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Abstract
In this paper, the performance of different continuous-time and discrete-time models of the electrical subsystem of induction
machines and permanent-magnet synchronous machines as well as methods based on them for decoupling the direct and
quadrature axis components of the stator current are investigated and compared. The focus here is on inverter-fed, pulse width
modulated drives when operated with a relatively large product of stator frequency and sampling time, where significant
differences between the models and decoupling methods used come to light. Recommendations for a discrete-time model to
be used uniformly in the future are made, as well as statements on whether feedforward or feedback decoupling structures
are better suited and whether state controllers improve decoupling measures for very steep speed ramps. Simulation studies
and measurement results support the statements made above.

Keywords Electrical drives · Current control · Discrete-time model · Decoupling

1 Introduction

If inverter-fed and pulse width modulated (PWM) electrical
drives are to be operated in a highly dynamic manner, then
this requires current control that reacts quickly and with-
out overshoot. A complicating factor here is that the stator
current space vector´s direct and quadrature axis compo-
nents are coupled with each other. An important task of the
stator current controller is therefore to decouple these con-
trolled variables. With standard methods, which are based on
a continuous-time decoupling, this is only possible without
stability problems up to a certain product of stator frequency
and sampling time of the current control [1] (see also Sect. 4).
For drives which are to handle speeds for which the prod-
uct mentioned can be larger and which should nevertheless
feature a highly dynamic, decoupled transient response, a
decoupling strategy adapted to the problem must therefore
be implemented. For this purpose, numerous methods are
known from the scientific literature. A systematic compari-
son between them – especially for quite large ratios between
stator and sampling frequency, where the differences in the
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methods become obvious – is, however, hardly to be found.
This paper is therefore addressed to this topic. The aim is
to establish a uniform discrete-time model of the controlled
system onwhich an optimal decoupling strategy can be based
and to propose solutions for this.

That a discrete-timemodel description is suitable as a basis
for decoupling – and not only because of the use ofmicropro-
cessors for drive control, but simply because of the operation
of pulsewidthmodulation-based inverters formachine power
supply – has already been shown in [1–6]. Furthermore,
discrete-time machine models and drive controls were also
favored in [7, 8], for example, although discrete-time sig-
nal processing was cited as the primary motivation there.
In this respect, differences arise mainly with respect to the
placement of the hold elements.While in [1–6] they aremod-
eled in the stationary reference frame, in [7, 8] the implicit
assumption is initially made that the hold elements are per-
formed in the rotating reference frame. Only in the context of
a correction step it is then taken into account that the section-
wise constancy of the manipulated variables is to be assumed
rather in the stationary reference frame than in a rotating ref-
erence frame. Furthermore, in [1, 2, 4, 6, 7] discrete-time
state-spacemethodswere used to derive the decoupling equa-
tions, while in [3, 5] z-transfer functions were used for this
purpose. Both state-space basedmethods and z-transfer func-
tions are discussed in [8]. In addition, in the case of transfer
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function-based methods, a distinction must be made as to
whether P-canonical structures or feedback-oriented meth-
ods are used as the basis for decoupling. In this respect, a
P-canonical formwas used in [3, 5], inwhichweakly damped
poles of the transfer functions are compensated by zeros, but
not shifted. This can cause undesired oscillations if the mod-
eling is not exact or if disturbance variables occur, provided
they apply before the section with the compensated pole.
The above statement about pole compensation also applies
to some of the discrete-time decoupling structures described
in [8], which can be interpreted as compensation controllers.
In this paper, therefore, only those discrete-time decoupling
methods are favored inwhich, with respect to the decoupling,
a pole shift and no pole compensation takes place. While in
[1, 2, 4, 6] only current state controllers are considered for this
purpose, the present paper focuses on the decoupling strategy
based on a discrete-time model for an otherwise classical PI
current controller. However, state space methods are consid-
ered for comparison purposes, especially since they are more
suitable for very high rates of speed change than classical PI
current controllers, as the considerations in Sects. 3.2, 3.3
and 5 will show.

