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Abstract: In this paper, we study the runtime performance of symmetric cryptographic
algorithms on an embedded ARM Cortex-M4 platform. Symmetric cryptographic algorithms can
serve to protect the integrity and optionally, if supported by the algorithm, the confidentiality
of data. A broad range of well-established algorithms exists, where the different algorithms
typically have different properties and come with different computational complexity. On deeply
embedded systems, the overhead imposed by cryptographic operations may be significant. We
execute the algorithms AES-GCM, ChaCha20-Poly1305, HMAC-SHA256, KMAC, and SipHash
on an STM32 embedded microcontroller and benchmark the execution times of the algorithms
as a function of the input lengths.
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1. INTRODUCTION

The ever-growing pervasion of interconnected smart com-
puter systems and Cyber Physical Systems (CPSs) in all
areas of modern life requires secure data communication
and storage. Strong cryptographic algorithms are among
the major means to achieve security goals like confiden-
tiality, integrity, and authenticity (Ferguson et al. (2011)).

However, security does not come for free. In addition to
processing overhead of key and credential management,
strong cryptographic algorithms tend to be computation-
ally complex and expensive. Implementing and using them
is particularly challenging on deeply embedded systems
with severely restricted computational and memory re-
sources, as the execution of such algorithms may easily
be in conflict with the required real-time responsiveness of
the system (Walz et al. (2016)).

For the selection of a cryptographic algorithm for a partic-
ular use case, the performance (i.e., execution time) of the
algorithm on the target system should, of course, not be
the only criterion, but it often is among the most impor-
tant. A pragmatic approach to determine the performance
of cryptographic algorithms is to actually execute them
on a real system and benchmark the required runtime,
preferably as a function of the lengths of algorithm inputs.

For obvious reasons, the performance of algorithms in gen-
eral, not only of cryptographic algorithms, may strongly
depend on the platform they are executed on. For crypto-
graphic algorithms in particular, this holds true not only
because different CPUs may run at different clock frequen-
cies, but also because these may feature different architec-

tures and degrees of hardware-based support for particular
cryptographic algorithms (Skuballa et al. (2021)).

In this paper, we present an experimental analysis of the
performance of

• AES-GCM (FIP (2001); NIS (2007)), which is com-
mon cipher with widespread hardware acceleration
support,

• ChaCha20-Poly1305 (Nir and Langley (2015)), which
is a cipher that is considerably faster than AES in
software-only implementations,

• HMAC-SHA256 (Krawczyk et al. (1997); Hansen and
Eastlake (2011)),

• KMAC (NIS (2016)), which uses the novel SHA-3 /
Keccak algorithms and

• SipHash (Aumasson and Bernstein (2012)), which
claims faster runtimes than existing message authen-
tication code (MAC) algorithms, determined on a
single platform.

For our measurements, we use an STM32 evaluation board,
featuring an ARM Cortex-M4 microcontroller clocked at
100 MHz, which is a very widespread architecture in the
field of deeply embedded systems. Our study intends to
illustrate the relative behaviour of these algorithms as a
function of the input lengths. For the implementations, we
rely on well-known open source libraries like mbedTLS 1 ,
CycloneCRYPTO 2 , and for SipHash on the author’s C
reference implementation 3 .

The paper is structured as follows. Section 2 provides
some background on the topic, in particular with regard to

1 https://tls.mbed.org/
2 https://www.oryx-embedded.com/products/CycloneCRYPTO.html
3 https://github.com/veorq/SipHash
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symmetric cryptographic algorithms. Section 3 describes
our experimental setup that we use to measure the perfor-
mance of cryptographic algorithms. In Section 4 the results
obtained from our measurement campaign are presented.
Section 5 finally summarizes and concludes our paper.

2. BACKGROUND

Cryptography is the major means to achieve, for exam-
ple, secure communications in open networks. Symmetric
cryptographic algorithms facilitate the protection of bulk
data against disclosure (by encryption), manipulation (by
securing its integrity) and spoofing (by authentication)
using a cryptographic key shared between the legitimate
communication entities. Asymmetric cryptographic algo-
rithms are the complementary and may help to share
or distribute the required symmetric keys securely. For
the work presented within this paper, we purely focus on
symmetric cryptographic algorithms.

Classically, symmetric encryption (privacy protection)
and authentication algorithms were two distinct building
blocks (Bellare and Namprempre (2008)). Today, state-of-
the-art is to use authenticated encryption with associated
data (AEAD), a category of cipher operation modes which
combine both encryption and authentication into a single
primitive (Rogaway (2002)).

