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Abstract
Background  Running overuse injuries (ROIs) occur within a complex, partly injury-specific interplay between training 
loads and extrinsic and intrinsic risk factors. Biomechanical risk factors (BRFs) are related to the individual running style. 
While BRFs have been reviewed regarding general ROI risk, no systematic review has addressed BRFs for specific ROIs 
using a standardized methodology.
Objective  To identify and evaluate the evidence for the most relevant BRFs for ROIs determined during running and to 
suggest future research directions.
Design  Systematic review considering prospective and retrospective studies. (PROSPERO_ID: 236,832).
Data Sources  PubMed. Connected Papers. The search was performed in February 2021.
Eligibility Criteria  English language. Studies on participants whose primary sport is running addressing the risk for the 
seven most common ROIs and at least one kinematic, kinetic (including pressure measurements), or electromyographic 
BRF. A BRF needed to be identified in at least one prospective or two independent retrospective studies. BRFs needed to 
be determined during running.
Results  Sixty-six articles fulfilled our eligibility criteria. Levels of evidence for specific ROIs ranged from conflicting to 
moderate evidence. Running populations and methods applied varied considerably between studies. While some BRFs 
appeared for several ROIs, most BRFs were specific for a particular ROI. Most BRFs derived from lower-extremity joint 
kinematics and kinetics were located in the frontal and transverse planes of motion. Further, plantar pressure, vertical ground 
reaction force loading rate and free moment-related parameters were identified as kinetic BRFs.
Conclusion  This study offers a comprehensive overview of BRFs for the most common ROIs, which might serve as a starting 
point to develop ROI-specific risk profiles of individual runners. We identified limited evidence for most ROI-specific risk 
factors, highlighting the need for performing further high-quality studies in the future. However, consensus on data collection 
standards (including the quantification of workload and stress tolerance variables and the reporting of injuries) is warranted.
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Key Points 

Levels of evidence for overuse injury-specific biome-
chanical risk factors range from conflicting to moderate 
evidence.

Findings were derived from studies with primarily mod-
erate to high quality.

Running related biomechanical risk factors are injury 
specific.

Joint mechanics within the frontal and transverse planes 
are more often related to running overuse injury risk 
compared to sagittal plane joint mechanics.

1  Introduction

Running overuse injuries (ROIs) are widespread, with a 
reported overall incidence of 19.4–79.3% [1]. Depending on 
the type of runner, definitions of injury, and follow-up peri-
ods, running-related injury incidence rates range between 
2.5 and 33.0 injuries per 1000 h of running [2]. The origins 
of ROIs are complex [3, 4] but principally result from an 
accumulation of repetitive stress applied to the body with-
out sufficient rest for tissue remodeling, resulting in tissue 
degeneration [5]. The stress response is a function of both 
tissue characteristics (influenced by lifestyle and genetic fac-
tors) and stress application characteristics (e.g., amplitude, 
frequency, duration) [6]. However, the non-invasive determi-
nation of these stresses is challenging, as is the measurement 
of stress accumulation in everyday life and sports [7]. To 
determine structure-specific stresses, computational models 
need to integrate precise anatomical information (e.g., bio-
logical tissues' properties and geometry) and the potential 
neuromuscular control strategy that governs force and power 
production [8].

Therefore, researchers and practitioners often attempt 
to predict injury risk based on less direct, less computa-
tional and information-expensive biomechanical param-
eters as surrogate variables to link running biomechanics 
and injury risk. Such running-related biomechanical risk 
factors (BRFs) include kinematic and kinetic parameters 
derived from ground reaction force, pressure mapping, 
electromyographic, and motion capture data. Using BRFs, 
runners at risk of developing an ROI can be identified. 
However, to prevent ROIs, further knowledge on cause-
effect relationships is needed [9].

Within a framework of injury development [10, 11], the 
most relevant BRFs could serve as a source for the improve-
ment of technical (e.g., running shoes or foot orthoses/
insoles), training, and feedback system interventions (e.g., 
in gait retraining or through "digital coaches" based on wear-
able sensor information) by targeting populations at risk. 
Research on BRFs employs different research designs and 
populations. The wealth of information is challenging to 
oversee.

ROIs can affect different types of tissues (e.g., tendon or 
bone) [12] within different anatomical locations, with the 
knee being the most frequently injured site [1]. Therefore, it 
is likely that the mechanical factors increasing the likelihood 
of sustaining an ROI differ for different types of ROIs. How-
ever, previous systematic reviews on the topic have either 
focused on BRFs for sustaining ROIs as a whole or consid-
ered only a single ROI. A systematic review applying the 
same methodology (e.g., inclusion and exclusion criteria) to 
studies analyzing BRFs concerning specific ROI subgroups 
is currently missing in the literature.

Therefore, the aim of this review article is: (1) to identify 
the most relevant BRFs and evaluate their evidence concern-
ing the most prevalent ROIs; and (2) to suggest future direc-
tions of research to improve the understanding of the rela-
tionship between running biomechanics and overuse injury 
development while considering the interplay between BRFs, 
workload characteristics and individual, structure-specific 
stress tolerances.

