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Abstract: Robust scheduling problem is a major decision problem that is addressed in the
literature, especially for remanufacturing systems; this problem is complex because of the high
uncertainty and complex constraints involved. Generally, the existing approaches are dedicated
to specific processes and do not enable the quick and efficient generation and evaluation of
schedules. With the emergence of the Industry 4.0 paradigm, data availability is now considered
an opportunity to facilitate the decision-making process. In this study, a data-driven decision-
making process is proposed to treat the robust scheduling problem of remanufacturing systems
in uncertain environments. In particular, this process generates simulation models based on
a data-driven modeling approach. A robustness evaluation approach is proposed to answer
several decision questions. An application of the decision process in an industrial case of a
remanufacturing system is presented herein, illustrating the impact of robustness evaluation

results on real-life decisions.
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1. INTRODUCTION

In the era of Industry 4.0, a high level of connectivity
and intelligence through the adoption of ubiquitous in-
formation and communication technologies is required for
the manufacturing industry. These capabilities could help
address the current challenges faced by remanufacturing
systems (Yang et al., 2018). In addition to recycling and
reuse strategies, remanufacturing is an end-of-life strategy
that enables sustainability in the context of a circular
economy. Remanufacturing involves the restoration of end-
of-life products to their original working condition (Yang
et al., 2018). This process is marked by complete disas-
sembly, processing and reassembly of the products. The
challenges faced in the remanufacturing process generally
center on high uncertainty regarding the physical condi-
tions of the products. The routing and processing times
are unknown before the disassembly and inspection of
the product. Accordingly, these unknown properties are
determined through stochastic analyses. In this study, we
considered a robust proactive scheduling strategy for the
remanufacturing process, aiming to generate predictive
schedules that satisfy the performance threshold. To ad-
dress the operational challenge of process scheduling under
uncertainty, we propose a hybrid approach integrating
data-driven modeling with Industry 4.0 capabilities and

decision-making support through a robust evaluation of
scheduling scenarios.

Currently, Different static and dynamic tools are available
and can be used to propose schedules. Discrete-event sim-
ulation (DES) is a dynamic simulation approach, which
allows the generation of schedules via simulation models.
A limitation of this simulation approach is the need for
valid simulation models. Model building and validation are
time-consuming processes that require expertise in a vari-
ety of technical areas. Data-driven modeling is employed
for the generation of valid simulation models from the
data. These models can be used for experiments to provide
schedules for robustness evaluation. Therefore, production
data are required for modeling, which are assumed to be
available from the workshop in the Industry 4.0 frame-
work. To advance a working hypothesis in this paper, the
production data were assumed to be available.

This paper is organized as follows. The following section
presents the state-of-the-art scheduling problems in the
context of remanufacturing. Section 3 presents a modeling
and evaluation approach that addresses the aforemen-
tioned limitations as well as those listed in the state of
the art. An application of the remanufacturing process is
provided in Section 4. Further work and perspectives are
described in the previous section.
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2. STATE OF THE ART
2.1 Scheduling in stochastic environment

The scheduling problem in stochastic environments has
been widely treated as a decision problem in the field of
optimization. Generally, existing approaches are used to
generate predictive schedules that satisfy the performance
thresholds. This method is referred to as robust proactive
scheduling. Scheduling remanufacturing processes in this
context is a considerably challenging task. Unlike job- and
flow-shops, remanufacturing processes generally comprise
a three-stage process (Guide et al., 2000). In the disas-
sembly stage, the returned products are dismantled into
construction groups and materials. In the processing stage,
the materials are repaired, and in the reassembly stage,
the restored product is reassembled using the materials
and construction groups. This process is subject to a high
level of uncertainty, which should be considered when
scheduling remanufacturing activities. Several approaches
have been reported to address this issue (Morgan and
Gagnon, 2013). Considering the stochastic environment
of workshops, a common concern in all these approaches
is the performance evaluation of the proposed schedules
(Renke et al., 2021).

Robustness is a property that is typically used as a perfor-
mance indicator to evaluate schedules in a stochastic en-
vironment. (Himmiche et al., 2021) proposed a robustness
framework to facilitate decision-making in the scheduling
context, in which the robustness serves as a measure of
the service level. Their definition of robustness was used to
evaluate the robustness of remanufacturing schedules. In
particular, robustness evaluation requires valid production
schedules. Owing to the high uncertainty stemming from
the condition of returned products, the scope of traditional
operation management technologies is severely limited (I1-
gin and Gupta, 2010). The routing and time required
for processing are not always known upon the arrival of
the product; these parameters are determined after the
disassembly and inspection of the product. Moreover, the
complexity of the scheduling problem increases when the
possible disturbances in the workshop are considered. To
address this issues, (Guo et al., 2021) proposed the use of
stochastic models for dynamic scheduling.