An AEAD primitive supports two distinct operations,
which are called authenticated encryption and authenti-
cated decryption. Input to an authenticated encryption op-
eration is a fixed-length secret cryptographic key, a fixed-
length unique initialization vector (IV), a variable-length
bit string of plaintext (PT) and a variable-length bit string
of additional associated data (AAD). It outputs a variable-
length bit string of ciphertext (CT), which is the encrypted
plaintext (same length as plaintext but encrypted), and
a fixed-length integrity check value (ICV). The integrity
protection covers both the plaintext and the additional
associated data.

The input to an authenticated decryption operation, which
is the inverse operation to authenticated encryption, is
the secret cryptographic key, the initialization vector, the
ciphertext, and the additional associated data. The opera-
tion outputs the decrypted plaintext after successful veri-
fication of the ICV or an error indication if the verification
failed.

An interesting feature of AEAD modes as described above
is the option to achieve both authentication-only protec-
tion as well as authenticated encryption with the same
algorithm. The choice between these two options is just
governed by the input to which to-be-protected data is
supplied: if given to the plaintext (PT) input, data is
authenticated and encrypted; if given to the additional
associated data (AAD) input, data is only authenticated.
However, it is perfectly fine (and a quite typical case) to
supply one portion of data (e.g., a message’s payload) to
the PT input and another portion of data (e.g., a message’s
header) to the AAD input.

There are two interesting things to note here. First, pure
encryption algorithms (i.e., those that do not offer au-
thentication) are not enough to form valid authenticated
encryption and decryption operations. This is because

encryption without authentication has inherent security
issues (Bellovin (1996)). Second, pure authentication al-
gorithms (i.e., those that do not offer encryption), on the
other hand, can be used to form limited authenticated
encryption and decryption operations that do not accept
non-empty input to their plaintext (PT) and ciphertext
(CT) inputs, respectively.

Out of the algorithms we are studying (i.e., AES-
GCM, ChaCha20-Poly1305, HMAC-SHA256, KMAC, and
SipHash), AES-GCM and ChaCha20-Poly1305 are native
AEAD algorithms supporting both encryption and au-
thentication. HMAC-SHA256, KMAC, and SipHash, only
offer authentication. In accordance with the note above,
we nevertheless treat these authentication-only algorithms
as limited AEAD algorithms, using them only with zero-
length plaintext and ciphertext inputs.

Several parameters affect the performance of crypto-
graphic operations. The strongest impact among them has
the choice of the cryptographic algorithm (e.g., ChaCha20-
Poly1305), the choice of a corresponding implementation,
and the length of the input data to be processed by the
algorithm respectively the implementation. Note that pa-
rameters like the length of the cryptographic key (input) or
the length of the ICV (output) are most often determined
by the cryptographic algorithm, making them parameters
that allow to directly affect performance only for cryp-
tographic algorithms which support multiple parameter
values (like, e.g., the three key lengths for AES or the
two ICV lengths for SipHash).

Not only the input data length has an impact on the
execution times of an cryptographic algorithm, but also
the key length might affect it. AES, which is the underlying
cipher of AES-GCM, supports different key lengths: 128,
192 or 256 bits. It has an effect on the execution times of
AES, because the number of rounds performed during the
execution of the algorithm depends on the key size. A key
size of 128 bits results in 10 rounds, a 192 bit key in 12
rounds, and a 256 bit key in 14 rounds.

The ChaCha20-Poly1305 algorithm always uses a 256 bit
key and does not offer to vary this key length.

When using HMAC-SHA256 the block size is determined
by the underlying hash function, which is 256 bit for
SHA256. The size of the authentication tag is same as
the block size (i.e., 256 bit). It is common to truncate
this value (e.g., to 128 bit), however this does not affect
the computation time. The key size is variable. It is not
recommended to use a shorter than the block size, as it
would degrade the security strength. When using a key
longer than the block size, it would be hashed first, and
then the resulting hash would be used as the key.

SipHash uses a 128 bit key and allows no variation in key
length.

3. EXPERIMENTAL SETUP

3.1 General

In our study we have used a STM32F429I-DISC1 de-
velopment board from STMicroelectronics. The board is
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securing its integrity) and spoofing (by authentication)
using a cryptographic key shared between the legitimate
communication entities. Asymmetric cryptographic algo-
rithms are the complementary and may help to share
or distribute the required symmetric keys securely. For
the work presented within this paper, we purely focus on
symmetric cryptographic algorithms.