2 � Methods

2.1 � Search Strategy and Risk Factor Extraction

In the context of this review, we considered a variable a BRF 
if it was identified as being different between injured and 
uninjured runners with a statistical test.

The systematic review aimed to extract the evidence for 
BRFs for the ROIs with the highest prevalence and inci-
dence. Therefore, based on the work of Lopes et al. [12], 
we examined BRFs for the following ROIs: medial tibial 
stress syndrome (MTSS), Achilles tendinopathy (AT), plan-
tar fasciitis (PF), patellar tendinopathy (PT), iliotibial band 
syndrome (ITBS), tibial stress fracture (TSF), hamstring ten-
dinopathy (HT), and patello-femoral pain syndrome (PFPS). 
We followed the Preferred Reporting Items for Systematic 
Reviews and Meta-analyses (PRISMA) guidelines [13]. 
Before starting the literature review, we registered this study 
at PROSPERO (record ID 236,832).

We scanned the PubMed database for articles comparing 
the running biomechanics of injured and uninjured indi-
viduals for the eight most common ROIs. For each ROI, we 
used an injury-specific search string (for details, please refer 
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to the Supplementary Digital Content (SDC1)). In short, 
each search string comprised combinations of runn* (i.e., 
the main activity), the injury location (e.g., tibia*), multi-
ple keywords to characterize injury-specific physical com-
plaints (e.g., risk OR tend* OR pain), and the study design 
(e.g., prospective OR retrospective). We used an additional 
combination of keywords to obtain original English articles 
involving human participants. The initial search for ITBS, 
MTSS, and HT took place on 4 February 2021. One day 
after (5 February 2021) the search strings for AT, PT, PFPS, 
PF, TSF were applied. Search results, including titles and 
abstracts, were uploaded to the web interface of rayyan.qcri.
org [14]. We then screened titles and abstracts of the articles 
using the following criteria:

Inclusion criteria:

•	 Studies in the English language
•	 Prospective or retrospective studies addressing at least 

one of the ROIs of interest and relating injury risk to at 
least one discrete BRF

•	 Studies considering discrete kinematic, kinetic (including 
pressure measurements), or electromyographic BRFs

•	 The primary sport of the investigated study sample was 
running.

Exclusion criteria:

•	 No BRF analyzed
•	 Studies that sampled from populations where distance 

running was not the primary sport
•	 Studies only addressing biomechanical risk factors dur-

ing dynamic activities other than running (e.g., walking 
or stair climbing)

•	 Studies addressing anthropometric factors (e.g., leg 
alignment, foot posture index) or strength measurements 
(e.g., toe strength or hip abduction strength)

•	 Studies including military or physical education students 
due to the unknown effects of concurrent training

•	 Studies (obviously) publishing duplicate results from the 
same subject sample as in a previous publication obtained 
from the same group; however, if the subsequent publi-
cations addressed novel potential BRFs which were not 
addressed in the first publication, the novel BRFs from 
the second study were included. Any BRFs that had been 
reported in the first study were excluded

•	 Non-original articles (e.g., reviews or conference arti-
cles) or articles not written in English.

When considering retrospective studies, we included 
studies where runners were still suffering from the injury 
or where they had already recovered from the injury. How-
ever, since we were addressing BRFs during running, the 
participants were all able to run for the data collections. We 

further considered retrospective studies when runners had 
recovered from the injury independent from the timeframe 
during which the injury had occurred, i.e., for how long the 
runners had already recovered from the injury. Details on 
these aspects are reported for each study in SDC3.

After applying the inclusion and exclusion criteria, two 
review team members independently screened titles and 
abstracts of studies found through the search strategy for 
potentially relevant studies. The selection of appropriate 
studies was discussed between the team members, and in the 
case of disagreements, these were resolved through consulta-
tion with another member of the review team. Subsequently, 
full texts were screened based on the same exclusion and 
inclusion criteria.

Additional sources were identified through the reference 
list of the eligible articles from the initial search and a co-
citation method using the bibliographic coupling concept 
(www.​conne​ctedp​apers.​com).

Data on study characteristics were extracted from all 
included articles by members of the review team. Discrep-
ancies were identified and resolved through discussion (with 
another reviewer if necessary). This data extraction included 
publication details (author and year), general information on 
injury type, specific running population, sample size, data 
collection method, running speed and footwear used during 
testing, and biomechanical outcome variables. Furthermore, 
we determined whether potential risk factors found in other 
studies could have been calculated based on the reported 
data collection methods. We also collected data on partici-
pant characteristics (e.g., age, sex, height).

2.2 � Relevance Criterion for Considering 
Running‑Related Risk Factors

We considered a BRF relevant if at least one prospective 
study or two retrospective studies from independent data 
collections found a significantly different value of a BRF 
for a specific ROI.