It should also be mentioned that nowadays also numer-
ous publications are available in which, for example in [9],
the existence of magnetic cross-coupling between the sta-
tor current components and the induced voltages caused by
them is assumed. This is not taken into account in the present
paper in order to avoid expansiveness, although such decou-
pling measures can in principle also be integrated into the
analyzed methods.

First, Sect. 2 considers the basic continuous-time and
discrete-time model equations of the electrical subsystem
of the induction machine with squirrel-cage (IM) and the
permanent-magnet synchronousmachine (PMSM) and com-
bines them into a common model for the decoupling task.
Subsequently, Sect. 3 deals with different decoupling strate-
gies for the current components including a detailed compar-
ison of their performance based on simulation studies. This
is followed in Sect. 4 by theoretical studies on the stability
limit when using continuous-time based decoupling meth-
ods. Finally, measurement results for the favored decoupling
strategy are presented in Sect. 5 and the paper is rounded off
by a summary in Sect. 6.

2 Continuous-time and discrete-timemodel
equations of the electrical subsystem
of inverter-fed three-phase drives

Typically, the dynamic behavior of the electrical subsystem
of three-phase machines is described with the help of space
vector equations. This mathematical tool is also used in the
following. For the stator current space vector i sS of an IM

or PMSM described in an orthogonal stationary reference
frame, which is obtained from the stator phase currents iS, a,
iS, b and iS, c, it then follows [6, 8]

i sS � 2

3

(
iS,a + ej

2π
3 iS,b + ej

4π
3 iS,c

)
(1)

Subsequently, i sS is transformed bymeans of the rotational
transformation

i rS � e−jγS i sS (2)

into a rotating reference frame, the so-called d-q reference
frame. InEq. (2) γS indicates the angle of rotation of the rotat-
ing reference frame with regard to the stationary reference
frame. In which reference frame the respective space vector
is represented is indicated by the superscript “s” (for station-
ary reference frame) or “r” (for rotating reference frame).
The stator voltage space vector vsS or v

r
S, the back-EMF volt-

age space vector vsPM or vrPM, and the permanent magnet flux
space vector �s

PM or �r
PM for the PMSM as well as the rotor

flux space vector �s
R or �r

R for the IM are also defined in a
corresponding manner.

2.1 Continuous-timemodel equations of the PMSM

Using the space vectors introduced above, the stator voltage
equation of the PMSM in the rotating reference frame is [6,
8]

vrS � RSi
r
S + LS

di rS
dt

+ jωLSi
r
S + vrPM (3a)

with

vrPM � jω�r
PM (3b)

where RS denotes the stator resistance, LS denotes the stator
inductance, and ω � γ̇S denotes the electric rotor posi-
tion angular velocity and hence also the angular velocity of
the rotating reference frame. However, this representation
assumes that there is no magnetic anisotropy of the stator
inductance and that the stator inductances do not depend
on the current. If the first of these two assumptions does
not apply, the direct axis stator inductance LS, d and the
quadrature axis stator inductance LS, q must be introduced.
However, the stator voltage equations must then be specified
in real terms. In this case, using the space vector components
iS, d+jiS, q � i rS, vS, d+jvS, q � vrS, vPM, d+jvPM, q � vrPM and
�PM, d + j�PM, q � �r

PM as well as considering the relation
�PM, q � 0 being valid because of the rotor orientation and
consequently vPM, d � 0 [6, 8], they are

vS, d � RSiS, d + LS, d
diS, d
dt

− ωLS, qiS, q (4a)
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vS, q � RSiS, q + LS, q
diS, q
dt

+ ωLS, diS, d + vPM, q (4b)

In order to avoid expansiveness, LS, d and LS, q are con-
sidered as constant parameters in the following. If necessary,
they must be re-adjusted in reality depending on the oper-
ating point. A quite exact possibility for this is described in
[6].