Classically, symmetric encryption (privacy protection)
and authentication algorithms were two distinct building
blocks (Bellare and Namprempre (2008)). Today, state-of-
the-art is to use authenticated encryption with associated
data (AEAD), a category of cipher operation modes which
combine both encryption and authentication into a single
primitive (Rogaway (2002)).

An AEAD primitive supports two distinct operations,
which are called authenticated encryption and authenti-
cated decryption. Input to an authenticated encryption op-
eration is a fixed-length secret cryptographic key, a fixed-
length unique initialization vector (IV), a variable-length
bit string of plaintext (PT) and a variable-length bit string
of additional associated data (AAD). It outputs a variable-
length bit string of ciphertext (CT), which is the encrypted
plaintext (same length as plaintext but encrypted), and
a fixed-length integrity check value (ICV). The integrity
protection covers both the plaintext and the additional
associated data.

The input to an authenticated decryption operation, which
is the inverse operation to authenticated encryption, is
the secret cryptographic key, the initialization vector, the
ciphertext, and the additional associated data. The opera-
tion outputs the decrypted plaintext after successful veri-
fication of the ICV or an error indication if the verification
failed.

An interesting feature of AEAD modes as described above
is the option to achieve both authentication-only protec-
tion as well as authenticated encryption with the same
algorithm. The choice between these two options is just
governed by the input to which to-be-protected data is
supplied: if given to the plaintext (PT) input, data is
authenticated and encrypted; if given to the additional
associated data (AAD) input, data is only authenticated.
However, it is perfectly fine (and a quite typical case) to
supply one portion of data (e.g., a message’s payload) to
the PT input and another portion of data (e.g., a message’s
header) to the AAD input.

There are two interesting things to note here. First, pure
encryption algorithms (i.e., those that do not offer au-
thentication) are not enough to form valid authenticated
encryption and decryption operations. This is because

encryption without authentication has inherent security
issues (Bellovin (1996)). Second, pure authentication al-
gorithms (i.e., those that do not offer encryption), on the
other hand, can be used to form limited authenticated
encryption and decryption operations that do not accept
non-empty input to their plaintext (PT) and ciphertext
(CT) inputs, respectively.

Out of the algorithms we are studying (i.e., AES-
GCM, ChaCha20-Poly1305, HMAC-SHA256, KMAC, and
SipHash), AES-GCM and ChaCha20-Poly1305 are native
AEAD algorithms supporting both encryption and au-
thentication. HMAC-SHA256, KMAC, and SipHash, only
offer authentication. In accordance with the note above,
we nevertheless treat these authentication-only algorithms
as limited AEAD algorithms, using them only with zero-
length plaintext and ciphertext inputs.

Several parameters affect the performance of crypto-
graphic operations. The strongest impact among them has
the choice of the cryptographic algorithm (e.g., ChaCha20-
Poly1305), the choice of a corresponding implementation,
and the length of the input data to be processed by the
algorithm respectively the implementation. Note that pa-
rameters like the length of the cryptographic key (input) or
the length of the ICV (output) are most often determined
by the cryptographic algorithm, making them parameters
that allow to directly affect performance only for cryp-
tographic algorithms which support multiple parameter
values (like, e.g., the three key lengths for AES or the
two ICV lengths for SipHash).

Not only the input data length has an impact on the
execution times of an cryptographic algorithm, but also
the key length might affect it. AES, which is the underlying
cipher of AES-GCM, supports different key lengths: 128,
192 or 256 bits. It has an effect on the execution times of
AES, because the number of rounds performed during the
execution of the algorithm depends on the key size. A key
size of 128 bits results in 10 rounds, a 192 bit key in 12
rounds, and a 256 bit key in 14 rounds.

The ChaCha20-Poly1305 algorithm always uses a 256 bit
key and does not offer to vary this key length.

When using HMAC-SHA256 the block size is determined
by the underlying hash function, which is 256 bit for
SHA256. The size of the authentication tag is same as
the block size (i.e., 256 bit). It is common to truncate
this value (e.g., to 128 bit), however this does not affect
the computation time. The key size is variable. It is not
recommended to use a shorter than the block size, as it
would degrade the security strength. When using a key
longer than the block size, it would be hashed first, and
then the resulting hash would be used as the key.