2.3 � Quality Rating and Risk of Bias Assessment

We followed the same procedure as in a previously published 
review [15] using selected components from the 'Quality 
Index' developed by Downs and Black (D&B) [16]. The 
modified 'Quality Index' scale consists of 15 items. All 
points of the modified 'Quality Index' were summed to pro-
vide a quality score for each study. Studies scoring 11 or 
greater were considered to be of high quality, studies with 
scores of six to ten were considered to be of moderate qual-
ity, and studies with scores of five or less were considered 
to be of low quality [17]. Two members of the review team 
independently assigned all ratings. Outcomes were discussed 

http://www.connectedpapers.com
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in a team meeting, and discrepancies between raters were 
resolved by consulting a third rater.

Due to poor reliability observed in items addressing 
external validity in the complete D&B Quality Index [16], 
we performed a separate risk of bias assessment using a 
10-point checklist, previously described in a systematic 
review of ROIs [12]. Each item was rated with either 1, 
referring to a low risk of bias, or 0, referring to a high risk of 
bias. If certain items could not be categorized, we assigned 
them a value of 0. Overall, we summed up the ten items' 
scores. When less than half of the maximum possible points 
(i.e., ≤ 5 of 10 possible points) were reached, we considered 
the study to have a high risk of bias. Again, the rating was 
assigned independently by two raters. Inconsistencies in any 
item were first discussed between the two raters. If no con-
sensus between the two raters was achieved, a third rater 
resolved the conflicts.

To determine the strength of evidence of a BRF for a 
specific ROI, we followed the same approach as a previous 
review focussing on the role of BRFs for running injuries in 
general [18]. These authors used the following categories 
described in detail by van Tulder et al. [19]:

•	 Strong evidence: Consistent findings among three or 
more studies, including a minimum of two high-quality 
studies.

•	 Moderate evidence: Consistent findings among two or 
more studies, including at least one high-quality study.

•	 Limited evidence: Findings from at least one high-quality 
study or two low- or moderate-quality studies.

•	 Very limited evidence: Findings from one low- or mod-
erate-quality study.

•	 Inconsistent evidence: Inconsistent findings among mul-
tiple studies (e.g., one or multiple studies reported a sig-
nificant result, while one or multiple studies reported no 
significant result).

•	 Conflicting evidence: We defined conflicting as con-
tradictory results between studies (e.g., one or multiple 
studies reported a significant result in one direction, 
while one or multiple studies reported a significant result 
in the other direction).

•	 No evidence: Results were insignificant and derived from 
multiple studies regardless of quality.

3 � Results

After identification, screening, and applying the exclusion 
and inclusion criteria, 66 articles were included in the review 
(Fig. 1).

In the following, we report the findings independently 
for each ROI considered. The findings are summarized 
graphically in Figs. 2 and 3. Detailed results on study details 

(SDC3), quality assessment, and risk of bias rating (SDC2) 
can be found in the SDC.

3.1 � Achilles Tendinopathy (AT)

We identified 13 studies (twelve retrospective, one prospec-
tive) that had analyzed, in total, 123 different potential BRFs 
for AT (SDC4) through our systematic screening of the lit-
erature [20–32]. Out of these parameters, five BRFs were 
identified in either two independent retrospective studies or 
one prospective study, following our predefined relevance 
criterion.

Two BRFs related to the motion of the ankle joint in the 
frontal plane (rearfoot inversion-eversion relative to the 
tibia) were identified. Two medium quality retrospective 
studies (D&B: 7–10), one with a high risk of bias [risk of 
bias score (ROBS): 4], identified increased ankle range of 
motion from touchdown (i.e., initial contact of the foot with 
the ground) to maximum rearfoot eversion during the stance 
phase as a BRF [22, 30]. However, three retrospective stud-
ies (D&B: 8–11; ROBS: 4) [20, 25, 28] could not establish a 
difference in ankle eversion range of motion in runners with 
compared to runners without a history of AT (Fig. 2). Fur-
thermore, more pronounced ankle inversion at initial contact 
with the ground was retrospectively identified as a BRF for 
AT by two medium quality studies with a high risk of bias 
(D&B: 7–8; ROBS: 4) [28, 30].

A high quality (D&B: 14) [21] prospective study with 
low risk of bias (ROBS: 8) using a pressure plate found 
that novice runners who developed AT within a 10-week 
follow-up period showed three differences in their plantar 
pressure application during the stance phase compared to 
novice runners who remained injury-free: first, a reduced 
antero-posterior displacement of the center of pressure dur-
ing the stance phase; second, higher vertical forces applied 
through the lateral part of the forefoot at the instant of fore-
foot flat; third, a reduced time to peak force at the medial 
heel (Fig. 2).

Many additional parameters differed between runners suf-
fering from AT and runners who did not. However, these 
results were only found in single retrospective studies and 
did not follow our predefined quality criterion. For a com-
plete list of all parameters for all ROIs, please refer to SDC4.