Because dealing with few complex equations is clearer
than dealing with twice as many real equations, it is aimed
to summarize Eqs. (4a) and (4b) also for LS, d �� LS, q in a
suitable complex form. For this purpose, it is assumed that
the stator resistance, like the stator inductance, is direction-
dependent, i.e., would have different values in the d and
q directions, in such a way that the stator time constant
τS resulting from stator inductance and stator resistance
becomes direction-independent. That means it should be
applied

τS � τS, d � LS, d

RS, d
� τS, q � LS, q

RS, q
(5)

if RS, d and RS, q are understood to be thementioned fictitious
directional stator resistances. It is true that this directional
dependence of RS does not correspond to reality. However,
because the size of the stator resistance does not have too
great influence on the current controller parameterization,
this error can be accepted. For this purpose, based on the
mean value

LS � LS, d + LS, q

2
(6)

of the direction-dependent stator inductances, it is suitable
to determine the stator time constant as

τS � LS

RS
(7)

Based on these simplifications, in Eq. (4a) RS is replaced
by RS, d and in Eq. (4b) RS is replaced by RS, q followed by

the replacement of RS, d by
LS, d
τS

and RS, q by
LS, q
τS

, according
to Eq. (5). Thus, the stator voltage Eqs. (4a) and (4b) can be
approximated by the relation

vS, d � LS, d

τS
iS, d + LS, d

diS, d
dt

− ωLS, qiS, q (8a)

vS, q � LS, q

τS
iS, q + LS, q

diS, q
dt

+ ωLS, diS, d + vPM, q (8b)

If furthermore the transformations

i#S, d � LS, d

LS
iS, d (9a)

i#S, q � LS, q

LS
iS, q (9b)

are carried out, then the stator voltage equations are as fol-
lows:

vS, d � LS

τS
i#S, d + LS

di#S, d
dt

− ωLSi
#
S, q (10a)

vS, q � LS

τS
i#S, q + LS

di#S, q
dt

+ ωLSi
#
S, d + vPM, q (10b)

Formally, the necessary symmetry of the equation coeffi-
cients is again present, which is necessary for the combina-
tion of Eqs. (10a) and (10b) to a space vector equation. Using
Eq. (10a) as its real part and Eq. (10b) as its imaginary part,
and considering Eq. (7), we obtain the result

vrS � RSi
#r
S + LS

di#rS
dt

+ jωLSi
#r
S + vrPM (11)

with

i#rS � i#S, d + j i#S, q (12)

and vPM, d � 0. Formally, this procedure is similar to sys-
tem modeling by means of stator flux components, where
– apart from the voltage drop at the stator resistance – there
is also symmetry in the equation coefficients, and subsequent
conversion to stator current components [10].

In the next step, Eq. (11) is put into state form, fromwhich

di#rS
dt

�
(

− 1

τS
− jω

)
i#rS +

1

LS

(
vrS − vrPM

)
(13)

follows, if considering Eq. (7), and which forms the basis for
the discretization still to be performed.

2.2 Continuous-timemodel equations of the IM

For the induction machine, the space vector state differential
equations are obtained in the rotor flux fixed reference frame
as follows, according to [6, 8]:

di rS
dt

�
(

− 1

τσ

− jωS

)
i rS +

1

Lσ

(
vrS − vrind

)
(14)

d�r
R

dt
�

(
− 1

τR
− j(ωS − ω)

)
�r

R +
Lm

τR
i rS (15)

with

vrind � 1

1 + σR

(
jω − 1

τR

)
�r

R (16)
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In this, τσ denotes the leakage time constant, Lσ the total
leakage inductance, τR the rotor time constant, Lm themutual
inductance, and σR the rotor leakage factor. As in the PMSM,
ω is the electric rotor position angular velocity,whereasωS �
γ̇S is the angular velocity of the rotating reference frame,
i.e., in the IM, unlike the PMSM, ω �� ωS generally holds.
Furthermore, vrind has similaritieswith a space vector of back-
EMFvoltages. It should also be noted that in a rotor flux fixed
reference frame �R, q � 0 holds. That the representation of
the dynamic behavior of the induction machine takes place
in this reference frame is assumed in the following. From
Eq. (15), after separation into real and imaginary part, one
then obtains

d�R, d

dt
� − 1

τR
�R, d +

Lm

τR
iS, d (17a)

ωS � ω +
Lm

τR

iS, q
�R, d

(17b)

Because τR is usually significantly larger than the settling
time of the current control loop, it follows from Eq. (17a),
taking into account�R, q � 0, that the rotor flux space vector
�r

R hardly changes during the period in which the stator
currents settle in response to changing setpoints. �r

R can
thus be regarded as constant area-by-area, similar to �r

PM in
the PMSM. Because ω hardly changes significantly in the
transient phase of the stator currents, this also applies to vrind.