SipHash uses a 128 bit key and allows no variation in key
length.

3. EXPERIMENTAL SETUP

3.1 General

In our study we have used a STM32F429I-DISC1 de-
velopment board from STMicroelectronics. The board is
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Table 1. Cryptographic algorithms and the implementations we use in this benchmark. Mode A
refers to authentication, and A+E to authenticated encryption

# Algorithm Library Modes

1 AES-GCM/GMAC mbedTLS 2.16.2 A, A+E
2 HMAC-SHA256 mbedTLS 2.16.2 A
3 ChaCha20-Poly1305 mbedTLS 2.16.2 A, A+E
4 KMAC CycloneCRYPTO A
5 SipHash Author’s ref. implementation A

equipped with an STM32F4ZIT6U 4 , which is a single-
core ARM Cortex-M4 microcontroller with 2 MB of flash
memory and 256 kB of SRAM. We clocked the microcon-
troller at 100 MHz, which is below the maximum allowed
clock frequency of 180 MHz.

On the microcontroller is running a bare-metal applica-
tion that means that no (real-time) operating system or
any scheduling effects have to be concerned. The software
was built using the official STM32CubeIDE 5 for all the
platform-specific code plus own software components deal-
ing with the actual benchmark.

Although STM32-F469 microcontrollers have an on-chip
cryptographic accelerator, we do not use it, because we
are solely interested in the software-only performance. An-
other reason why we decided against the cryptographic ac-
celerator was its limited support of our desired algorithms.
For example it does not provide support for ChaCha20-
Poly1305.

To sample the actual execution time the microtags (Walz
(2017)) library was used. It provides lightweight methods
for time and event logging. Each tag consists of a cur-
rent 32 bit timestamp plus an event code and/or addi-
tional data. The timestamp originates from a platform-
dependent source. For this purpose we use TIMER2 with
no pre-scaler in free-run mode, which results in a 32 bit
time value counting upwards with half the system clock
(i.e., 50 MHz or 20 ns per tick). Every time we capture a
tag, the current value of this 32 bit timer is used for the
current timestamp. Those tags are then written into a stat-
ically (pre-)allocated section in memory to interfere with
the running code as less as possible. After having executed
the critical code section (e.g., the encryption/decryption
operation) the tags in the buffer are written to a serial
interface (USART1 in our case) for further analysis.

The output is then received on a computer to save it to
a file. Afterwards, the file is analyzed and plots like those
shown in the next chapter are generated.

A typical application programming interface (API) for
such cryptographic algorithm is in the form of start,
update, finalize operations. We always take the time
before and after each of those operations. However, in the
end we are mainly interested in the total operation time of
the algorithms shown in table 1. The memory footprint of
those algorithms and implementations is not part of this
analysis.

We studied two different scenarios, which will be explained
in the next sections.

4 https://www.st.com/resource/en/datasheet/stm32f427vg.pdf
5 https://www.st.com/en/development-tools/stm32cubeide.html

3.2 Authentication Only

This scenario represents the use-case where the data are
not confidential, that is, there is no interest in keeping
them secret. As shown in the introduction, AEAD algo-
rithms allow to let the plaintext input empty and just
cryptographically protect the additional associated data
with an integrity check value. In this scenario we vary the
length of the AAD between 40 and 1440 bytes.

From our selected algorithms in table 1 AES-GMAC (1),
HMAC-SHA256 (2), ChaCha20-Poly1305 (3), KMAC (4)
and SipHash (5) support this operating mode, which
transform those AEAD algorithms effectively into a MAC.

3.3 Authenticated Encryption

In contrast to the previous scenario, we consider part of
the data as confidential, resulting in a non-empty plaintext
input. However, we still use the AAD input because in
a real-world setting some part of the data must not be
encrypted in order to provide a way to transport the data
to the recipient (e.g., IP address, MAC address, header
fields, etc). We still vary the total length of the data
between 40 and 1440 bytes, however a fixed part of 4 bytes
is treated as AAD. This results in a PT length between 36
and 1436 bytes.

From our selected algorithms in table 1 only AES-GCM (1)
and ChaCha20-Poly1305 (3) support this operating mode.

4. EXPERIMENTAL RESULTS

We define a benchmark with a certain configuration (e.g.,
encryption of a payload with length 40 bytes with AES-
GCM and a key size of 128 bits) as a single run. Each
run was repeated three times. The variation between those
runs is negligible, which can be explained by the absence
of an operating system with concurrent threads and the
absence of interrupts.