In summary, we identified limited evidence for a reduced 
anterior–posterior displacement of the center of pressure, 
higher vertical forces applied through the lateral part of the 
forefoot at the instant of forefoot flat, and a reduced time 
to peak force at the medial heel during the stance phase 
as BRFs for AT. We further found limited evidence for 
increased ankle inversion angle at initial contact and incon-
sistent evidence for ankle eversion range of motion from 
initial contact to peak rearfoot eversion during stance as 
BRFs for AT (Fig. 3).
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Fig. 1   Flow-chart of the identification process. The numbers for articles per injury do not sum up to the total number of articles because some 
studies have addressed multiple running-related injuries
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3.2 � Medial Tibial Stress Syndrome (MTSS)

Our search resulted in five (four retrospective, one prospec-
tive) studies addressing BRFs for MTSS [20, 32–35]. In 
these studies, 34 individual BRFs were investigated (SDC4). 
However, only three BRFs matched our relevance criterion.

In a high quality (D&B: 11; ROBS: 7) prospective study, 
competitive runners (NCAA Division 1) developing MTSS 
during a 2-year follow-up period ran with greater peak 
rearfoot eversion relative to the tibia, and their ankle joints 
remained in an everted position for a longer time during 
the stance phase compared to runners who did not develop 
MTSS [33]. Furthermore, in the same study, runners devel-
oping MTSS had a greater peak contralateral pelvic drop 
during the stance phase compared to runners not suffering 
from MTSS [33]. Higher peak contralateral pelvic drop was 
further identified by a moderate quality retrospective study 
with a high risk of bias (D&B: 8; ROBS: 5) [32]. The finding 
that runners with MTSS spend more time in eversion during 
stance was replicated in a moderate quality retrospective 
study (D&B: 9; ROBS: 4) [20]. However, the finding that 
peak eversion is a risk factor for MTSS was not replicated 
in this study [20] (Fig. 2).

In summary, we found moderate evidence for eversion 
time during stance, inconsistent evidence for peak eversion, 
and moderate evidence for peak contralateral pelvis drop 
during stance as BRFs for MTSS (Fig. 3).

3.3 � Tibial Stress Fractures (TSFs)

We identified nine retrospective studies addressing BRFs for 
TSFs [31, 36–43]. These studies considered 41 individual 
BRFs (SDC4). Three BRFs met our predefined relevance 
criterion. Two moderate quality studies (D&B: 9–10; ROBS: 
4–5) found higher peak ankle eversion during stance for run-
ners with a history of TSF [41, 43]. These same studies also 
reported greater peak hip adduction angles during stance for 
runners with a history of TSF compared to runners without a 
history of TSF [41, 43]. Further, two moderate quality stud-
ies (D&B: 9–10; ROBS: 4) found higher peak amplitudes 
of the free moment applied to the ground in runners with a 
history of TSF [40, 43].

One moderate quality retrospective study with a high risk 
of bias (D&B: 10; ROBS: 4) [39] found a statistically sig-
nificant difference in peak tibial acceleration between run-
ners with and without a history of TSF. Another moderate 
quality retrospective study with a high risk of bias (D&B: 
9; ROBS: 4) [43] reported higher (Cohen's d = 0.3) peak 
tibial shock in runners with a history of injury. However, no 
direct statistical test for differences between the injured and 
non-injured groups was performed in this study. Therefore, 
by applying our definition of a BRF, we could not consider 
this result as evidence for peak tibial acceleration as a risk 
factor for TSF. Consequently, peak tibial shock did not pass 
our relevance criterion and is not reported in the summary 
figures (Figs. 2 and 3), and we did not quantify a level of 
evidence for this parameter.

We identified a similar situation when assessing the 
potential of the vertical ground reaction force's average and 
peak instantaneous loading rates as potential BRFs for TSF. 
Milner et al. 2006 (D&B: 10, ROBS: 4) [39] could identify 
both of these parameters as BRFs for TSF for female runners 
following our definition of a BRF. However, two other stud-
ies [43, 44] reported higher values for vertical loading rates 
in injured runners but did not test for statistical differences 
between groups. While there was another study (D&B: 11; 
ROBS: 3) [31] that failed to identify statistically significant 
differences in instantaneous and average vertical loading rate 
parameters between runners with a history of TSF compared 
to runners with no history of TSF, there are data highlighting 
a potential for vertical loading rate variables as BRFs for 
TSF, which is also reflected by a recent meta-analysis [45]. 
However, overall there was only one retrospective study 
showing a statistical difference between runners with and 
without a history of TSF in average and maximum instanta-
neous vertical loading rates [39]. Therefore, due to our strict 
relevance criterion and definition of BRFs, we did not report 
vertical loading rate parameters in the summary figures and 
did not determine a level of evidence for these parameters. 
However, we encourage researchers to address loading rate 
parameters in future studies.