2.3 Summary of the continuous-timemodel
equations of PMSM and IM

A comparison of Eqs. (13) and (14) in conjunction with
the above remarks shows that both PMSM and IM have an
identical model basis for the design of a suitable decoupling
strategy. Therefore, the relevant equations of both machine
types are summarized as follows. Instead of τS or τσ then
only the time constant τ and instead of LS or Lσ only the
inductance L appears in it. As angular velocity of the rotat-
ing reference frameωS is used in the summarized differential
equations. Likewise, the space vector of the induced voltages
vrind is used there and subsequently interpreted as a distur-
bance variable. Ifwe use the notation i rS instead of i

#r
S even for

PMSM for the purpose of simplification, then the space vec-
tor state differential equation applies machine-independently

di rS
dt

�
(

−1

τ
− jωS

)
i rS +

1

L

(
vrS − vrind

)
(18)

If the real and imaginary part of this is written down sep-
arately, we get the real differential equations

diS, d
dt

� −1

τ
iS, d + ωSiS, q +

1

L

(
vS, d − vind, d

)
(19a)

Fig. 1 Block diagram of that part of the electrical subsystem of a PMSM
or IM described in the rotating reference frame which is relevant for
decoupling

diS, q
dt

� −1

τ
iS, q − ωSiS, d +

1

L

(
vS, q − vind, q

)
(19b)

and, from this, the according block diagram shown in Fig. 1.
Therein

R � L

τ
(20)

holds.

2.4 Discrete-time decoupling-relevant model
equations of PMSM and IM

Due to the dynamic behavior of inverters operated by pulse
width modulation, which is comparable to discrete-time
systems, it has proven useful to discretize the models of
inverter-fed electrical machines [1–6]. The switching period
(reciprocal of the switching frequency) of the inverter is
used as the sampling time Ts, if the current control algo-
rithm is executed once per switching period, or half the
switching period if the current control algorithm is executed
twice per switching period. Themanipulated variables of this
discrete-timemodel are the controller output variables. In the
stationary reference frame, these correspond to the mean val-
ues of the stator voltages acting on the machine per sampling
interval due to the pulse width modulators operating there. In
the following, these controller output quantities are referred
to as reference voltages. The space vector based on them is
the reference voltage space vector vsref or vrref , respectively.

123



Electrical Engineering (2023) 105:4251–4270 4255

In the rotating reference frame it has the real part vref, d and
the imaginary part vref, q.

If the processor used for current control can execute the
current control algorithm so quickly that the instant of time at
which the controller output variables begin to act on the con-
trolled systemapproximatelymatcheswith the instant of time
of current detection, i.e., the sampling time instant, then the
current control algorithm operates without a so-called com-
putational dead time. Otherwise, to avoid floating effects,
the controller output variables only become effective at the
beginning of the following sampling instant. In this case,
there is a dead time of one sampling interval. It should be
noted here that this computational dead time only acts as a
pure dead time in the stationary reference frame, provided
that the controller output variables are transformed back into
the stationary reference frame with the same transformation
angle γS as the angle with which the transformation of the
stator currents into the rotating reference frame is performed.
In addition, [5] discusses the case where the calculation dead
time is only half a sampling interval. However, this variant is
not considered further in this paper in order to avoid expan-
siveness.