The timing values below include only the time required to
perform the actual encryption/protection operation and
writing the resulting cipher text and ICV to the output
buffers. The time to set up a cryptographic context,
initialize the algorithm dependent registers (e.g., round
keys) is excluded from the measurements.

For the remainder of this paper we designate cryptographic
algorithms according to this scheme:

<name>-<icvLen>#<keyLen>.

The cryptographic primitive is referenced by the <name>
(e.g., AES-GCM or KMAC), the length of the generated
ICV is stated by <icvLen> in bits and, finally, the length
of the cryptographic key being used is given by <keyLen>
in bits.

4.1 Authentication Only

The benchmark results for the authentication only sce-
nario is visualized in figure 1. It can be clearly seen that
KMAC with an output MAC length of 128 bits and a
256 bit key (thus the algorithm is designated as KMAC-
128#256) is the slowest implementation for all payload
sizes. The ranking of the other implementations require a
more detailed look.

For payload sizes below 600 bytes SipHash with two
compression, four finalization rounds, an output MAC
length of 64 bits and using a 128 bit key (SipHash-2-
4-64#128) is always the fastest algorithm. Above this
payload size ChaCha20-Poly1305 with an output MAC
length of 128 bits and a 256 bit key is the fastest algorithm.
In general this algorithm performs very well throughout all
payload sizes. The slope of its curve is shallow, resulting
in good performance even for bigger payloads.

For payload sizes below 100 bytes AES-GMAC, both
with a 128 bit as well as a 256 bit key, is faster than
the HMAC-SHA2-256 implementation with a 128 bit key.
The small performance difference between AES-GMAC-
128#128 and AES-GMAC-128#256 although more AES
rounds have to be computed, can be explained by the fact,
that the plaintext input is left empty and now the GHASH
unit acts as the bottleneck. This unit is equal for both key
lengths.

For payload sizes above 100 bytes the HMAC-SHA2-
256#128 outperforms both AES-GMAC algorithms in our
used implementation.

4.2 Authenticated Encryption

For our second scenario (authentication and encryption,
A+E) the results are visualized in figure 2. For com-
parison also the performance figures for AES-GMAC
and ChaCha20-Poly1305 from the previous authentication
only scenario are shown here. Again, ChaCha20-Poly1305-
128#128 outperforms AES-GCM for all payload sizes.

The difference in the key lengths for AES-GCM becomes
more clear in this scenario, where the (to-be-encrypted)
plaintext is not empty anymore. Now the increased amount
of AES rounds (14 vs. 10) has an effect on the execution
time, especially for longer payloads.

5. SUMMARY AND CONCLUSION

In this paper, we presented our measurements of the
runtime of different symmetric cryptographic algorithms
on an embedded STM32 platform with an ARM Cortex-
M4 microcontroller in a bare metal setting. Depending on
each algorithm’s capabilties, we measure authentication-
only and authenticated encryption scenarios.

Our study experimentally shows that, as one would ex-
pect, the runtime of each algorithm is approximately
linear in the length of the input (to-be-encrypted-and-
authenticated plaintext or to-be-authenticated additional
associated data). However, for different algorithms, both
the slope and the offset differ significantly. The implication
is that there is no generally best-performing algorithm.

However, it can be stated that, under the conditions de-
fined by our setup (execution platform, algorithm imple-
mentations, compiler optimizations), ChaCha20-Poly1305
is by several factors faster than AES-GCM/GMAC. This
result should not surprise, as on of the design goals of
ChaCha20-Poly1305 is to be very efficient when imple-
mented solely in software. Keep in mind that we did not
use any AES hardware acceleration, which would poten-
tially execute AES much faster than in software (Skuballa
et al. (2021)). For authentication-only scenarios, SipHash-
2-4-64 is the fastest algorithm for smaller input lengths,
being overtaken by ChaCha20-Poly1305 for larger input
lengths. One downside of SipHash is the smaller security
level it provides due to its output length of only 64 bits,
in comparison to the other algorithms providing 128 bit
or even 256 bit authentication tags 6 . HMAC-SHA256 is
somewhere in the middle between AES-GCM/GMAC and
ChaCha20-Poly1305 for most input lengths, and is slower
than AES-GCM/GMAC for small payloads. Finally, we
want to clearly state, that these findings are highly depen-
dent on the setup (see above) and results may differ when
varying parameters of the setup.
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4.1 Authentication Only

The benchmark results for the authentication only sce-
nario is visualized in figure 1. It can be clearly seen that
KMAC with an output MAC length of 128 bits and a
256 bit key (thus the algorithm is designated as KMAC-
128#256) is the slowest implementation for all payload
sizes. The ranking of the other implementations require a
more detailed look.