In summary, we identified limited evidence for peak ankle 
eversion, peak hip adduction, and peak free moment ampli-
tude as BRFs for TSF (Fig. 3).

3.4 � Plantar Fasciitis (PF)

Our search resulted in five retrospective studies considering 
46 potential BRFs for PF [31, 46–49]. Two out of these 46 
potential BRFs matched our predefined relevance criterion 
(SDC4). Runners with a PF history created higher instan-
taneous vertical loading rates of the ground reaction force 
in two retrospective studies [31, 48]. One study was of high 
quality (D&B: 11) but also with a high risk of bias (ROBS: 
3) [31], while the other study was of moderate quality 

Fig. 2   Graphic representation of the evidence associated with run-
ning-related risk factors that have passed our predefined relevance 
criterion (at least a significant difference in one prospective study or 
two retrospective studies). Dot size scales with Downs & Black qual-
ity rating of the studies (i.e., the bigger a dot, the higher the quality 
rating of the study). The number in the dots is the risk of bias score 
of the study. The green color represents a study that had found a sig-
nificant difference between a group of injured runners compared to 
control. Red colors represent a study that could not find a significant 
difference between groups. Black circles around dots indicate a pro-
spective study design (no circles = retrospective study design)

◂
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(D&B: 10) and also a high risk of bias (ROBS: 4) [48]. 
Further, two high-quality (D&B: 11; ROBS: 3–5) studies 
found that runners with PF history applied vertical forces at 
a higher average loading rate to the ground [31, 46].

In summary, we found moderate evidence for average and 
instantaneous vertical loading rates of the ground reaction 
force as BRFs for PF (Fig. 3).

3.5 � Iliotibial Band Syndrome (ITBS)

We found 15 studies (three prospective and 12 retrospec-
tive) considering 93 potential BRFs for ITBS (SDC4) [31, 
32, 49–61]. Of these 93 potential BRFs, eight followed our 
relevance criterion. At the hip joint, conflicting evidence was 
found for the peak hip adduction angle. While one moderate 
quality retrospective study (D&B: 10; ROBS: 4) [56] and 
one moderate quality prospective study (D&B: 10; ROBS: 
5) [59] found significantly higher peak hip adduction angles 
in runners with ITBS, three moderate (D&B: 9–10; ROBS: 
5) [51, 53, 57] and one high quality (D&B: 12; ROBS: 5) 
[54] retrospective studies found reduced peak hip adduction 

angles during the stance phase in runners with ITBS com-
pared to non-injured runners (Fig. 2).

In addition to the six studies [51, 53, 54, 56, 57, 59] 
showing conflicting evidence regarding peak hip adduction 
as a BRF for ITBS (Fig. 2), another four retrospective stud-
ies (D&B: 8–13; ROBS: 5–6) [32, 52, 54, 61] could not 
establish a difference (neither higher nor lower values) in 
maximum hip adduction in runners with compared to run-
ners without a history of ITBS (Fig. 2).

A moderate quality (D&B: 10; ROBS: 5) prospective 
study found higher peak femoral external rotation (relative 
to the laboratory coordinate system) during stance in run-
ners who developed ITBS compared to their control group 
[59] (Fig. 2).

At the knee, one moderate (D&B: 8; ROBS: 5) [32] and 
one high-quality (D&B: 11; ROBS: 5) [61] retrospective 
study identified reduced knee flexion angles at touchdown in 
runners with compared to runners without a history of ITBS 
(Fig. 2). However, these findings regarding knee flexion 
angles at touchdown could not be replicated by one moderate 
quality prospective (D&B: 10, ROBS: 5) study [59] (Fig. 2).

Fig. 3   Overview of the evidence associated with running-related risk 
factors that have passed our predefined relevance criterion (at least 
a significant difference in one prospective study or two retrospective 
studies). ITB Iliotibial band. ↑ indicates that runners suffering from 
a running overuse injury had higher values of this biomechanical 
risk factor compared to non-injured runners. ↓  indicates that run-

ners suffering from a running overuse injury had lower values of this 
biomechanical risk factor compared to non-injured runners. ↑↓ indi-
cates conflicting evidence (i.e., at least one study showing higher and 
one study showing lower values of this biomechanical risk factor in 
injured compared to non-injured runners)
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Further, a moderate quality retrospective study (D&B: 10; 
ROBS: 4) [56] and one moderate quality prospective study 
(D&B: 10; ROBS: 5) [59] found significantly higher peak 
knee internal rotation angles during the stance phase in run-
ners with ITBS compared to non-injured runners. However, 
peak knee internal rotation was not identified as a risk factor 
for ITBS in four other retrospective studies (D&B: 8–12; 
ROBS: 5–6) [32, 53, 55, 61] (Fig. 2).

Further, two high-quality retrospective studies (D&B: 
12–13; ROBS: 6) reported significantly higher peak knee 
adduction angles in runners with compared to runners with-
out a history of ITBS [52, 55]. However, two retrospective 
studies (D&B: 8–11; ROBS: 5) [32, 61] failed to replicate 
the evidence concerning higher peak knee adduction angles 
as a BRF for ITBS (Fig. 2).