2.2 Simulation-based scheduling

Simulation allows the representation of real-world systems
through digital models and the analyses of possible sce-
narios, and currently, different simulation technologies are
available for use. (Okorie et al., 2020) analyzed a reman-
ufacturing system using simulation tools for system dy-
namics, agent-based modeling, and DES. They exploited
the properties of DES to perform an exact micro-level
analysis of flow elements exhibiting stochastic behavior.
DES is a widely employed tool in production scheduling.
(Mohan et al., 2019) identified simulation as one of the
most popular tools for modeling manufacturing systems
in the context of dynamic job-shop scheduling problems.
In addition to modeling scheduling problems, simulation
is also used to evaluate the robustness of schedules under
the uncertainties of the workshop (Vieira et al., 2017).
Several examples of DES usage for scheduling in the field

of remanufacturing have been provided by (Guide et al.,
2000).

2.8 Data-driven modeling of remanufacturing systems

The simulation approach is severely limited by the consid-
erable time and effort involved as well as the expertise of
the modeler. To address these shortcomings, (Hubl et al.,
2011) presented a data-driven modeling approach for flow-
and job-shop production systems based on the Manufac-
turing Resource Planning (commonly known as MRP II)
data. Such data-driven approaches enable users to gen-
erate simulation models of manufacturing systems using
the data and provide valid production schedules within
seconds. An overview of data-driven modeling approaches
has been provided by (Reinhardt et al., 2019). For the
generation of simulation models, data-driven approaches
for modeling and simulation use data typically stored in
enterprise resource planning, management execution, and
production planning systems and provided via technical
interfaces such as spreadsheets and databases. In the
simulation environment, the algorithms create simulation
objects according to the data retrieved from the database.
The algorithm further runs simulation experiments in the
generated model and records the simulation results in a
database. To the best of our knowledge, automated model-
ing and simulation approaches capable of generating valid
production schedules for remanufacturing systems via sim-
ulation, which uses data featuring stochastic behavior, are
currently unavailable. To this end, a complete decision
process was developed, as detailed in the next section.

3. DECISION PROCESS DESCRIPTION

In Industry 4.0, the comprehension of the generated data
and considerations regarding the data represents major op-
erational challenges. The cross-industry standard process
for data mining (CRISP) was reported by (Schroer et al.,
2021) and derived for data mining applications, and this
standard is generally used in the manufacturing industry
to define machine learning processes. In this study, this
standard was adapted to the context of the dynamic ro-
bust scheduling problem for remanufacturing systems, as
illustrated in the sequencing diagram (Fig. 1). The first
phase of this process involves gathering an insight into
the business and data aspects; it focuses on interpreting
the robustness objectives from the data available in the
workshop. From the available data, the decision-maker
develops decision scenarios and formulates the questions
to be answered. The primary aim of the data preparation
phase is the collection of simulation data for the database.
The modeling phase is categorized into multiple sub-
phases. The DES-Simulator pulls data from the database
and generates a simulation model in the digital factory.
During experimentation, the DES-Simulator parameter-
izes the digital factory for each experiment, simulates the
scenario, and finally obtains the results. Following the
modeling phase, the DES-Simulator records the results
of all experiments in the database. The evaluation phase
involves the evaluation of simulated schedules, determi-
nation of robustness, and preparation of key performance
indicators (KPIs) for the decision-maker. This phase con-
sists of extracting data from the database, evaluating the
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robustness, and pushing the evaluation results. In the
deployment phase, the decision-maker interprets the KPIs
and applies the optimal scenarios to the physical system.
The CRISP is a circular process that loops back with
a new business and data understanding. In this study,
we focused on the modeling and evaluation phases. As
previously stated, the data were considered available.

3.1 Understanding of business and data phase

In the business understanding phase, the decision-maker
formulates the requirements and goals of the study. To
this end, the decision-maker analyzes the business and
available data, which can be retrieved from the factory,
and defines the KPIs to be analyzed.