The core of the required discrete-time model is the sta-
tor current space vector difference equation. It follows from
the general solution of Eq. (18) when written for a sampling
interval reaching from the sampling time instant kT to the
sampling time instant (k + 1)T , k ∈ N0. It reads under the
assumption that ωS is constant within the considered sam-
pling interval [6]

i rS, k+1 �e− Ts
τ

−jωSTs i rS, k

+
(k+1)Ts∫
kTs

e

(
− 1

τ
−jωS

)
((k+1)Ts−t) 1

L

(
vrS(t) − vrind(t)

)
dt

(21)

If now vrS(t) is replaced by e
−jγS(t)vsS(t) (cf. Eq. 2), v

r
ind(t)

is considered constant within a sampling interval, and it is
assumed that γS(t) changes linearly within the integration
interval according to

γS(t) � γS, k + ωS(t − kTs) (22)

then it follows from Eq. (21), considering Eq. (20),

i rS, k+1 � e− Ts
τ

−jωSTs i rS, k +
(k+1)Ts∫
kTs

e

(
− 1

τ
−jωS

)
((k+1)Ts−t) 1

L
e−j(γS, k+ωS(t−kTs))vsS(t) dt

− 1

L

(k+1)Ts∫
kTs

e

(
− 1

τ
−jωS

)
((k+1)Ts−t)

dtvsind, k

� e− Ts
τ

−jωSTs i rS, k + e−jωSTse−jγS, k

1

L

(k+1)Ts∫
kTs

e− 1
τ ((k+1)Ts−t)vsS(t)dt

− 1 − e− Ts
τ

−jωSTs

R(1 + jωSτ)
vrind, k (23)

If we further assume that e− 1
τ ((k+1)Ts−t) in the integrand of

Eq. (23) does not changemuchwithin the integration interval,
we can approximately replace this term by its mean value

1
Ts

(k+1)Ts∫
kTs

e− 1
τ ((k+1)Ts−t)dt � τ

Ts

(
1 − e− Ts

τ

)
in relation to the

integration interval and then pull this term in front of the

integral. Together with 1
Ts
, the leaving integral

(k+1)Ts∫
kTs

vsS(t)dt

in Eq. (23) remains at the mean value of the stator voltage
space vector represented in the stationary reference frame
and thus corresponds to the reference voltage space vector
vsref transferred from the current controller to the pulse width
modulators. Thus, taking into account e−jγS, kvsref, k � vrref, k
according to Eq. (2), the following relation is valid

e−jγS, k 1

Ts

(k+1)Ts∫
kTs

vsS(t)dt � e−jγS, kvsref, k � vrref, k (24a)

provided that in the sampling interval kTs ≤ t < (k + 1)Ts
the reference voltage space vector vrref, k is already effective.
In this respect, it is understood here that the index k means
that vrref, k is formed from measured and intermediate quan-
tities acquired at time kTs. I.e., the mentioned computational
dead time is neglected. If this dead time must be taken into
account, the stator voltage space vectormean value generated
by pulse width modulation depends on the reference voltage
space vector vsref, k−1. Instead of Eq. (24a) one then obtains

e−jγS, k 1

Ts

(k+1)Ts∫
kTs

vsS(t)dt � e−jγS, kvsref, k−1

≈ e−j (γS, k−1+ωSTs)vsref, k−1 � e−jωSTsvrref, k−1 (24b)

Equation (24a) or (24b) inserted into Eq. (23) yields, con-
sidering Eq. (20) as well as the statements directly behind
Eq. (23), the stator current space vector difference equation
[6]

i rS, k+1 �e− Ts
τ

−jωSTs i rS, k +

(
1 − e− Ts

τ

)
e−j(2)ωSTs

R
vrref, k(−1)

−
(
1 − e− Ts

τ
−jωSTs

)

R(1 + jωSτ)
vrind, k (25)

in which the bracketed 2 in e−j(2)ωSTsand the bracketed
− 1 in vrref, k(−1) are only valid if a computational dead time of
one sampling interval is to be considered. For the case of an
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Fig. 2 Approximated discrete-time space vector block diagram of the
decoupling-relevant electrical subsystem of the inverter-fed PMSM or
IM in the rotating reference frame

existing computational dead time of one sampling interval,
this result is also derived in [3], but without specifying the
discrete-time influence of vrind, k .As an example, Fig. 2 shows
the discrete-time block diagram resulting from Eq. (25) in
space vector representation for the case of an existing com-
putational dead time of one sampling interval.

