiency and scalability issues of the traditional
blockchain system. Many works have been proposed in this regard, and they are explored
in the next section.

4. Review of Approaches to Storage Efficiency in Blockchain–IIoT

The storage problem of the blockchain has been approached in different ways by
works that propose solutions for mitigating it. These storage optimization schemes or
storage models are usually motivated by specific use cases and may be designed for either
permissionless or permissioned blockchains. While the same principles underlie both
blockchain architectures, their designs differ in many ways. Some storage optimization
schemes capitalize on certain aspects of these architectures to achieve storage efficiency.
The requirements of the use case influence the blockchain architecture and, particularly in
IIoT, permissioned blockchains are used, since industrial participants are known and access
to data can be controlled. Some of the schemes discussed in this section can be implemented
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on either permissioned or permissionless blockchains. Schemes of this nature generally do
not change the operation of the underlying blockchain and may involve processing of data
before submission to the blockchain or changing the storage system of the peers.

This section explores the various works proposed to deal with the problem of storage
overhead in blockchain systems. The taxonomy proposed in this review is based on the
method by which storage optimization is achieved. As shown in Figure 3, these works can
be categorized into:

• Compression-based schemes;
• Summarization-based schemes;
• Storage scheme optimization;
• Machine-learning-enabled schemes.

Figure 3. Taxonomy of storage optimization schemes for blockchain systems.

4.1. Compression-Based Schemes

Compression-based schemes utilize a compression algorithm to reduce the amounts
of data that are submitted as transactions to the blockchain or to reduce the size of the
blocks in the blockchain. They can be divided into block compression techniques and data
compression techniques. Table 2 shows a comparison of these schemes.

Table 2. Comparison of compression-based schemes.

Proposed Work Approach Algorithm Compression Ratio/
Storage Reduction Limitations

Qi et al. [28] Data Compression Tree-based key-value
compression 4–9×

May have a low
compression ratio for

large product
record data

Kim et al. [54] Block Compression Block Merkle Tree 76.02% reduction
Sidechain requires

synchronization
between nodes



Electronics 2022, 11, 2513 7 of 25

Table 2. Cont.

Proposed Work Approach Algorithm Compression Ratio/
Storage Reduction Limitations

Spataru et al. [55] Block Compression Huffman coding and
LZW compression 48.5% reduction

Only suited for
Ethereum and
Ethereum-like

blockchains, only
focused on smart
contract code size

Chen et al. [56] Block Compression
Replacement of hash
pointers with index

pointers
12.71% reduction

Low storage overhead
reduction, not suited

for large-scale systems
such as IIoT

Marsalek et al. [57] Block Compression Snapshot block 93% reduction

Accumulation of
compression results

over time, suitable for
UTXO-

based blockchains

Yu et al. [58] Block Compression Deflate algorithm 30.53%–42.16% of
original block

Increased
mining difficulty

Ding et al. [59] Block Compression Txilm Protocol 8 Increased latency

4.1.1. Block Compression

Block compression schemes aim at reducing the storage overhead of the blockchain by
compressing the block after it is generated and committed to the blockchain. Kim et al. [54]
proposed SELCOM, a selective compression scheme using a Block Merkle Tree, for lightweight
nodes in blockchain systems. As shown in Figure 4, SELCOM allows nodes to maintain
blocks selectively through a second chain called a checkpoint chain. It uses BMT to
compress several blocks into a checkpoint. The compressed blocks can then be selectively
removed or maintained depending on each node. Their results indicated an average storage
reduction of 76.02%. The maintenance of a second chain introduces more complexity, as
synchronization between peers for this chain is required. Unlike other works, the authors
proposed an update mechanism to reduce the accumulation of compression results over
time. While SELCOM can be used to verify numerous blocks with fewer compression
results, the security of such an approach was not explored. Since IIoT systems have long
been plagued with security concerns, the ability of lightweight nodes to selectively maintain
blocks raises concerns, since it may be also be easier to have malicious nodes on the network.
To improve the security of such sidechains, research should be undertaken to explore the
use of further cryptographic proofs [60].

