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Abstract: In recent years, the topic of embedded machine learning has become very popular
in AI research. With the help of various compression techniques such as pruning, quantization
and others compression techniques, it became possible to run neural networks on embedded
devices. These techniques have opened up a whole new application area for machine learning.
They range from smart products such as voice assistants to smart sensors that are needed
in robotics. Despite the achievements in embedded machine learning, efficient algorithms for
training neural networks in constrained domains are still lacking. Training on embedded devices
will open up further fields of applications. Efficient training algorithms would enable federated
learning on embedded devices, in which the data remains where it was collected, or retraining
of neural networks in different domains. In this paper, we summarize techniques that make
training on embedded devices possible. We first describe the need and requirements for such
algorithms. Then we examine existing techniques that address training in resource-constrained
environments as well as techniques that are also suitable for training on embedded devices, such
as incremental learning. At the end, we also discuss which problems and open questions still
need to be solved in these areas.
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1. INTRODUCTION

We are surrounded by billions of edge devices with a
broad variety of sensors that collect and process data,
increasingly with the help of artificial intelligence (AI).
Our cars are full of sensors, our smart-home devices have
various sensors and just about every electrical system
include some data processing.
Typical devices used for edge devices are microcontrollers
(MCUs), field programmable gate arrays (FPGAs), single-
board computers such as Raspberry Pis. Also smartphones
can be part of the edge in a broader sense. Production
and supply of MCUs shows how big the edge sector is. It
is estimated that worldwide shipment of MCUs amounts
to 30 billion per year until 2023 Statista (30.07.2021) and
demand for MCUs is expected to grow steadily.
Often, AI is based on machine learning (ML) which based
on data from the application. Currently, this data is
collected and sent to a server where the ML model is
trained. Unfortunately, the devices that collect the data
are located in sensitive places as far as privacy is concerned
- just think of the voice assistant in the living room.
Edge devices are resource-constrained systems that often
run on batteries. They are designed to last for a long time
with sometimes less than 0.1 W power consumption and
limited resources, e.g. 64 MHz CPU frequency and 256
KB RAM. Recently, remarkable results on MCUs have

been achieved, e.g. in speech and face recognition Sanchez-
Iborra and Skarmeta (2020)Moons et al. (16.04.2018).
The main advantages of Edge AI relate to:

• Data security: Since no information needs to be
transmitted to external environments, data security
is better ensured.

• Latency: Data transmission takes time and is often
associated with a delay. When this process is elimi-
nated, the result is available immediately.

• Energy saving and cost: The transmission of informa-
tion requires a server infrastructure. If there is no data
transmission, energy and resources and thus costs are
saved.

• No connection dependency: If the device relies on the
internet to function and the connection to the internet
breaks down, the data cannot be sent to the server.
This for example happens, if you try to use a voice
assistant and it does not respond, because it is not
connected to the internet.

Since most microcontrollers do not have an operating sys-
tem, several bare-metal inference frameworks have been
developed to support the execution of neural networks
(NN) on MCUs, while keeping computational and memory
requirements low. Among them are the NN-SDK Arm
Ltd. (06.06.2021) by Arm and TensorFlow Lite for Micro-
controllers David et al. (17.10.2020) by Google. However,
these libraries assume that the model is trained on pow-
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run on batteries. They are designed to last for a long time
with sometimes less than 0.1 W power consumption and
limited resources, e.g. 64 MHz CPU frequency and 256
KB RAM. Recently, remarkable results on MCUs have

been achieved, e.g. in speech and face recognition Sanchez-
Iborra and Skarmeta (2020)Moons et al. (16.04.2018).
The main advantages of Edge AI relate to:

• Data security: Since no information needs to be
transmitted to external environments, data security
is better ensured.

• Latency: Data transmission takes time and is often
associated with a delay. When this process is elimi-
nated, the result is available immediately.

• Energy saving and cost: The transmission of informa-
tion requires a server infrastructure. If there is no data
transmission, energy and resources and thus costs are
saved.

• No connection dependency: If the device relies on the
internet to function and the connection to the internet
breaks down, the data cannot be sent to the server.
This for example happens, if you try to use a voice
assistant and it does not respond, because it is not
connected to the internet.