As already mentioned, some publications first ignore the

fact that vref, k(−1) � 1
Ts

(k+1)Ts∫
kTs

vS(t)dt is valid only in the

stationary reference frame, and instead assume vrref, k(−1) �
1
Ts

(k+1)Ts∫
kTs

vrS(t)dt . To reduce the resulting error, the solution

obtained by the discretization is then adjusted by means of

an angular correction. In [8], the correction term ejωS
3Ts
2 is

used for this purpose in the control law when there is a
computational dead time of one sampling interval, which

corresponds to the correction term e−jωS
3Ts
2 in the controlled

system model. However, in [8] the discretization is done
only via a Taylor series expansion terminated after the lin-
ear element. For better comparability with the result from
Eq. (25), this path is not followed here, but it is assumed that
in Eq. (21) vrS(t) is constant within the integration bound-
aries and therefore can be drawn behind the integral and
replaced by vrref, k−1. As a result, including the correction

term e−jωS
3Ts
2 , one obtains the relation

(26)

i rS, k+1 � e− Ts
τ

−jωSTs i rS, k

+
1 − e− Ts

τ
−jωSTs

R
(
1 + jωSτ

)
(
e−jωS

3Ts
2 vrref, k−1 − vrind, k

)

In [5] a similar solution is worked out. In case of a compu-
tational dead time of one sampling interval, treated in [5] as
instancem � 0, the discretization result is given as a transfer

equation in the z-domain and reads as follows

I rS, z(z) � 1

R(1 + jωSτ)

1 − e− Ts
τ

−jωSTs

z − e− Ts
τ

−jωSTs
(
e−jωSTs

z
V r

ref, z(z) − V r
ind, z(z)

)
(27a)

However, the correct discrete-time integration of vrind was
not addressed in [5]. It was therefore added to Eq. (27a) for
the purpose of completeness according to Eqs. (25) and (26).
If Eq. (27a) is transformed back into the time domain, the
difference equation

i rS, k+1 �e− Ts
τ

−jωSTs i rS, k +
1 − e− Ts

τ
−jωSTs

R(1 + jωSτ)(
e−jωSTsvrref, k−1 − vrind, k

)
(27b)

follows. It differs from Eq. (26) only in the deviating rotation
factor before vrref, k−1.

In contrast to the discretization variants mentioned so far,
[1] takes another approach. In it, the averaging effect of the
pulse width modulation in the stationary reference frame is
approximated from the point of view of the rotating reference

frame by the multiplicative additional term
ωSTs
2

sin ωSTs
2

e−j ωSTs2 .

Furthermore, in [1] the effect of the space vector of the refer-
ence and induced voltages on the stator current space vector
difference equation is approximated by means of a Taylor
series terminated after the linear element. If one replaces
this for better comparability with the solution from Eq. (25)

by the term 1−e− Ts
τ −jωSTs

R(1+jωSτ)
, which would be valid in the case

of pulse width modulation directly in the rotating reference
frame (see Eq. (26)), then, in the case of an existing compu-
tational dead time of one sampling interval, one obtains the
result

i rS, k+1 � e− Ts
τ

−jωST i rS, k +
1 − e− Ts

τ
−jωSTs

R(1 + jωSτ)(
ωSTs
2

sin ωSTs
2

e−j 3ωSTs2 vrref, k−1 − vrind, k

)
(28)

3 Discrete-time decoupling

3.1 Theoretical principles

First, a decoupling is performed on the basis of Eq. (25). The
aim here is to specify the reference voltage space vector in
such a way that the couplings of the controlled system are
compensated. Couplings in the controlled system are present
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if the stator current component iS, d or the reference voltage
component vref, d in the current or a past sampling instant
influences the stator current component iS, q in a future sam-
pling instant or if iS, q orvref, q in the current or a past sampling
instant influences iS, d in a future sampling instant. This is
exactly the case when complex equation coefficients occur
in the stator current difference Eq. (25) at i rS, k or vrref, k or
vrref, k−1, respectively. For ωS �� 0 this is obviously the case.