Spataru et al. [55] proposed a blockchain architecture with adaptive smart contract
compression to reduce the storage overhead of smart contracts. They used a hybrid
compression algorithm that combines the Huffman coding and LZW compression schemes.
They performed their testing using a custom blockchain called ABEY (Advanced Blockchain
for Enhanced Yields) with an enhanced virtual machine similar to that of Ethereum’s VM.
Their results indicated a 48.5% reduction of smart contract code size on average. This
approach is suited for the Ethereum blockchain. Its design is based on the Ethereum VM
and is practically suited for the Ethereum network’s large number of smart contracts or
distributed applications. For large-scale IIoT systems, the proposed work may not cause
a significant reduction in the storage overhead of the blockchain ledger, since it is only
focused on the smart contract code size. This approach could be improved by extending
the compression techniques proposed to not only bytecode, but also transaction data stored
in other blocks. Further research could investigate the effect of compressing other blocks
on the network as well.
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Figure 4. SELCOM [54].

Chen et al. [56] proposed a blockchain compression algorithm for blank node synchro-
nization on the bitcoin blockchain. A new blank node that joins the bitcoin blockchain
must download the full ledger from a full node. To reduce the bandwidth required to send
these data, they proposed this compression algorithm. Their approach involves replacing
hash pointers in transactions with index pointers. They deduced that hash pointers take up
15.07% of the space in blocks. Their results indicated a storage reduction by up to 12.71%.
Since it was proposed based on the Bitcoin blockchain, it may be difficult to implement on
other blockchain systems. The amount of storage space saved is also quite low compared
to that in other works. Further improvement to this work could involve further reduction
of redundancies in the transaction and block structure.

Marsalek et al. [57] proposed a compressible blockchain architecture for reducing the
size of the blockchain. They proposed a snapshot-based approach where snapshot blocks
containing the complete Unspent Transaction Output (UTXO) and all the block headers
are created periodically. These blocks form a snapshot chain, which is a second chain that
can be stored on lightweight or resource-constrained devices. They implemented their
prototype using Java. Their results indicated that this approach could reduce the size of
the blockchain by up to 93%. This approach is suited for UTXO-based blockchains, such as
Bitcoin. It has a relatively high complexity due to the maintenance of a second chain, which
requires synchronization of the nodes. It also does not account for the accumulation of
snapshots over time. The introduction of update mechanisms to reduce the accumulation
of snapshots over time would be a good improvement.

Ding et al. [59] proposed the Txilm protocol, which compresses the transactions in
the blockchain using the short hash of their transaction ID (TXID). The proposed method
reduces the size of the transaction from 32 bytes to 40 bits. The authors further optimized
Txilm by sorting transactions based on their TXIDs, which results in the reduction of the
transaction size to 32 bits and a compression ratio of 8. This approach, however, increases
the probability of hash collisions. To prevent collision attacks, the authors introduced a salt
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while calculating the short hash, which makes it harder for malicious attackers to create
malicious transactions.

Yu et al. [58] proposed a consensus algorithm called the Proof-of-Work-and-Block-
Compression (POW-BC), which was meant to improve the Proof-of-Work consensus algo-
rithm through transmission efficiency and the reduction of disk space occupied by blocks.
This was done by compressing blocks and adjusting consensus parameters. The block
compression is achieved using the deflate algorithm.

4.1.2. Data Compression

Some works have proposed the compression of product data before they are encap-
sulated in blockchain transactions. Qi et al. [28] proposed Cpds, a framework for efficient
and private data sharing for product traceability using Industrial Internet of Things (IIoT)
over the blockchain. As shown in Figure 5, the authors employ an off-chain procedure that
compresses and encrypts product data before its eventual submission to the blockchain.
Cpds uses a tree-based data compression mechanism that leverages the tree structure of tra-
ditional industrial systems for the amortization of data compression overhead. Participants
along the path in an industrial process submit point transactions with the latest off-chain
storage address of product data to the blockchain when they transfer product records to the
next participant. Terminal participants compress the final product data and submit them to
the blockchain as a data transaction. The authors implemented their prototype of Cpds
using Java and Python, and they used Hyperledger Fabric as the blockchain. Their results
showed that Cpds reduces storage overhead by 4–9 times compared to the baseline design
and has between 4.8 and 20 times faster access time than that of the baseline design. Cpds
is designed for permissioned blockchains for IIoT. It has a low impact on the blockchain’s
core operations, since it is only an overlay framework that sits atop the blockchain platform.
In terms of complexity, this approach is still relatively high, since it involves building a
unified data-sharing service encompassing compression and encryption techniques that
handle product record transfer between industrial participants, compression of product
data, data access control, and authentication. Further research could be undertaken to de-
termine how well Cpds performs with large product data, since their tests were performed
on small product data from 100 bytes to 10 Kb.

Figure 5. Compressed and private data sharing (Cpds) [28].
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4.2. Summarization-Based Schemes

Works based on summarization propose the use of summary blocks to reduce storage
overhead. These summary blocks contain details from original blocks that can then be
replaced by the summary blocks. A comparison of these works can be found in Table 3.