3.2 Data preparation phase

In the data preparation phase, the decision-maker provides
relevant data for the analysis, modeling, and simulation
stages. The relevant data to analyze remanufacturing pro-
cesses include the workshop characteristics and its capac-
ities, remanufacturing processes, and planning of product
returns. In this study, the simulation was performed to
facilitate scheduling under uncertainty for a robustness
assessment. Accordingly, adequate simulation models are
required for this purpose. Owing to the size and complexity
of such systems, as well as the alternating simulation
experiments, manual modeling is not appropriate for the
simulation process. Data-driven modeling was chosen to
generate valid simulation models, run simulation experi-
ments, and provide schedules for robustness analysis in an
automated manner. Consequently, data describing the en-
tire remanufacturing system are stored in a database. The
database contains static data describing the products to
be remanufactured, shop floor resources, remanufacturing
process, and shift schedules, as well as dynamic experimen-
tal data describing variable order schedules and stochastic
patterns of machine disturbance and cycle times.

3.3 Data-driven-modeling phase

In the modeling phase, the simulation data are initially
extracted from the database. To set up the simulation
model, referred to as the digital factory, the algorithm
uses manually predefined and reusable standard elements
for the remanufacturing processes and resources. The dig-
ital factory is created based on these elements and the
static data pulled from the database. The elements of
the process include the logic of disassembly, processing,
and reassembly of products and parts, as well as the
prioritization and material routing through the system.
The elements of resources include the logic of the phys-
ical system and mirror the remanufacturing capacities
by adhering to the shift plans and business rules of the
shop floor. For each experiment, the simulation model
was parameterized using dynamic data, and a simulation
was subsequently performed. The simulation results, which
include the scheduling of tasks, were captured. To provide
simulation results to the decision-maker, the simulation
results were processed by the algorithm. The outputs for
the modeling phase are the production schedules and all
measures of KPIs. Following the modeling phase, all the
experimental results were pushed to the database.

3.4 Robustness evaluation phase

In the robustness evaluation phase, the simulated sched-
ules were first extracted from the database. Generally,
robustness is defined as the capacity of a schedule to assim-
ilate the impact of perturbations. A schedule is considered
to be robust if it exhibits low sensitivity to uncertainty.
In this definition of robustness, the notion of schedule
sensitivity is subjective. To overcome this subjectivity,
(Himmiche et al., 2021) proposed that the robustness be
measured as a probability measure. In this study, we used
this measure and defined the robustness for the probability
that the KPI measure of a schedule s; under uncertainties,
U, is less than or equal to a KPI limit defined by the
decision-maker (Equation 1).

RL(s;,U, K Plij,) = Pr(KPI(s;,U) < KPliim) (1)

In the second step of the robustness evaluation phase,
a statistical analysis was performed for the simulation
results to obtain the robustness level of each schedule and
for each KPI. In the third step, the evaluation results are
pushed to the database and made readily available to the
decision-maker. The results of the evaluation are used by
the decision-maker to obtain indications of the schedule
performance.

8.5 Interpretation and deployment phase

The interpretation of the evaluation results depended on
the questions defined in the data preparation phase. For
example, two interpretations are possible. For the same
schedule, s;, the robustness levels of different KPIs were
compared to interpret the performance of this schedule.
For a set of schedules S with s; € S, the comparison of
their robustness levels for the same KPI allows for the
determination of the schedule with the higher robustness,
which can be considered robust.

After interpreting the results, the decision-maker can se-
lect the optimal scenario and related actions to deploy the
scenario in the workshop. The deployment phase allows for
the execution of a robust schedule by the decision-maker.
If the obtained results are unable to address the decision-
maker’s expectations, the decision process can be repeated
with specific data adjustments. This process can also be
repeated with the new data from the workshop. The new
data may concern the configuration of the remanufacturing
workshop (workshop reconfiguration); it can also concern
the decision-maker’s requirements that may change ac-
cording to the factory’s strategy.

4. ILLUSTRATION ON TRAIN
REMANUFACTURING SYSTEM

The decision process described herein was applied to the
remanufacturing process of trains. All trains arrive at
the workshop following a predefined order. In the work-
shop, train cars are decoupled in the disassembly process.
These cars are subjected to individual processes through
a remanufacturing system that may include additional
disassembly processes as well. After the maintenance of
parts is complete, reassembly is performed to complete
the remanufacturing of trains.
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Fig. 1. Data-Driven decision process

4.1 Understanding of business and data phase

The entire remanufacturing process of one train contains
more than 400 processes, which are defined by the prede-
cessor and successor relations, precedence rules, and cycle
times. Additionally, more than 3000 subprocesses exist per
train, which were not considered in this step; however,
data-driven modeling is inevitable for future analysis. The
processes and operations were conducted in a workshop us-
ing 50 different resources. These resources were assigned to
two- and three-shift systems. For the modeling approach,
infinite buffers were used, and the spatial restrictions of
the workshop were not considered. A business rule was
established wherein no more than five trains were allowed
at the same time.