Since most microcontrollers do not have an operating sys-
tem, several bare-metal inference frameworks have been
developed to support the execution of neural networks
(NN) on MCUs, while keeping computational and memory
requirements low. Among them are the NN-SDK Arm
Ltd. (06.06.2021) by Arm and TensorFlow Lite for Micro-
controllers David et al. (17.10.2020) by Google. However,
these libraries assume that the model is trained on pow-

erful machines or in the cloud and then deployed to the
edge device.
The MCU then only has to perform model inference. In
this strategy, the model is treated as a static object Arm
Ltd. (06.06.2021). In order to learn from new data, the
model has to be trained in the cloud again and uploaded to
the MCU again, making the use of Edge AI in an industrial
environment a difficult task:

• The embedded devices operate in a distributed envi-
ronment. Some devices are installed in remote and
difficult-to-access locations. Considering the enor-
mous amount of edge devices, it might be costly to
update the model on each of them.

• Each system behaves differently. Component toler-
ances, different enviroments, different ways of oper-
ating the system, make the same ML model perform
differently.

• Embedded devices have limited capabilities to store
field data. Transferring field data back to the data
centre is expensive and subject to delays.

• The environment is constantly changing, the perfor-
mance of the ML model decrease, when the distribu-
tion of input data changes, which is called concept
drift. The flexibility of the model is limited to MCUs,
as the neural networks are mostly compiled graphs
that are difficult to change in operation.

To overcome these challenges, algorithms need to be de-
veloped that enable to learn neural networks on the edge.
This paper gives an overview of the existing algorithms
and techniques that can be used for learning on the edge.
A distinction is made between techniques that can be used
directly on the edge and algorithms that can be used on
the edge in a broader sense.

2. RELATED WORK

There are review papers that describe some of the topics
that are only superficially considered in this paper in much
more detail. In the area of incremental learning, for exam-
ple Delange et al. (2021) summarizes existing techniques
and compares the results. Surveys dealing with the com-
pression of neural networks either focus on quantization
and pruning Liang et al. (24.01.2021) or on knowledge
distillation Gou et al. (2021). The topic of sparse-learning
methods for deep neural networks is treated by Ma et al.
Ma and Niu (2018).
Existing work does focus on specific techniques and their
derivatives. However, there is a lack of a global view of the
algorithms that apply to the edge and not, as is usually
the case, to computers.
Edge or fog devices have a wide range of processing
power and memory space. They range from ultra-low-
power controllers like ASICs or MCUs to mobile phones
or small computers like the Nvidia Jetson or a Raspberry
Pi. In general, the paper will discuss learning algorithms
for MCUs, FPGAs, single-board computers and smart-
phones. We deliberately omit ASICs and other specialized
hardware, because these devices are heterogeneous and
are usually only dedicated to inference of trained neural
networks. Of course, some of the techniques presented here

can also be applied to ASICs, but we limit ourselves to the
target devices mentioned above.

3. REASONS FOR A SEPARATE CONSIDERATION
OF TRAINING NEURAL NETWORKS ON EDGE

DEVICES

Many of the techniques presented here are excellent for AI
applications in the Edge. However, the methods often lack
the consideration for resource-limited systems. We would
like to briefly explain the reasons why a special approach
is necessary and why the techniques can only be applied
in a practicable way.
Training or re-training neural networks on the edge has
many challenges. Most edge devices have the following
limitations:

• Limited device memory, because to train a network
we need to save more than just the weights and biases,
e.g. activations, gradients etc.

• Limited energy resources, because complex calcula-
tions require more energy.

• Limited computing power, so that the device cannot
calculate the result of the network in real time.

• Limited RAM, so that the network is too large to be
loaded on the device at all.

The challenges that arise from these restrictions are:
• To store all the training data on the device.
• To train the network in a practicable time.
• To train the network with few mathematical opera-

tions.
• Not having enough RAM to load the whole model to

train in on device.
These challenges must always be considered as a whole and
no attempt should be made to solve them individually.

4. METHODS TO TRAIN NEURAL NETWORKS ON
THE EDGE

In the following chapter we would like to go into the
methods that are suitable for being executed in the Edge.
Thereby, we go into techniques which:

• reduce the size of the neural networks itself.
• accelerate the training process of the neural networks.
• reduce the memory consumption in neural networks

training.
• not need all data at the same time to train neural

networks.
For this purpose, the most important publications in the
field are briefly mentioned. After the short overview, we
will go into one of the techniques in more detail.