Table 3. Comparison of summarization-based schemes.

Proposed Work Approach Algorithm Storage Reduction Limitations

Palai et al. [61] Summarization Recursive
summarization tree 54% Huge block

summary size

Nadiya et al. [62] Summarization

Recursive
summarization tree

and deflate
compression algorithm

78.1%

Designed for bitcoin
blockchain, lack of
standard summary

block for
other blockchains

Palai et al. [61] proposed a block summarization method for reducing blockchain
storage overhead on systems with transferable transactions. This method allows resource-
constrained nodes to store the blockchain in a form that allows them to validate transactions
independently. This approach targets transactions that involve the partial or full transfer
of entities with a calculable net change for a series of transactions. The proposed method
replaces actual blocks with corresponding summary blocks with sufficient details from the
original blocks. This is achieved through a recursive summarization tree. The results of
their experiments showed a compression ratio of 54%. Their work failed to deal with the
problem of huge summary block sizes, which was addressed by the authors in [62].

Nadiya et al. [62] proposed a method for saving space on the blockchain that combines
a block summarization algorithm and the deflate compression algorithm as an improvement
of the work proposed in [61]. In this method, summary blocks, after they are formed, are
compressed with the deflate compression algorithm. Their results showed space savings
of 22.318% for summary blocks and 78.104% for compressed summary blocks. Whilst an
improvement on the storage savings of the recursive summarization strategy was achieved,
the target system was the Bitcoin blockchain, and thus, the lack of a standard summary block
limits its application to other blockchain systems. The proposal of a standard summary
block for different blockchain systems could be of interest for further research.

4.3. Storage Scheme Optimization

Another approach to improving the storage efficiency of blockchain systems is to
improve or change the storage schemes of these systems. Generally, there are two ways
in which blockchain data are stored; these are on-chain, where all blockchain data are
either fully or partially stored by the blockchain peers, and off-chain, which introduces
technologies such as cloud computing and secure distributed file storage to alleviate the
storage burden on the blockchain peers.

4.3.1. Off-Chain Storage

An intuitive approach to reducing the storage burden on blockchain peers is to leverage
the storage capabilities of other systems outside the blockchain network. There are two
main ways in which this can be achieved: cloud storage and distributed file storage. Table 4
shows a comparison of these works.
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Table 4. Comparison of off-chain storage scheme optimization works.

Proposed Work Approach Algorithm Storage
Reduction Runtime Limitations

Xu et al. [52] Cloud storage NSGA-C 30% 872.4 s Long runtime

Nartey et al. [53] Cloud storage AT-MOPSO - 384.2 s

Relatively poor
solution for local
space occupancy

compared to
NSGA-C

Zheng et al. [63] Distributed data
storage IPFS-based storage 91.83% -

Increased latency
due to queries to

IPFS network

Xu et al. [52] proposed the selection and storage of old blocks that are less likely to
be queried in the cloud to expand blockchain capacity for each peer. In their architecture,
shown in Figure 6, peers on the network are connected to cloud servers, to which selected
blocks are offloaded. They proposed the block selection problem as a multi-objective
optimization problem using objective functions of query probability, storage cost, and local
space occupancy. To solve the problem, the authors proposed a nondominated sorting
genetic algorithm with clustering (NSGA-C). Their results indicated an average storage
overhead reduction of 30%. However, the results showed a relatively longer runtime than
the benchmark algorithms.

Figure 6. Storage optimization using cloud storage [52].

Nartey et al. [53] improved the work in [52] with the proposal of an advanced time-
variant multi-objective particle swarm optimization algorithm to solve the block selection
problem. They proposed a blockchain-IIoT framework with fog nodes running side-chains
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using containers for the block selection, as shown in Figure 7. Their results showed a
relatively shorter runtime than the NSGA-C and other benchmark algorithms and lower
power consumption compared to the NSGA-C. Despite showing a marked improvement
in runtime and energy efficiency, the AT-MOPSO performed relatively worse than NSGA-
C for the local space occupancy objective, and this may be reflected in a lower storage
overhead reduction for peers. The metaheuristic algorithms proposed in these works to
solve the block selection problem could be improved through machine learning and, more
specifically, deep reinforcement learning (DRL). The strong generalization ability and faster
runtime of a trained DRL model [64] compared to the evolutionary algorithms that are
widely used in solving multi-objective optimization problems could prove pivotal for
obtaining better solutions.

Figure 7. Storage optimization using side-chain and cloud storage [53].