In the described system, decision-makers focus on two
KPIs: the makespan of trains (Cj,q.) and the productiv-
ity (p) calculated using Equations 2 and 3, respectively.
In Equation 2, the makespan, Cyqz(s;,tr;), of the train
tr; belonging to the schedule s; represents the difference
between the departure and arrival times of this train,
considering a set 1" of trains ¢r; with j € 1..NbT and
NbT denote the total numbers of trains. In Equation 3, the
productivity, p(s;), for a given schedule, s;, is expressed
as the difference between the departure time of the last
train and the arrival time of the first train divided by the
number of trains, NbT'.

(2)
3)

Cmaa:(siz tr]) = tdep(si7 trj) - tarr(siy t?"])

p(Sz) = (tdep(8i7tTNbT) - tar?"(si»trl))/NbT

For the analysis, the steady-state of the system was inves-
tigated. The makespan describes the duration of reman-
ufacturing for a single train. To decrease the total train
tardiness experienced by customers, the train makespan
must be reduced. The productivity represents the number
of trains that the system can remanufacture in a given
time, and it should be enhanced. Based on these KPIs
for analysis and improvement, the following two questions
were formulated: How do the scheduling strategies influ-
ence productivity and makespan? How does the uncer-
tainty impact the robustness of the schedules?

4.2 Data preparation phase

Using the obtained data, the decision-maker can describe
the workshop characteristics with the uncertainties to be
considered and the KPIs to be measured. In particular,
the entrance data considered for scheduling describe the
arrival of the 20 trains to be scheduled. The duration
between train arrivals was defined in terms of the number
of weeks. The uncertainties considered in the workshop are
as follows. Deviations of the cycle times (ST) were modeled
using a normal distribution with a standard deviation
of 10% around the mean. Machine failures (MF) were
modeled to represent an average availability of 97%, 98%,
and 99% of the available time with a mean repair time of
2 h. The chosen parameters were the Erlang distribution
with means of 66.6,100, and 200 h and deviations of 11.5,
14.1, and 20 h as well as the NegExp distribution with a
mean of 2 h.

The decision-maker defined the following thresholds for
makespan and productivity: Chapiim = 190 days and
prim = 39 days/train. These data were pulled from the
database to initiate the generation of the simulation mod-
els.

4.8 Data-driven-modeling phase

The modeling of the aforementioned problem depends on
the understanding of the remanufacturing process and the
description of the experimental scenarios. The descrip-
tion of the workshop and its parameters allow for the
generation of simulation models using a discrete-event
simulator (Witness 23.1a). These scenarios were defined
using two parameters. First, the scheduling strategy was
evaluated for six values of the duration between train ar-
rivals (s1, ..., s¢ € ). The second parameter is uncertainty,
which must be considered. For each scheduling strategy,
the deterministic case (no uncertainty) as well as the
stochastic time cycles (ST), MF, and combined (ST+MF)
uncertainties are treated, which led to the analysis of
24 scenarios. The number of simulation replications for
each scenario was fixed at 100. From these simulation
results, a robustness evaluation of the different KPIs can
be executed. The outputs of the modeling phase are the
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simulated production schedules, productivity KPIs, and
makespan of trains.

4.4 Robustness evaluation phase

To address the first question, a comparison of sched-
ules was performed, considering the worst-case scenario
of perturbations (MF+ST). The robustness evaluation
is employed to distinguish the impact of changing the
scheduling strategy on the productivity and the makespan
of trains. The robustness levels were measured according
to the definition given in (Equation 1). For instance, the
robustness level for productivity KPI is expressed using
(Equation 4).

RL(s;,U,39) = Pr(p(s;,U) < 39) (4)

The robustness evaluation results for the makespan and
productivity are illustrated in Figs. 2 and 3, respectively.
Using these figures, comparisons can be drawn between
the robustness levels of different scheduling strategies, s;
to sg. The thresholds defined by the decision-maker are
depicted in red.

Comparison of schedules makespan

1,2

» sl
s2
s3

s4

Robustness level

® S5

s6

——Threshold

160 170 180 190 200 210 220

Makespan of a train (days)

230 240 250

Fig. 2. Impact of scheduling strategy on train makespans

Comparison of schedules productivity

12

,.'. @ sl
s2
s3

s4

Robustness level
(=]
>

® s5

s6

——Threshold
34 36 38 40 42 44

Productivity of schedule (days/train)

Fig. 3. Impact of scheduling strategy on schedule produc-
tivity

To answer the second question, a robustness evaluation
was performed for each scenario of uncertainty for each
schedule. Results of the evaluation are presented for the
first schedule, s1, to analyze the impact of uncertainties
on the makespan (Fig. 4) and the impact of resource
availability on productivity (Fig. 5).