4.1 Reduction of inference time and compression of neural
networks

Improving the energy efficient inference of deep neural
networks on resource-constrained edge devices has re-
cently attracted much attention. Starting from Han et al.
(08.06.2015, 01.10.2015); Gong et al. (18.12.2014); Denton
et al. (03.04.2014), one research direction focuses on the
compression of pre-trained neural networks, including:
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we need to save more than just the weights and biases,
e.g. activations, gradients etc.

• Limited energy resources, because complex calcula-
tions require more energy.

• Limited computing power, so that the device cannot
calculate the result of the network in real time.

• Limited RAM, so that the network is too large to be
loaded on the device at all.

The challenges that arise from these restrictions are:
• To store all the training data on the device.
• To train the network in a practicable time.
• To train the network with few mathematical opera-

tions.
• Not having enough RAM to load the whole model to

train in on device.
These challenges must always be considered as a whole and
no attempt should be made to solve them individually.

4. METHODS TO TRAIN NEURAL NETWORKS ON
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In the following chapter we would like to go into the
methods that are suitable for being executed in the Edge.
Thereby, we go into techniques which:

• reduce the size of the neural networks itself.
• accelerate the training process of the neural networks.
• reduce the memory consumption in neural networks

training.
• not need all data at the same time to train neural

networks.
For this purpose, the most important publications in the
field are briefly mentioned. After the short overview, we
will go into one of the techniques in more detail.

4.1 Reduction of inference time and compression of neural
networks

Improving the energy efficient inference of deep neural
networks on resource-constrained edge devices has re-
cently attracted much attention. Starting from Han et al.
(08.06.2015, 01.10.2015); Gong et al. (18.12.2014); Denton
et al. (03.04.2014), one research direction focuses on the
compression of pre-trained neural networks, including:
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• network pruning, which removes less important neu-
rons Han et al. (08.06.2015); Frankle and Carbin
(2018) or filter channels of convolutional neural net-
works Liu et al. (22.08.2017);

• network quantization, which reduces the bit width of
weights Han et al. (01.10.2015); Courbariaux et al.
(02.11.2015) or activations Jacob et al. (16.12.2017);
Wang et al. (21.11.2018);

• knowledge distillation, which uses large, well-trained
networks to train smaller network architectures.

However, these techniques are limited in their application
because they rely on a well-trained model for the target
task as a starting point. Another line of research focuses on
lightweight neural architectures that are either manually
designed Sandler et al. (2019); Howard et al. (17.04.2017);
Zhang et al. (2018b); Iandola et al. (24.02.2016); Huang
et al. (25.11.2017) or searched for neural architectures
search Tan and Le V (2020); Wu et al. (09.12.2018); Cai
et al. (02.12.2018, 16.07.2017). These lightweight neural
networks provide very competitive accuracies Cai et al.
(26.08.2019); Tan et al. (2019), while significantly im-
proving inference energy and memory efficiency. This also
allows the network to be trained more quickly, because
(1) the forward pass is carried out faster and
(2) fewer weights and biases have to be trained

However, in terms of training memory efficiency, major
bottlenecks have not been solved: the training memory is
dominated by activations rather than parameters (Figure
3).

Fig. 1. The AutoCompress framework divides pruning
into four steps: 1. action sampling, 2. fast action
evaluation, 3. decision-making, 4. actual pruning and
result generation. ( Liu et al. (06.07.2019)).

AutoCompress Pruning has the advantage of being fairly
easy to apply to any network architecture and any target
platform can benefit from it using intelligent execution
algorithms. The work of Liu et al. Liu et al. (06.07.2019)
presents a framework for automatic pruning of neural
networks. In a pre-trained deep neural network (DNN),
the automatic hyperparameter determination process de-
termines the pruning rate of the weights per layer and the
type of structured pruning scheme per layer. The goal is
to maximize the reduction in the number of weights or
floating-point operations per second (FLOPs), with mini-

mal loss of accuracy. The optimum would be to accelerate
the network without an accuracy loss. Since this is usually
not possible, a trade off must be handelt.
The framework divides pruning into four steps (Fig. 1):
(1) action sampling,
(2) fast action evaluation,
(3) decision-making,
(4) actual pruning and result generation.