When applying a computer model which calculates the 
kinematics of the ITB, Hamill et al. (D&B: 10; ROBS: 5) 
[58] identified increased ITB strain and strain rates in run-
ners with compared to runners without a history of ITBS 
(Fig. 2) within a prospective study.

In summary, our systematic review established inconsist-
ent evidence for less knee flexion at touchdown, increased 
peak knee adduction angle, and peak knee internal rotation 
angle as BRFs for ITB. We found very limited evidence for 
increased ITB strain, increased ITB strain rate, and increased 
peak femur external rotation as BRFs for ITB. Further, we 
found conflicting evidence for peak hip adduction as a BRF 
for ITBS (Fig. 3).

3.6 � Patello Femoral Pain Syndrome (PFPS)

Twenty-six studies (four prospective and 22 retrospective) 
considering BRFs for PFPS were included in the system-
atic review [31, 32, 62–65, 65–84]. These studies analyzed 
in total 120 potential BRFs (SDC4). Of these, 13 BRFs 
matched our predefined relevance criterion.

At the hip, higher peak adduction angles were identified 
as risk factors by one high quality prospective study with 
low risk of bias (D&B: 11; ROBS: 8) [66], one high quality 
retrospective study with high risk of bias (D&B: 12; ROBS: 
4) [84], and three moderate quality retrospective studies 
(D&B: 8–10; ROBS: 5–6) [32, 73, 76]. However, six other 
retrospective studies (D&B: 10–12; ROBS: 4–5) [63, 64, 
69, 70, 80, 83] could not replicate the evidence for increased 
peak hip adduction angles as BRFs for PFPS (Fig. 2). A 
moderate quality prospective study with low risk of bias 
(D&B: 8; ROBS: 7) found increased average internal hip 
abduction moments in runners who developed PFPS com-
pared to runners who did not [67] (Fig. 2). Further, one 
prospective (D&B: 8; ROBS: 7) [67] and one retrospective 
study (D&B: 11; ROBS: 5) [70] identified increased peak 
internal hip abduction moments as BRFs for PFPS (Fig. 2), 

even though this finding was not replicated in another retro-
spective study (D&B: 12; ROBS: 5) [80] (Fig. 2).

One high-quality (D&B: 12; ROBS: 5) [83] and one 
moderate quality study (D&B: 8; ROBS: 5) [32] identi-
fied higher peak contralateral pelvic drop in runners with 
compared to runners without a history of PFPS. However, 
four other retrospective studies (D&B: 10–12; ROBS: 5–6) 
[63, 73, 76, 80] could not identify a significant difference in 
peak contralateral pelvic drop angle between runners with 
and without a history of PFPS (Fig. 2). Furthermore, three 
moderate quality retrospective studies (D&B: 10, ROBS: 
4–6) suggested that an increased peak hip internal rotation 
angle was associated with PFPS [64, 73, 76]. However, eight 
(one prospective, seven retrospective) studies (D&B: 8–12; 
ROBS: 4–8) [32, 63, 66, 69, 70, 80, 83, 84] could not rep-
licate these results for increased peak hip internal rotation 
angle as a risk factor for PFPS (Fig. 2).

One high-quality (D&B: 11) prospective study with low 
risk of bias (ROBS: 7) found greater internal knee abduc-
tion impulse in runners developing PFPS compared to non-
injured controls [71] (Fig. 2).

Several plantar pressure-related variables were identified 
by one high-quality (D&B: 11) prospective study with a low 
risk of bias (ROBS: 7) [74]. These were an increased peak 
vertical force at the lateral heel at touchdown (i.e., initial 
contact), as well as at the second and third metatarsal heads. 
Further, a reduced time to peak force at the medial and lat-
eral heel was found (Fig. 2).

Two retrospective studies (D&B: 10–11; ROBS: 5–6) 
related a reduced braking impulse of the horizontal ground 
reaction force and a longer contact time with an increased 
risk for PFPS [75, 78] (Fig. 2).

In summary, we found moderate evidence for a reduced 
braking impulse of the ground reaction force and longer 
ground contact times as BRFs for PFPS. There was limited 
evidence for the above-mentioned plantar pressure-related 
parameters and increased internal knee abduction angular 
impulse. We found very limited evidence for increased aver-
age internal hip abduction moments. Finally, we identified 
inconsistent evidence for increased peak contralateral pel-
vic drop, increased peak hip adduction and internal rota-
tion angles, as well as increased peak hip internal abduction 
moments during stance (Fig. 3).