Impact of uncertainties on schedule robustness

s1

®s1_ST

Robustness level

s1_MF
s1_ST_MF

130 150 170 190 210 230 250
Makespan of a schedule (days)

Fig. 4. Impact of uncertainties on schedule robustness

Impact of resource availability on robustness

1,2

=

208

2

206 ®s1_MF_99
%

= . 2
2 o4 s1_MF_98
. s1_MF_97

32 34 36 38 40 2
Productivity (days/train)

Fig. 5. Impact of resource availability on schedule robust-
ness

4.5 Interpretation and deployment phase

Owing to the different results obtained from the evalu-
ation phase, the decision-maker possesses a holistic view
for answering the decision questions. First, according to
the analysis results concerning the impact of schedul-
ing strategies on the robustness (Fig.2) and (Fig.3), the
worst-performing strategy, s6, exhibited the highest ro-
bustness level of 91%, which met the threshold of 190
days. However, the same strategy notably decreased the
robustness level of productivity to 0%. To emulate these
results, the decision-maker should consider a compromise
between these two KPI values. In this case, the optimal
compromise comprises s4 with RL(s4,U,190) = 51% and
RL(s4,U,39) = 97%.

By adopting this strategy, the decision-maker will surely
meet the threshold values that were defined with a mini-
mum probability of 50%. A comparative study of (Fig.2)
and (Fig.3) reveals a conflict between the makespan
and productivity KPIs. Scenarios featuring satisfactory
makespan provide poor productivity and vice versa. This
behavior is observed, especially, in examples s5 and sg.
To overcome this conflict and improve the makespan and
productivity, decision-makers can redesign the system.
The starting point for system redesign constitutes changes
in the physical workshop or the organization of work.
For instance, decision-makers can enhance the workshop
capacities or improve the organization of work by changing
the priority and dispatching rules.

To address the second question, the decision-maker can
measure the impact of uncertainties on the robustness level
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of a schedule, as illustrated in Fig. 4. For the makespan, the
degradation of the robustness is clearly observed. In fact,
when the uncertainties in the scheduling scenario increase,
the robustness level gradually decreases. The decision-
maker can note that the deviation from the deterministic
values is minimal when considering only the ST scenario,
but it decreases upon the introduction of the MF scenario.
This trend demonstrates the manner in which different
types of uncertainties impact productivity and makespan.
The results plotted in (Fig. 5) clearly indicate that in-
creasing the availability of resources may increase the
robustness level of a schedule and the system KPIs, im-
plying that resource unavailability negatively impacts the
schedules. The impact of uncertainties on the makespan
and productivity is evident in (Figs. 4 and 5), respectively.
The decision-makers should note from (Fig. 4) the manner
in which the uncertainty negatively impacts the system
efficiency and from (Fig. 5) the manner in which minute
changes in availability impact the KPIs. Further uncertain-
ties can occur owing to missing materials and workforce.
To improve the system, new maintenance strategies such
as predictive maintenance can be implemented to improve
resource availability. Notably, analogous strategies are re-
quired to reduce material and workforce unavailabilities.
In addition, general pricing practices and scheduling pro-
cesses can be considered for making strategies to mitigate
the uncertainties. Reduction of the risk of delays could
also be considered for the pricing strategy and realized in
workshops by prioritizing critical trains

5. CONCLUSIONS AND PERSPECTIVES

In this study, we presented a performance analysis process
for remanufacturing systems based on data-driven dy-
namic modeling and simulation. This technique facilitates
the implementation of simulation studies on complex and
parameter-intensive systems. Its implementation benefits
from the availability of a standardized remanufacturing
process (i.e., a general model is available). This approach
can also be used for decision-making in medium- or short-
term planning if the modeling and simulation tools are
linked to a digital twin of the production and system.
Moreover, to consider the uncertainties inherent to re-
manufacturing systems, the presented approach involves
the study of the influence of scheduling strategies on per-
formance measures (KPIs) via the concept of scheduling
robustness. The presented example illustrates the feasi-
bility and scope of the process in real-world problems
involving resources, processes, and products. This example
was limited to a comparative study of the performance of
the production system as a consequence of disturbances
and scheduling scenarios to choose a scheduling strategy.
In future work, we will reveal the manner in which
the information richness of the employed simulation and
scheduling models can be leveraged to guide changes in the
remanufacturing and/or scheduling systems and achieve
performances that dominate, in the Pareto sense, those
obtained with the approach presented herein.
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