Step 1 calculates several pruning candidates which are
evaluated in step 2. Because both steps must be performed
as quickly as possible to keep the framework practicable,
only simple pruning techniques such as magnitude pruning
can be used. In step 3, the pruning hyperparameters are
determined. The determination of the hyperparameters
is based on the information collected in step 2 where
the action samples are evaluated. Step 4 generates the
pruning result, using the Alternating Direction Methods
of Multipliers (ADMM) based structured weight pruning
algorithm Zhang et al. (2018a). Here, the pruning al-
gorithm can be more complicated and powerful as it is
performed only once in each round. The whole automatic
process is iterative, and steps 1 to 4 above reflect only one
round. The reason for this is that it is difficult to look
for high pruning rates in a single round and the whole
pruning process of the weights is iterative. The number of
rounds is given by the authors between 4 and 8 rounds
to allow a fair comparison to other pruning frameworks
and techniques. One advantage of AutoCompress is that it
supports a flexible number of iterative rounds to achieve
a trade off between accuracy and FLOP reduction. The
authors report that they are at the SOTA level of pruning
with this technology and can perform compression rates of
up to 33 times.

Further improvements The techniques presented are
already very well researched and widespread for use in the
Edge. However, it should be mentioned that the success
of pruning in terms of speedup and memory size always
depends on several points. Often, unstructured pruning
is used as a pruning technique, which only ”deletes”
individual connections instead of entire neurons. In order
to get an advantage with this technique, an intelligent
memory handling and calculation algorithm is needed to
avoid the 0 multiplication.

4.2 Efficient training algorithms

Training neural networks tends to be time-consuming Jean
et al. (05.12.2014), especially for architectures with a large
number of trainable model parameters. An important rea-
son why neural network training is typically slow, is that
backpropagation requires the computation of full gradients
and updates all parameters in each learning step Sun
et al. (20.06.2017). As deep neural networks with a lot of
parameters become more prevalent, more efforts are being
made to speed up the process of backpropagation. An
emerging research direction to accelerate backpropagation
is sparse backpropagation Sun et al. (20.06.2017); Wei
et al. (18.09.2017); Zhu et al. (01.06.2018), which aims
to sparsify the full gradient vector to achieve significant
computational cost savings. An effective solution to sparse
backpropagation is top-k sparsity, which keeps only k

elements with the largest absolute values in the gradient
vector and backpropagates them across different layers.
For example, me-Prop Sun et al. (20.06.2017) uses top-k
sparseness to compute only a very small but critical part
of the gradient information and updates the corresponding
model parameters. Going one step further, Wei et al.
(18.09.2017) implements top-k sparseness for backprop-
agation of convolutional neural networks. Experimental
results show that these methods can significantly speed-up
the backpropagation process. However, despite the success
in saving computational cost, top-k sparsity for backpropa-
gation still suffers from some hard-to-fix drawbacks, which
are explained in more detail below. On the theoretical
side, the theoretical properties of sparse backpropagation,
especially for top-k sparsity Sun et al. (20.06.2017, 2020);
Wei et al. (18.09.2017), have not been fully explored yet.

Fig. 2. The building blocks of TinyOL on MCUs ( Ren
et al. (15.03.2021))

TinyOL An extreme variant of sparse backpropagation
is the TinyOL technique Ren et al. (15.03.2021). Here,
only the very last layer of a neural network is retrained.
In most frameworks NNs are uploaded as a C array into
the flash of the edge device, they are treated as a frozen
graph and cannot be changed afterwards. Nevertheless,
in order to re-train the network, Haoyu Ren et al. Ren
et al. (15.03.2021) have come up with TinyOL. The core
component of TinyOL is the additional layer marked in
black in Fig. 2. This additional layer consists of multiple
neurons that can be adapted, initialized and updated
on the fly. This concept is similar to transfer learning,
where part of a pre-trained model is fixed and fine-tuning
takes place in the final layers. With the online learning
architecture, the additional layer can learn from streaming
data.
At each time, new sample data first flows through the
existing NN and is then fed into TinyOL. Depending
on the task, the accumulated mean and variance are
updated, and the input can be standardized. The system
then performs model inference. If an appropriate label
is available, the evaluation metrics and the weights in
the additional layer will be adapted using online gradient
descent algorithms, e.g. stochastic gradient descent (SGD).
In this way, the steps of training and prediction are
interleaved, first the label is generated by the prediction
and then the model is re-trained with the data point.
Once the neurons are updated, the sample pairs can be
discarded. In other words, at any one time, there is only

one data pair of the data stream in memory, and there
is no need to store the historical data. Compared to the
batch/offline training setting, TinyOL can be trained with
minimal resource consumption, making in-device training
on massive streaming data possible. With this design,
models can be fitted to a specific field, as the layer in
TinyOL can be trained in real time as the streaming
field data arrives. The consequence is that the model is
robust to concept drift, which means that the statistical
properties of the field data may change over time. Without
retraining, the model’s performance drops significantly
because the model cannot anticipate these changes during
the training phase.