3.7 � Patellar Tendinopathy (PT) and Hamstring 
Tendinopathy (HT)

A moderate quality study with a high risk of bias (D&B: 7; 
ROBS: 3) analyzed 42 potential BRFs for PT [85]. However, 
since this was the only study identified, our predefined rel-
evance criterion was not met. We could not identify a study 
focussing on BRFs for HT.
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4 � Discussion

This systematic review aimed to extract the evidence for 
BRFs for specific ROIs from the existing literature. While 
there are several important previous reviews on the role of 
BRFs for the development of running-related injuries, our 
work adds several relevant pieces to the complex puzzle 
of ROI development. It is the first systematic review that 
focuses on BRFs for the most prevalent ROIs while using 
the same inclusion and exclusion criteria for all considered 
injuries. Previous reviews either did not report overuse inju-
ries for specific types of injuries [18] or focused on a single 
overuse injury [15, 86–94]. Further, some reviews focused 
only on prospective studies [18]. While these studies are 
superior in their strength of evidence to retrospective studies, 
the majority of research on BRFs for ROIs has used retro-
spective designs. By applying our relevance criterion (poten-
tial BRFs identified from at least two retrospective studies 
or one prospective study), we acknowledged the superior 
evidence of the prospective study design while at the same 
time including insight gained from retrospective studies.

4.1 � Limitations

Despite the several strengths of this work, we need to high-
light several limitations. Due to the relatively low numbers 
of studies for certain BRFs and the lack of results reported 
or analyzed in the considered studies, we could not differen-
tiate our findings for different groups of runners. Different 
runners likely vary in their structure-specific stress tolerance 
levels and adaptation. In addition, running mechanics differ 
between runners, for example between males and females 
[95]. Sex differences have also been observed between male 
and female runners suffering, for example from PFPS [83, 
84], further emphasizing the need for considering individual 
factors in greater detail in future studies addressing BRFs 
for ROIs. Therefore, we recommend that future studies on 
BRFs should report as many details of the running popula-
tion as possible.

Pooling together the findings from all studies addressing 
an ROI without considering relevant covariates as we did in 
this review might identify inconclusive results. For example, 
increased peak hip adduction angles were only identified 
in female runners [56, 59], not in studies including male 
runners.

Further, different studies used heterogeneous defini-
tions of injury, types of runners (e.g., competitive vs. 
recreational), and outcome measures in the included full-
text articles, which challenged comparison across studies. 
Also, most studies did not consider running volume in their 
assessment of injury risk between groups (e.g., incidence 
per 1000 h of running [2]) or tried to quantify workload 

characteristics by other means. Since increased training 
volume or intensity likely amplify the risk associated with 
specific running patterns, a lack of control concerning train-
ing characteristics between injured and non-injured groups 
of runners might result in misleading findings for BRFs.

This review focused on the ROIs reported by Lopes et al. 
[12]. Future studies might extend our approach to more 
ROIs, e.g., femoral and metatarsal stress fractures, to provide 
a complete picture of BRFs for the wide variety of ROIs.

Further, we only used PubMed as our primary search 
database. Nonetheless, we felt that using PubMed with a 
relatively broad search strategy was most relevant for the 
review, and we performed additional searches using con-
nected papers and included papers identified within the 
reference lists. Therefore, we believe that the chances of 
missing relevant papers should be minimal.

4.2 � Outlook

Running injuries occur within a complex interaction between 
the stresses applied to body tissues while running, individ-
ual factors (e.g., age, sex, previous injuries), training (e.g., 
intensity, volume, rest intervals), and lifestyle (e.g., nutri-
tion, sleep) factors. Developing a holistic injury risk profile 
of a runner should consider these individual factors.

A list of relevant BRFs can inform the creation of a run-
ning biomechanics-related risk profile as one piece in this 
complex puzzle. Such a BRF profile considers the ROI 
risk due to the way somebody is running. Based on such a 
running-related risk profile, individualized footwear could 
be developed, or footwear might be reconsidered to change 
the running biomechanics towards a less risky profile. Con-
sidering specific injuries is significant progress for injury 
risk profiling. For example, running shoes can be designed 
to shift loading between musculoskeletal structures in the 
lower extremity and hence specifically address injury-spe-
cific risk factors [5]. A BRF profile might also inform pre-
vention training programs to strengthen biological tissues at 
risk or help to develop feedback tools that facilitate running 
gait retraining towards a less pronounced risk profile [96].

Gait retraining can modify several biomechanical vari-
ables identified within this review [97, 98]. Based on this 
review, reducing loading rates could be a strategy to reduce 
the risk for PF and potentially TSF. In a study with novice 
runners who underwent gait-retraining to reduce loading 
rates [98], lower injury incidences overall and particularly 
for PT were found in the gait-retraining compared to a non-
gait-retraining control group. This example highlights the 
potential of gait retraining based on a BRF profile to reduce 
injury risk.