Zheng et al. [63] proposed a blockchain data storage model that uses the IPFS (inter-
planetary file system) [65] to store transaction data while the hash of the data is stored in
the block on the blockchain, as shown in Figure 8. The storage of all transaction data on the
IPFS may result in high latency for queries as the blockchain network grows, especially
in IIoT systems. Further research could explore the determination of which data may be
stored locally, particularly in IIoT systems.

4.3.2. On-Chain Storage

The immutability of the blockchain ledger has a great appeal for organizations that
intend to integrate this technology into their operations. However, this feature of the
blockchain is a factor contributing to its storage inefficiency for systems such as IIoT. One
of the interesting ideas that arose to combat this is providing flexibility when it comes to
the generation of transactions. Table 5 shows a comparison of these works.
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Table 5. Comparison of on-chain storage scheme optimization works.

Proposed Work Approach Algorithm Storage Reduction Query Efficiency Latency Limitations

Dorri et al. [66] Transaction flexibility MOF-BC 25% - max 6.5 min High transaction
processing time

Pyoung et al. [36] Transaction flexibility LitiChain
Average storage of

100%–142% of baseline
storage

- -

Undermines traceability
and integrity of

blockchain through
unrecorded hashes of

deleted transactions and
blocks; high retention

cost; complexity in
determining expiry time

of blocks

Qi et al. [67] Partial storage BFT-Store 86.8% - -
Long repair time for
decoding, leading to

longer processing time

Yu et al. [68] Partial storage VBG - 0.19 s - Increased query cost on
remote block data

Xu et al. [69] Partial storage Consensus Unit 75%–95% Increased query cost 3% higher than
benchmark

High latency on
off-node queries

Matzutt et al. [70] Block pruning CoinPrune 86.98% - - Limited by
UTXO-based design

Wang et al. [71] Block pruning ESS 82.14% - 9.21 s Limited by
UTXO-based design
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Figure 8. IPFS-based blockchain storage model [63].

Dorri et al. [66] proposed MOF-BC, a memory-optimized and flexible blockchain for
large-scale IoT networks. MOF-BC provides more flexibility with its transactions and the
storage of IoT data by introducing different transactions that allow IoT users and service
providers to remove, summarize, or compress transaction data. As shown in Figure 9,
MOF-BC introduces another layer that comprises multiple agents that handle memory
optimization. The authors implemented their prototype using C++ integrated with the
Crypto++ library and an SQLite database. Their results indicate a storage reduction of up
to 25%. The cumulative processing times for temporary and summarizable transactions
are 1.5 and 6.5 min, respectively. MOF-BC is suited for permissionless blockchain systems.
It has a high impact on blockchain operations; it changes the transaction structure and
introduces multiple agents that interact with the blockchain. To improve the processing
time of transactions in future research, it may be prudent to reduce the intermediate steps
for transaction processing and the number of agents with which peers on the network
interact.

Pyoung et al. [36] proposed LitiChain, which is a scalable and lightweight blockchain
architecture for edge-based IoT. The authors proposed transactions and blocks with finite
lifetimes. The expired blocks are removed from the chain. While this solution may seem
suitable for IIoT systems that generate a large number of transactions, LitiChain does
not record the hashes of the deleted transactions or blocks, which could undermine the
traceability and integrity of the blockchain.
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Figure 9. An overview of MOF-BC [66].

The partitioning of the blockchain network into groups such that peers store a part
of the blockchain ledger that is relevant to the peer’s operation and not the entire ledger
radically improves the scalability of the blockchain system and the storage burden on peers.

Qi et al. [28] proposed BFT-Store, a Byzantine fault-tolerant storage engine that uses
erasure coding for permissioned blockchain systems, to reduce storage consumption and
improve scalability. BFT-Store uses Reed–Solomon erasure coding for storage partitioning,
where the original blocks are transformed into coded chunks and stored by the nodes such
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that no single node stores the entire ledger. Erasure coding allows the recovery of the origi-
nal data through any subset with a sufficient number of chunks. The authors implemented
their prototype on the Tendermint blockchain platform with the PBFT consensus protocol
and LevelDB for data persistence. Their results showed that, for a fault factor of 4 and a
replica number of 3, they achieved storage savings of 86.38% using 40 nodes and a fixed
block size of 1 MB. BFT-Store is suited for permissioned blockchain systems. It has a rela-
tively high complexity and a high impact on core blockchain operations, since it introduces
an erasure coding scheme and uses partial node storage instead of the conventional full
replication approach. An avenue for improving this approach is to improve the repair
pipeline in Byzantine environments to reduce repair time during the decoding process.