Further improvements The presented sparse backpropa-
gation algorithms have proven that the computation time
can be shortened by omitting computational operations.
However, there are no considerations for memory min-
imization or whether training up to the first layer is
necessary for training or retraining. Many techniques also
lack consideration of how sparsity affects the execution
speed in parallel or serial computing units. Furthermore,
the combination of these techniques with, for example,
incremental learning is a promising idea that (1) shortens
training time and (2) can significantly reduce memory.

4.3 Reduced memory footprint during training

Researchers have been looking for ways to reduce the
training memory footprint. A typical approach is to recal-
culate discarded activations during backward computation
Gruslys et al. (10.06.2016); Chen et al. (21.04.2016). This
approach reduces the memory footprint at the cost of a
large computational overhead. Therefore, it is not pre-
ferred for edge devices. Layer-wise training Greff et al.
(22.12.2016) can also reduce memory requirements com-
pared to end-to-end training. However, it cannot achieve
the same level of accuracy as end-to-end training, because
not all parameters are updated at the same time and
thereby the dependencies of the weights are lost. Another
representative approach is activation pruning Liu et al.
(01.10.2018), which builds a dynamic sparse computa-
tion graph to prune activations during training. Similarly,
Wang et al. (19.12.2018) proposes to reduce the bit-width
of training activations by introducing new floating-point
formats with reduced precision. In addition to reducing
training memory costs, there are some techniques that
focus on reducing peak inference memory costs, such as
RNNPool Saha et al. (27.02.2020) and MemNet Liu et al.
(22.07.2019).

An interesting method of training a network using low-
bit operations was presented by De Sa et al. de Sa et al.
(09.03.2018). They show that it is still possible to obtain
accurate solutions from low accuracy training as long
as the problem is sufficiently well conditioned. They do
this with an algorithm called HALP, which overcomes
the accuracy limitations of ordinary low accuracy SGD.
Gradient variance noise is handled with a well-known tech-
nique called SVRG (stochastic variance-reduced gradient)
Johnson and Zhang (2013). To address the noise from
quantization, they introduce a new technique called bit
centering. The intuition behind bit centering is that, as
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where part of a pre-trained model is fixed and fine-tuning
takes place in the final layers. With the online learning
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At each time, new sample data first flows through the
existing NN and is then fed into TinyOL. Depending
on the task, the accumulated mean and variance are
updated, and the input can be standardized. The system
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is available, the evaluation metrics and the weights in
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descent algorithms, e.g. stochastic gradient descent (SGD).
In this way, the steps of training and prediction are
interleaved, first the label is generated by the prediction
and then the model is re-trained with the data point.
Once the neurons are updated, the sample pairs can be
discarded. In other words, at any one time, there is only

one data pair of the data stream in memory, and there
is no need to store the historical data. Compared to the
batch/offline training setting, TinyOL can be trained with
minimal resource consumption, making in-device training
on massive streaming data possible. With this design,
models can be fitted to a specific field, as the layer in
TinyOL can be trained in real time as the streaming
field data arrives. The consequence is that the model is
robust to concept drift, which means that the statistical
properties of the field data may change over time. Without
retraining, the model’s performance drops significantly
because the model cannot anticipate these changes during
the training phase.

Further improvements The presented sparse backpropa-
gation algorithms have proven that the computation time
can be shortened by omitting computational operations.
However, there are no considerations for memory min-
imization or whether training up to the first layer is
necessary for training or retraining. Many techniques also
lack consideration of how sparsity affects the execution
speed in parallel or serial computing units. Furthermore,
the combination of these techniques with, for example,
incremental learning is a promising idea that (1) shortens
training time and (2) can significantly reduce memory.