If the system behavior is described by means of z-transfer
equations, then, in case of a coupled system, complex coef-
ficients occur in the nominator and denominator polynomial
of the z-transfer function of the controlled system. Further-
more complex coefficients in the denominator polynomial
result in complex poles of the transfer function that are not
supplemented by complex poles conjugate to it.

Decoupling would be desirable regardless of whether a
state controller or a classic PI controller is to be implemented.
Because the underlying control theory must be known when
using a state controller – even if at first only the decoupling
is to be designed – but the state space methodology is not to
be discussed here, the focus of the following considerations
is on the decoupling with an otherwise classic PI controller.
However, the results of designing a decoupling current state
controller are given for comparison purposes.

In order to separate decoupling and controller design from
each other, it is aimed that in the stator current space vector
difference equation of the decoupled system – apart from
the disturbance influence – the equation coefficients of the
coupled system for ωS � 0 occur. Because they are real and
therefore describe a decoupled system. The specific dynam-
ics setting is only done in the controller. For this purpose, the
control law is

vrref, k �
{
ejωSTSvrPI, k + vrdec, k + vrd, k without calc. dead time

ej2ωSTSvrPI, k + vrdec, k + vrd, k with calc. dead time

(29)

It includes the component vrPI, k , which emanates from
the PI current controller and is still to be defined and freed
from decoupling tasks, as well as the component vrdec, k for
decoupling the controlled system. For vrdec, k , in the case of a
neglected computational dead time,

vrdec, k � R
ejωSTS

1 − e− TS
τ

e− TS
τ

(
1 − e−jωSTS

)
i rS, k (30)

is applied. If the influence of vrind, k on i rS, k+1 is also to be
eliminated without the current controller having to be active
for this purpose,

vrd, k �
ejωSTS

(
1 − e− TS

τ
−jωSTS

)
(
1 − e− TS

τ

)
(1 + jωSτ)

vrind, k (31)

is to be chosen. This corresponds to a disturbance rejection.
If one finally substitutes Eqs. (29) to (31) into Eq. (25), then
the decoupled and disturbance compensated stator current
space vector difference equation follows

i rS, k+1 � e− TS
τ i rS, k +

1 − e− TS
τ

R
vrPI, k (32)

As intended, it contains only real equation coefficients.
All couplings are thus eliminated.

If a computational dead time of one sampling interval is
to be considered in the modeling and if one would proceed
for the compensation of complex coefficients in Eq. (25) as
in the case without computational dead time, then one would
get

vrdec, k−1 � R
ej2ωSTS

1 − e− TS
τ

e− TS
τ

(
1 − e−jωSTS

)
i rS, k (33)

vrd, k−1 �
ej2ωSTS

(
1 − e− TS

τ
−jωST

)
(
1 − e− TS

τ

)
(1 + jωSτ)

vrind, k (34)

However, vrdec, k−1 depends on values of i
r
S at time instant

kTS, which are not known at time instant (k − 1)TS yet. To
get rid of this problem, Eq. (33) is increased by a whole
time index value and then the resulting space vector i rS, k+1
is replaced by the right-hand side of Eq. (25). With respect
to Eq. (34), note that vrind, k ≈ vrind, k−1 holds because the d
and q components of the space vector of the induced voltages
hardly change within the time period relevant to the transient
of the stator currents. If now also Eq. (34) is given under this
premise for the time index k, one obtains for the case of a
computational dead time of one sampling interval in total the
decoupling and disturbance rejection law

vrdec, k � R
ej2ωSTS

1 − e− TS
τ

e− TS
τ

(
1 − e−jωSTS

)