Yu et al. [68] proposed a blockchain model named Virtual Block Group (VBG) to
address scalability in blockchain systems. This model combines partial node storage and
distributed hash table. Multiple successive blocks in the blockchain are combined as a
VBG. The nodes may store the VBG with block data or the VBG with only metadata.
The hash value of the VBG and the list of storage nodes are stored in a distributed hash
table among all the participating nodes. When a request for data that are not stored
locally on a node is made, the request is routed to the node that contains the storage
index of the data, and then the data are acquired from nodes close to the originating
node. The authors implemented their prototype in C#. The VBG model is suited for either
public and permissioned blockchain systems. It has a high impact on core blockchain
operations and has a relatively high complexity, since it introduces partial node storage
and a distributed hash table for queries. There is also increased latency when querying for
block data that are not stored locally.

Xu et al. [69] proposed a consensus-unit-based storage scheme to reduce storage
overhead on blockchain systems. In this approach, different nodes are organized into
units called consensus units. Each consensus unit stores a full copy of the ledger, and its
member nodes contribute part of their storage to store the ledger. In this manner, member
nodes can query within their consensus unit, rather than the entire network, for blocks
that are not stored locally. This storage scheme is demonstrated in Figure 10. Based on
this idea, the authors defined a block assignment optimization problem to determine the
optimal assignment of blocks in a consensus unit to ensure efficient storage and queries.
They proposed three heuristic algorithms for solving this problem. They evaluated their
algorithms using Blockbench, a benchmarking framework for blockchain systems. Their
approach allowed a space-saving percentage to be preset at 75%, 80%, 85%, 90%, and 95%.
Their results indicated a 3% lower throughput than the benchmark Ethereum design and a
3% higher latency than the benchmark Ethereum design. It also had a higher query cost
when fetching data from other nodes. This approach is suited for both private and public
blockchains. It has a relatively high complexity and would not be easy to implement due
to the partial node storage model. Queries for block data not stored on the peer also incur
more latency. Edge caching could be used to improve the performance of the schemes
proposed in [68,69] by reducing the latency in fetching frequently queried data.

Another approach to storage scheme optimization is block pruning, where older
blockchain data can be pruned or removed by individual nodes on the network to reduce
the storage burden on those nodes [72,73]. In UTXO-based blockchains, bloating of the
UTXO set with non-spendable transactions and unwanted content may be ameliorated
through pruning [74].
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Figure 10. Consensus unit [69].

Matzutt et al. [70] proposed CoinPrune, which is a snapshot-based block pruning
scheme for the Bitcoin blockchain that allows joining nodes to use only the small snapshots
of the ledger for bootstrapping. This enables established nodes to prune obsolete data
without affecting the network. This would help reduce the storage burden on the nodes.
Wang et al. [71] proposed ESS, an efficient storage scheme for Bitcoin network scalability.
They proposed the concept of UTXO-weight, which sets a weight for the unspent transac-
tions in each block and is used to determine which blocks should be pruned. Their results
showed 82.14% storage space savings on full nodes. The application of these block pruning
schemes in IIoT is limited by their design, which is focused on UTXO-based blockchains,
which are mainly cryptocurrency networks [75].

4.4. Machine-Learning-Enabled Schemes

As two of the innovative technologies driving advancements in information technol-
ogy research, blockchain and artificial intelligence are widely used in many fields [76].
The rapid development of AI shows its ability to effectively learn from massive amounts of
data. However, there have not been many works on using machine learning to optimize
blockchain storage directly. In an IIoT application, the massive amounts of data gener-
ated could provide useful insights into how to better store and access transactions on the
blockchain through machine learning.

Jia et al. [76] proposed an optimized data storage method for sharding-based blockchain
systems that utilizes an extreme learning machine (ELM) classifier. In a sharding-based
blockchain, certain nodes on the network can form a shard, which stores and processes
transactions separately from other non-shard nodes. Sharding improves the scalability of
blockchain systems. In this approach, nodes are separated based on three different roles:
user nodes, storage nodes, and verification nodes. The user nodes submit transactions on
the network, the storage nodes store the shard blockchain data, and the verification nodes
ensure the reliability of the storage nodes. Based on the historical query records, number of
transactions, transaction contents, and the security of a block, five features—the objective
feature of a block, the objective feature of the block associated with the node, the historical
popularity, the hidden popularity, and the storage requirements—are extracted and fed to
the ELM classifier. The ELM classifier classifies the blocks into hot and non-hot blocks—
hot blocks are frequently accessed by the node, while non-hot blocks are not frequently
accessed. Hot blocks are stored locally on the node to improve the query efficiency of the
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block. The results of their experiments showed a better performance in terms of classifica-
tion and query efficiency compared to the baseline ElasticChain system and an SVM-based
model. It may be difficult to extract features for classification. Future research could look
into replacing the ELM method with other effective machine learning techniques.