4.3 Reduced memory footprint during training

Researchers have been looking for ways to reduce the
training memory footprint. A typical approach is to recal-
culate discarded activations during backward computation
Gruslys et al. (10.06.2016); Chen et al. (21.04.2016). This
approach reduces the memory footprint at the cost of a
large computational overhead. Therefore, it is not pre-
ferred for edge devices. Layer-wise training Greff et al.
(22.12.2016) can also reduce memory requirements com-
pared to end-to-end training. However, it cannot achieve
the same level of accuracy as end-to-end training, because
not all parameters are updated at the same time and
thereby the dependencies of the weights are lost. Another
representative approach is activation pruning Liu et al.
(01.10.2018), which builds a dynamic sparse computa-
tion graph to prune activations during training. Similarly,
Wang et al. (19.12.2018) proposes to reduce the bit-width
of training activations by introducing new floating-point
formats with reduced precision. In addition to reducing
training memory costs, there are some techniques that
focus on reducing peak inference memory costs, such as
RNNPool Saha et al. (27.02.2020) and MemNet Liu et al.
(22.07.2019).

An interesting method of training a network using low-
bit operations was presented by De Sa et al. de Sa et al.
(09.03.2018). They show that it is still possible to obtain
accurate solutions from low accuracy training as long
as the problem is sufficiently well conditioned. They do
this with an algorithm called HALP, which overcomes
the accuracy limitations of ordinary low accuracy SGD.
Gradient variance noise is handled with a well-known tech-
nique called SVRG (stochastic variance-reduced gradient)
Johnson and Zhang (2013). To address the noise from
quantization, they introduce a new technique called bit
centering. The intuition behind bit centering is that, as
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Fig. 3. Memory cost comparison between ResNet-50 and
MobileNetV2-1.4 under batch size 16. Recent ad-
vances in efficient model design only reduce the size of
parameters, but the activation size, which is the main
bottleneck for training, does not improve much. (Cai
et al. (22.07.2020))

the gradient approaches the optimum, it becomes smaller
and in a sense carries less information, so we should be able
to compress it. By dynamically recentering and re-scaling
our low-precision numbers, we can asymptotically reduce
the quantization noise as the algorithm converges. They
prove that for strongly convex problems, HALP is able
to produce arbitrarily accurate solutions with the same
linear asymptotic convergence rate as SVRG, while using
low-precision iterates with a fixed number of bits.

TinyTL Cai et al. Cai et al. (22.07.2020) present an
interesting way of retraining networks in the field. Their
method of making only the bias trainable greatly reduces
memory requirements during training and thereby accel-
erate the training extremely. By analyzing the memory
requirements during backpropagation, Cai et al. Cai et al.
(22.07.2020) found that the intermediate activations (the
biggest bottleneck) are only needed when updating the
weights, but not when updating the biases. Inspired by
this finding, they proposed to freeze the weights of the pre-
trained network and to only update the biases to reduce
the memory requirement (Figure 4b). To compensate for
the loss of capacity, they introduce a memory-efficient bias
module, called the lite-residual module, which improves
model capacity by refining the intermediate feature maps
of the feature extractor (Figure 4c). At the same time, the
resolution and width of the lite-residual module are greatly
reduced to have a low memory overhead of 3.8%. Ex-
tensive experiments on nine image classification datasets
with the same pre-trained model (ProxylessNAS-Mobile
Cai et al. (02.12.2018)) demonstrate the effectiveness of
TinyTL compared to previous transfer learning methods.
Moreover, in combination with a pre-trained once-for-
all network Cai et al. (26.08.2019), TinyTL can select a
specialized sub-network as a feature extractor for each
transfer dataset (i.e. adaptation of the feature extractor):
a larger sub-network is selected for a more difficult dataset
and vice versa. TinyTL achieves the same (or even higher)
accuracy compared to fine-tuning the full Inception-V3,
while reducing training memory requirements by up to
12.9×.

Further improvements Tinytl is a technique that de-
livers impressive results for memory footprint reduction.
Unfortunately, this technique is also very limited when it

Fig. 4. TinyTL overview (“C” denotes the width and “R”
denote the resolution). Conventional transfer learning
relies on fine-tuning the weights to adapt the model
(Fig.a), which requires a large amount of activation
memory (in blue) for back-propagation. TinyTL re-
duces the memory usage by fixing the weights (Fig.b)
while only fine-tuning the bias. (Fig.c) exploit lite
residual learning to compensate for the capacity loss,
using group convolution and avoiding inverted bot-
tleneck to achieve high arithmetic intensity and small
memory footprint. The original skip connection re-
mains unchanged (omitted for simplicity). ( Cai et al.
(22.07.2020))

comes to adapting to completely new tasks or to highly
dynamic environments. For example, a combination with
other techniques could remedy this negative point.
A list of other ideas that could significantly improve
existing methods:

• Develop efficient algorithms to enable full-size train-
ing on the device. The shown algorithms usually train
only parts of the neural network, TinyOl only one
layer, tinytl only the biases. However, algorithms are
still needed that can train the entire network quickly
and with low memory consumption.