For payload sizes below 600 bytes SipHash with two
compression, four finalization rounds, an output MAC
length of 64 bits and using a 128 bit key (SipHash-2-
4-64#128) is always the fastest algorithm. Above this
payload size ChaCha20-Poly1305 with an output MAC
length of 128 bits and a 256 bit key is the fastest algorithm.
In general this algorithm performs very well throughout all
payload sizes. The slope of its curve is shallow, resulting
in good performance even for bigger payloads.

For payload sizes below 100 bytes AES-GMAC, both
with a 128 bit as well as a 256 bit key, is faster than
the HMAC-SHA2-256 implementation with a 128 bit key.
The small performance difference between AES-GMAC-
128#128 and AES-GMAC-128#256 although more AES
rounds have to be computed, can be explained by the fact,
that the plaintext input is left empty and now the GHASH
unit acts as the bottleneck. This unit is equal for both key
lengths.

For payload sizes above 100 bytes the HMAC-SHA2-
256#128 outperforms both AES-GMAC algorithms in our
used implementation.

4.2 Authenticated Encryption

For our second scenario (authentication and encryption,
A+E) the results are visualized in figure 2. For com-
parison also the performance figures for AES-GMAC
and ChaCha20-Poly1305 from the previous authentication
only scenario are shown here. Again, ChaCha20-Poly1305-
128#128 outperforms AES-GCM for all payload sizes.

The difference in the key lengths for AES-GCM becomes
more clear in this scenario, where the (to-be-encrypted)
plaintext is not empty anymore. Now the increased amount
of AES rounds (14 vs. 10) has an effect on the execution
time, especially for longer payloads.

5. SUMMARY AND CONCLUSION

In this paper, we presented our measurements of the
runtime of different symmetric cryptographic algorithms
on an embedded STM32 platform with an ARM Cortex-
M4 microcontroller in a bare metal setting. Depending on
each algorithm’s capabilties, we measure authentication-
only and authenticated encryption scenarios.

Our study experimentally shows that, as one would ex-
pect, the runtime of each algorithm is approximately
linear in the length of the input (to-be-encrypted-and-
authenticated plaintext or to-be-authenticated additional
associated data). However, for different algorithms, both
the slope and the offset differ significantly. The implication
is that there is no generally best-performing algorithm.

However, it can be stated that, under the conditions de-
fined by our setup (execution platform, algorithm imple-
mentations, compiler optimizations), ChaCha20-Poly1305
is by several factors faster than AES-GCM/GMAC. This
result should not surprise, as on of the design goals of
ChaCha20-Poly1305 is to be very efficient when imple-
mented solely in software. Keep in mind that we did not
use any AES hardware acceleration, which would poten-
tially execute AES much faster than in software (Skuballa
et al. (2021)). For authentication-only scenarios, SipHash-
2-4-64 is the fastest algorithm for smaller input lengths,
being overtaken by ChaCha20-Poly1305 for larger input
lengths. One downside of SipHash is the smaller security
level it provides due to its output length of only 64 bits,
in comparison to the other algorithms providing 128 bit
or even 256 bit authentication tags 6 . HMAC-SHA256 is
somewhere in the middle between AES-GCM/GMAC and
ChaCha20-Poly1305 for most input lengths, and is slower
than AES-GCM/GMAC for small payloads. Finally, we
want to clearly state, that these findings are highly depen-
dent on the setup (see above) and results may differ when
varying parameters of the setup.
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Fig. 1. Authentication-only scenario. On the y-axis the time in µs required to generate the ICV for the data. On the
x-axis the length of the to-be-authenticated data in bytes. SipHash is the fastest algorithm for payloads below
600 bytes, otherwise ChaCha20-Poly1305 performs faster.
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Fig. 2. Authenticated encryption scenario. On the y-axis the time in µs required to encrypt the data and calculate the
ICV. On the x-axis the length of the to-be-processed data in bytes. For reference the performance figures from the
previous scenario are indicated with (AO). Again, ChaCha20-Poly1305 performs best in our test scenario.
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