To the best of our knowledge, the work of Jia et al. [76] is the only work to directly optimize
blockchain storage by combining sharding and the extreme learning machine (ELM) algorithm.

5. Machine Learning for Blockchain Optimization

Various works have explored the possibility of incorporating machine learning into
blockchain systems to improve the performance of these systems and mitigate some of their
drawbacks. This section discusses some of the works that have explored the optimization
of blockchain systems with machine learning. Though these works do not focus on the
optimization of storage, this review shows the potential of machine learning to improve
not just the transactional throughput and latency in blockchain systems, but also how the
blockchain ledger is stored and accessed.

5.1. Selection Criteria

The works explored in this section were obtained from a total of 46,912 query results.
These query results were then filtered through selection criteria that determined which
works best suited the theme of the discussion, which is the optimization of blockchain sys-
tems through the use of machine learning techniques. Emphasis was placed on works that
did not simply incorporate machine learning techniques into blockchain-based systems, but
rather used these techniques to improve the blockchain’s performance. It should be noted
that the purpose of this section is to show the potential for machine learning techniques to
improve storage efficiency on blockchain systems by reviewing works on machine learning
techniques used for blockchain optimization; thus, few works are reviewed. The criteria
used are given in Table 6.

Table 6. Inclusion criteria for selected works.

No. Criterion

1 Publication date between 2018 and 2022

2 Emphasis on blockchain performance optimization using machine learning techniques

3 Detailed descriptions of the proposed schemes and the underlying technologies

5.2. Review of Selected Works

Al-Marridi et al. [77] proposed a multi-objective optimization blockchain framework
called Healthchain-RL based on deep reinforcement learning in order to optimize the
real-time behavior of blockchain networks for health systems while considering medical
data requirements, such as urgency and security. Healthchain-RL adaptively configures
the blockchain parameters, such as the number of transactions per block, and the min-
ers’ selection based on the application requirements of urgency, security, and transaction
age. The authors proposed an intelligent Blockchain Manager (BM) based on three deep
reinforcement learning approaches—Deep Q-Network (DQN), Double Deep Q-Network
(DDQN), and Dueling Double Deep Q-Network (D3QN) —which considers the blockchain
requirements and dynamics and optimizes the latency, security, and cost of transactions in
real-time. The authors noted that the D3QN approach favors unstable environments with
frequent changes even though it has a higher action time. They also noted that the DQN
approach is the best choice for systems where time is critical to their operation and little
latency is required.

Nguyen at al. [78] proposed a cooperative task offloading and block mining (TOBM)
scheme for optimizing system utility in blockchain-powered mobile edge computing (MEC).
In this scheme, they proposed a cooperative deep reinforcement learning approach us-
ing a multi-agent deep deterministic policy gradient (MA-DDPG) algorithm to optimize
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task offloading of edge devices to the MEC server and block mining on the edge devices.
The MA-DDPG scheme produced a higher system reward compared to the baseline algo-
rithms. The proposed scheme, which uses a Proof-of-Reputation (PoR) consensus, achieved
a lower block verification latency than the baseline scheme using a Delegated Proof-of-
Stake (DPoS) even though the latency increased for both schemes as the number of mining
nodes increased.

Fan et al. [79] proposed a DDQN-based computation offloading and resource allocation
algorithm (DDQN-CORA) for blockchain-enabled mobile edge computing systems. In this
work, the aim was to reduce the energy consumption and processing delay while ensuring a
high transaction throughput rate of the blockchain network. The proposed work addresses
the problem by optimizing offloading decisions, block size, and block interval. Their results
showed that the proposed algorithm performs better than the baseline pre-fixed offloading
approach and the random mapping offloading approach. The proposed algorithm showed
a lower average system cost with an increase in time slots, a lower average delay cost at a
low total computation capability, and a relatively lower energy cost. However, the DDQN-
based approach had an extremely large training loss at first and gradually approached zero
as the number of training episodes increased.