• Develop efficient algorithms for further optimizers
and neural network operations, e.g. recurrent neu-
ral networks, or spiking neural networks. Most of
the work has focused on dense and convolutional
networks, but mobile algorithms are also needed for
transformer or recurrent networks, for example.

• Develop efficient algorithms for online training. It
would be conceivable, for example, to combine effi-
cient learning algorithms with incremental learning
techniques.

• Explore training with reduced numerical accuracy,
e.g. on 8-bit MCUs.

• Develop efficient algorithms for federated learning for
distributed IoT devices.

4.4 Incremental learning

Continual learning explores the problem of learning from
an infinite stream of data with the goal of incrementally
expanding acquired knowledge and using it for future
learning Chen and Liu (2016). This approach is relevant for
learning on embedded devices, because the training data
does not have to be stored completely in the limited mem-

ory. Instead, the data is used as it occurs. The data may
come from changing input domains (e.g. varying imaging
conditions) or be associated with different tasks (e.g. fine-
grained classification problems). Continuous learning is
also referred to as lifelong learning Chen and Liu (2016);
Parisi et al. (21.02.2018), sequential learning Aljundi et al.
(14.06.2018); Shin et al. (24.05.2017) or incremental learn-
ing Ganea et al. (11.05.2021); Zhang et al. (07.04.2021);
Liu et al. (10.10.2020). The main criterion is the sequential
nature of the learning process, with only a small portion
of the input data from one or a few tasks available at a
time. The main challenge is learning without catastrophic
forgetting: Performance on a previously learned task or do-
main should not significantly deteriorate over time as new
tasks or domains are added. This is a direct consequence
of a more general problem in neural networks, namely
the stability-plasticity dilemma Grossberg (1982), where
plasticity refers to the ability to integrate new knowledge
and stability retains previous knowledge during encoding.
Although it is a challenging problem, advances in contin-
uous learning have led to the emergence of the first real-
world applications Lange et al. (2020). To get a deeper in-
sight into incremental learning, several surveys have been
written about the results of state-of-the-art techniques.
Masana et al. (29.10.2020); Delange et al. (2021); Parisi
et al. (21.02.2018); Belouadah et al. (03.11.2020)

incremental learning A method that addresses in-
cremental learning directly on an embedded device is
presented by Abdul Qader et al. AbdulQader et al.
(25.03.2021). Their method uses an evolutionary strat-
egy (ES) based technique to perform incremental training
without the need to use backpropagation or gradient cal-
culation. Due to the omission of the backpropagation algo-
rithm, the same forward pass algorithm can be used, which
in the case of an FPGA can be executed significantly faster
with lower hardware consumption. In their algorithm, a
subset of the model weights or the weights of a particular
layer are selected for training. At each iteration, the loss
function for each generated population is evaluated over
the entire training data, which is saved on the embedded
device. The loss function used in their method is the
negative of the mean absolute error (MAE). This was
chosen because it is computationally less expensive than
other loss functions such as mean squared error (MSE)
or root mean squared error (RMSE). No multiplication or
square root is required, making MAE easier to implement
on a device with minimal resources. This technique is an
interesting approach to enable training on FPGAs without
increasing the hardware complexity. While the backprop-
agation algorithm is more accurate, it provides a solution
to train a network when backpropagation is not possible.

Further improvements Incremental learning is very suit-
able for use in the edge and will realistically have to be
used in practice. Nevertheless, there are open questions
around the topic of incremental learning:

• How can incremental learning be combined with on-
line learning methods to further reduce data storage?

• The retention of previously learned knowledge must
be made more stable.

• To what extent is incremental learning also practica-
ble for other types of networks and problems apart
from classification problems?

• When does it make sense to forget previously learned
knowledge? And how is this to be handled?

5. SUMMARY

In this paper, different techniques to train neural networks
in resource limited environments were reviewed. Starting
with how to decrease the inference time of neural networks,
which is also useful in the forward pass of their training.
After that we show techniques how to speed up the back-
propagation algorithm by e.g. sparse backpropagation. Be-
sides accelerating neural networks, their memory footprint
is also a point of attack, which was solved by tinyTL.
Finally, we look at incremental learning, as this technique
can reduce the memory needed to store training data.
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