However, the data presented in this review are not suf-
ficient to create meaningful running related-risk profiles at 
the moment. This is for several reasons.
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First, there is clearly not enough evidence in support of 
BRFs existing in the literature. Larger, high-quality, pro-
spective studies need to be performed to resolve this issue 
in the future. In this review, we identified a large variety 
of methodological details (SDC 3), which makes the pool-
ing of findings for a more holistic understanding difficult. 
Future approaches should aim to standardize experimental 
protocols and data analysis methods to overcome these dif-
ficulties. Further, only a few studies considered the fatigue 
response in running mechanics when addressing BRFs. 
Since ROIs result from repetitive loading over time, we sug-
gest improved integration of changes due to running-induced 
fatigue in the assessment of BRFs.

Further, studies need to consider the interaction between 
BRFs and other factors modulating injury risk. Knowledge 
of potential interactions might enable the weighting of BRFs 
to emphasize specific changes in running mechanics to 
reduce injury risk. For example, having suffered from a pre-
vious injury is a well-accepted, non-running related injury 
risk factor [99]. Consequently, knowledge of the injury 
history could be used to increase the weighting for BRFs 
related to the specific ROIs experienced by a runner in the 
past. Consequently, these BRFs could be considered more 
in individualized running shoe design, prevention training 
protocols, or running gait feedback tools.

Finally, there is a general lack of validation of BRFs in 
the published literature. With only a few exceptions (e.g. 
[98, 98]), no intervention studies have been performed that 
have first changed a BRF through gait retraining or footwear 
interventions and subsequently quantified reductions in ROI 
severity.

Based on these considerations, the findings of this review, 
and recent injury development frameworks [6, 7, 11], we 
propose the following directions for future research. These 
directions can be broadly categorized by either using larger 
datasets with potentially lower data precision or smaller 
datasets with higher precision.

The big data macroscopic approach can leverage the 
recent developments in wearable sensor technology and 
artificial intelligence. Today, running movement data can be 
captured during every training session and uploaded to large 
databases. However, the insight gained from the big data 
approach relies on the ability to determine relevant features 
(i.e., functional or discrete features related to injury risk) 
from these sensor signals, potentially with the assistance of 
artificial intelligence. The parameters identified from this 
review can serve as a starting point for such a data explora-
tion. However, this approach will only be successful if BRFs 
can be measured with high validity and repeatability within 
the running community.

Tools to collect and store data on large scales while using 
user feedback to label the occurrence of running-related pain 
or injuries might allow further insight by considering not 

only single data collection sessions but, in principle, the 
entire training history of an individual (e.g., changes asso-
ciated with fatigue) [100–102]. Further running mechan-
ics and training characteristics might be considered in their 
interaction with other individual or lifestyle-related factors. 
Research collaborations that use the same data capture and 
labeling methodology seem ideally suited to solve this task. 
Larger research collaborations might further present a solu-
tion to limitations that were present in most of the studies 
identified by this review, for example small sample sizes, a 
lack of considering confounding variables, application of 
different methodologies to determine running mechanics, 
and different definitions of injuries.

As identified by this review, the current body of literature 
on BRFs for ROIs is dominated by retrospective studies, 
rather than prospective studies (Fig. 2). From retrospec-
tive studies, causation between BRFs and injury cannot be 
inferred directly. High-quality, large-scale prospective stud-
ies are required to identify BRFs for ROIs. In conjunction 
with these studies, higher resolution analyses to quantify the 
loading experienced by specific tissues in distance running 
will also be of benefit to understand the pathomechanics 
underpinning running overuse injuries.

Such small data microscopic approaches rely on improve-
ments in biomechanical modeling approaches that can 
improve our understanding of how running biomechanics 
are linked to the stress of the tissues involved in ROIs. Here, 
the combination of individualized musculoskeletal models 
with, for example, finite element models of the tissues under 
consideration seems to offer the potential for improved tar-
geting of runner populations at risk and increased under-
standing of cause-effect relationships in ROI development. 
Single subjects study designs applying very detailed mod-
eling techniques might further improve our understanding 
of injury development since the etiology of an injury is not 
the same for all patients diagnosed with the same injury. 
However, currently, these techniques are time-consuming 
and rely on many assumptions that challenge the validity 
of the calculated stress characteristics. Therefore, the dis-
cipline of biomechanics should also target a more efficient 
yet precise quantification of input variables for these model 
calculations.

Finally, validation studies that apply interventions to 
reduce BRFs for specific injuries should be performed to 
improve the understanding of cause-effect relationships and 
improve our understanding of the effectiveness of interven-
tions derived from individual injury risk profiles.

BRFs should not be addressed in isolation, but rather in 
the context of relevant covariates in a comprehensive injury 
development framework [11]. A consensus on the minimum 
number and type of such framework variables for running 
injury research seems urgently needed to face this challenge.
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5 � Conclusion

In summary, this is the first systematic review that summa-
rises the evidence for BRFs for specific ROIs using the same 
search strategy and exclusion and inclusion criteria. Hope-
fully, this work can serve as the basis to identify runners at 
risk for specific ROIs and, from this basis, improve deci-
sions on footwear design or use, training and rehabilitation 
programs, and sensor-based devices to monitor and improve 
individual running biomechanics.
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