Li et al. [80] proposed a decentralized federated learning framework based on blockchain
called the Blockchain-based Federated Learning framework with Committee consensus
(BFLC) to address security concerns with federated learning, which involves coopera-
tively training a shared machine learning algorithm across multiple devices or servers.
The authors proposed a storage overhead reduction scheme where nodes with inadequate
storage capacity can delete older blocks locally and store the latest model and updates.
This method, however, reduces the security of the blockchain.

Qiu et al. [81] proposed an adaptive blockchain architecture based on deep reinforce-
ment learning to improve the scalability of blockchain networks. Their architecture has
three layers, which are, from bottom to top: the resource layer, the coordination layer,
and the application layer. The coordinator in the coordination layer dynamically allocates
resources (consensus protocols, computational resources, and bandwidth) in the resource
layer to different applications in the application layer based on the various QoS require-
ments. The authors proposed a dueling deep reinforcement learning algorithm to enable
the adaptive management of the blockchain. Their results showed a convergence of the
QoS value of their proposed scheme to a relatively stable and high value compared to the
baseline scheme without dynamic selection of consensus protocol, computing resources,
and bandwidth, respectively.

Hu et al. [82] proposed a mobile edge computing (MEC)-enabled blockchain frame-
work for IoT networks that relies on deep-reinforcement-learning-based joint performance
optimization. The authors developed an MEC and blockchain joint optimization algorithm
to maximize the computational efficiency of the MEC and the transaction throughput of
the blockchain. The algorithm is based on the deep deterministic policy gradient (DDPG)
learning algorithm. Their results showed a higher blockchain transaction throughput and
MEC computational efficiency compared to the other DQN-based and greedy approaches.
However, they noted that the algorithm compromises on the average block interval to
reduce power consumption.

Table 7 provides a summary of the works described in this section. The ability of
machine learning agents to find relationships in large sets of data and through interactions
in an environment to make useful inferences can be capitalized upon to improve the
storage efficiency of blockchain–IIoT systems. By developing optimization frameworks
based on different parameters of the blockchain and of the constituent nodes, such as
latency, storage capabilities, and computing power, these systems can adapt to different
requirements and configurations to improve the storage and query efficiency, as well as the
transaction throughput.
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Table 7. Summary of works using machine learning for blockchain optimization.

Proposed Work Machine Learning
Algorithm Focus Contributions

Al-Marridi et al. [77]
Healthchain-RL DQN, DDQN, D3QN Transaction throughput,

security

Relatively high average
accumulated rewards

compared to greedy and
random selection algorithms

Nguyen et al. [78] TOBM MA-DDPG Consensus algorithm

Relatively high system reward
and lower block mining
latency compared to the

baseline algorithms of DDPG,
DQN, and Actor–Critic

Fan et al. [79] DDQN-CORA DDQN Transaction throughput

Lower average system, delay,
and energy costs under

different
computation capabilities

Li et al. [80] BFLC Federated learning Security, storage efficiency
Demonstrates stability by
achieving high accuracy
under malicious attacks

Qiu et al. [81] Adaptive
blockchain

Dueling deep reinforcement
learning

Consensus algorithm,
computation, and bandwidth

Converges to a higher QoS
value than the baselines

Hu et al. [82] MEC-enabled
blockchain framework DDPG-based Transaction throughput

Higher average rewards
compared to baseline schemes

implying enhanced
transaction processing of

MEC-enabled
blockchain network

6. Open Issues and Future Directions

Many solutions have been proposed over the years to mitigate the storage concerns
of blockchain technology and its application in large-scale networks, such as IIoT. These
solutions have great merit and can provide great results. Compression-based solutions
generally allow the reduction of storage overhead without relying on other technologies,
such as cloud computing, which have a more centralized model. This aspect facilitates
decentralization, which is a major facet and security feature of blockchain systems. A major
drawback of these solutions lies in their long-term feasibility. IIoT networks generate many
transactions and would ensure the rapid growth of the blockchain ledger. The accumulation
of the compressed results over time might not provide enough storage saving on peers.
The effect of compression on the processing of transactions should also be considered. IIoT
transactions may have certain latency requirements that could be adversely affected by
the compression techniques used. Summarization solutions generate summary blocks
that depend on redundancies in block data and transactions that transfer entities between
parties. These solutions suit financial systems and cryptocurrency systems, but may be
difficult to implement for IIoT systems. Storage optimization solutions focus on making
the optimal use of storage space for blockchain systems and sometimes combine several
paradigms and technologies to improve the storage overhead on blockchain systems.
Generally, these solutions are usually proposed as part of a new blockchain architecture,
as they tend to be complex and difficult to incorporate into existing blockchain systems.
In terms of long-term feasibility, these solutions may provide the best outlook. A major
drawback of these solutions includes the introduction of centralized models, such as cloud
storage, to save space on local peers or blockchain shards, which separate the blockchain
network into organizations that store separate ledgers and process transactions separately.
These solutions may also result in longer processing times for transactions due to the
computational needs of some algorithms.
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There are several possible future directions for researchers looking to improve the
storage efficiency of blockchain–IIoT applications:

• Most proposed blockchain storage solutions are specific to certain blockchain plat-
forms and certain types of blockchains, or they require a new blockchain architecture.
This limits the application of these solutions in most cases. Solutions that aim at
reducing storage overhead on any type of blockchain should be considered. Standard
summary blocks should be designed for various blockchain systems to improve the
applicability of summarization-based schemes in different systems.

• Another issue of note is that many storage solutions have a short-sighted approach,
especially in the case of compression- and summarization-based methods. This is
due to the fact that rapid growth of the blockchain ledger, particularly in large-scale
networks such as IIoT, would accumulate compression results and, thus, result in
unmitigated storage overhead over time.

• Since the volume of data and rate of data generation in IIoT systems are much greater
in comparison to those in other applications, compression techniques should be de-
signed to achieve an effective compression ratio regardless of file size and formats.
The representation of data before compression should also be examined, since the
appropriate representation of data can affect the performance of a compression tech-
nique [83]. Efficient representation of data would yield better compression ratios.

• Storage scheme optimization can still be improved for blockchain–IIoT systems. In-
creased query times due to the remote storage of block data on the cloud or on other
blockchain peers, such as in [68,69], can be alleviated through the use of edge caching,
where edge servers store block data that may be queried but are not necessarily vital
to the operation of the peer. The security of such an approach must then be taken into
consideration to avoid malicious attacks. The transaction flexibility offered in [66]
can be implemented while ensuring short processing times. This can be achieved
by reducing the intermediate steps that the transactions go through and by provid-
ing a decentralized approach to the agents that handle memory optimization on the
network.

• The use of machine learning can provide great benefits to blockchain–IIoT systems.
As in [52,53], where evolutionary algorithms were used to determine which blocks
should be offloaded to a cloud service to save space on local peers, machine learning
techniques such as deep reinforcement learning could be used for the classification or
determination of less frequently queried blocks. This might be favorable in comparison
to the long iterative process of evolutionary algorithms. Machine learning could also
be combined with summarization- and compression-based schemes, where different
transactions may be compressed or summarized using specific techniques to ensure
the best possible compression ratio.

7. Conclusions

The rapid growth of blockchain technology in recent years suggests that it will emerge
in even more applications in the coming years. The integration of blockchain into IoT
systems brings many benefits and certain drawbacks as the nodes on the blockchain grow
in number. One of the major drawbacks is the storage overhead incurred with the growth of
the blockchain network. The immutability of the blockchain ledger, though a great security
feature, ensures that the application of the blockchain technology in high transaction
environments such as IIoT would incur high storage overheads on participating peers.

This paper explores the storage and scalability concerns of the blockchain technol-
ogy and how these concerns affect its integration into IIoT. The high storage demand of
blockchain systems restricts the participation of resource-constrained IIoT devices, affects
decentralization as fewer nodes are able to join the network, and reduces the storage
efficiency of underlying databases.

Several solutions have emerged through research to address these concerns. These
solutions, which include summarization-based, compression-based, and storage scheme



Electronics 2022, 11, 2513 22 of 25

optimization methods, are necessary to enable the further development of blockchain–IIoT
integration. However, these solutions have shortcomings that reduce their effectiveness.
Compression-based schemes produce compressed blocks or data that accumulate over time
and may not ensure enough storage savings on peers. This can be alleviated by designing
compression techniques that provide an efficient representation of data for IIoT systems
to yield better compression ratios. Summarization-based schemes reduce redundancy in
block data by using the net change in transferring entities between parties and, thus, are
better suited for financial systems than for IIoT systems. Standard summary blocks that
suit different blockchain applications would be beneficial in reducing the storage overhead.
Storage optimization schemes combine different technologies to ensure the optimal use
of storage for blockchain systems but introduce centralization and weaken the inherent
security of the blockchain. This work proposes the use of machine learning techniques
in addressing the problem of storage efficiency. This approach, which has rarely been
explored by researchers, represents the next step in evolving these schemes to achieve even
greater results in terms of storage efficiency.

It is essential that research into solving the storage overhead problem of the blockchain
technology continues to ensure seamless integration with other technologies, such as IoT
and edge computing.
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