·
⎛
⎜⎝e− TS

τ
−jωTS i rS, k +

(
1 − e− TS

τ

)
e−j2ωSTS

R

(
vrref, k−1 − vrd, k

)
⎞
⎟⎠

� ej2ωSTS
(
1 − e−jωSTS

)
e− TS

τ

·
(
R

e− TS
τ

1 − e− TS
τ

e−jωSTS i rS, k + e−j2ωSTS
(
vrref, k−1 − vrd, k

))

(35)

vrd, k �
ej2ωSTS

(
1 − e− TS

τ
−jωSTS

)
(
1 − e− TS

τ

)
(1 + jωSτ)

vrind, k (36)
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(a)

(b)

Fig. 3 Discrete-time space vector block diagram of the current control
loop of an inverter-fed PMSM or IM in a rotating reference frame with
existing computational dead time of one sampling interval, disturbance

rejection control and a feedback-oriented discrete-time decoupling
b discrete-time P-canonical decoupling according to Eq. (41b)

For the decoupled and disturbance compensated stator
current space vector difference equation, it follows by sub-
stituting in Eq. (25)

i rS, k+1 � e− TS
τ i rS, k +

1 − e− TS
τ

R
vrPI, k−1 (37a)

If this relationship is z-transformed and the z-transfer

function
I rS, z(z)
V r
PI, z(z)

is built, it is as follows

I rS, z(z)

V r
PI, z(z)

� 1

R

1 − e− TS
τ

z
(
z − e− TS

τ

) (37b)

It has only real coefficients and real poles z1 � 0 as well

as z2 � e− TS
τ . This ensures a decoupled and oscillation-free

system behavior.
To illustrate the decoupling structure described last,

Fig. 3a shows the discrete-time space vector block diagram
of that part of the electrical subsystem of the PMSM or IM
described in the rotating reference frame that is relevant for
decoupling, including decoupling and disturbance rejection
control as well as a PI current controller. Its parameters are
marked in Fig. 3a with KP for the proportional coefficient
and KI for the integral-action coefficient. The space vector
output of the controller integrators is vrI. i

r
S, ref denotes the

stator current setpoint space vector.
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It is of great importance that this decoupling method is
based on feedback, i.e., that the paths required for decou-
pling lead from the controlled variables as well as from other
variables used for decoupling to the manipulated variables,
and that these paths do not contain any dynamic elements.
This means that no compensation of complex poles can take
place in the command transfer function (see also Sect. 3.2).
Instead, all complex poles, which are responsible for the cou-
pling – unless they occur as conjugate complex pole pairs –
are shifted to real pole positions, as Eq. (37b) shows.

In contrast to such feedback-oriented decoupling struc-
tures, P-canonical decouplings consist exclusively of paths
leading from the output variables of the preceding controller,
which is only responsible for controlling the decoupled con-
trolled system, to the manipulated variables. These paths
may have dynamic elements that can be used to compen-
sate for poles in the controlled system transfer functions.
To illustrate the difference between feedback-oriented and
P-canonical decouplings, Fig. 3b shows the block diagram
corresponding toFig. 3awhen the decoupling is implemented
as a P-canonical structure. The representation here is based
on Eq. (41b) discussed in Sect. 3.2 after its back transfor-
mation into the time domain. The term 1

z−e− TS
τ

contained in

Eq. (41b), which is the z-transfer function of a P–T1 element,
is shown in Fig. 3b via the corresponding difference equation
and marked as P–T1 element.

3.2 Comparison of PI controller-based decoupling
methods

Decisive for whether a discrete-time decoupling is required
or a decoupling based on continuous-time considerations is
sufficient is the product ωSTs of stator angular frequency and
sampling time [1]. If one opts for a continuous-time designed
decoupling, it follows from Eq. (18) when using vrref instead
of vrS that for the elimination of the complex term −jωSi rS

and for the compensation of vrind the approach

vrref � vrPI + jωSLi
r
S + vrind (38)

is suitable. If the controlled systemwould act continuously in
time, then substituting Eq. (38) into Eq. (18) would yield the

stator current space vector differential equation
di rS
dt � − 1

τ
i rS+

1
L vrPI,which would lead to a stator frequency-independent
decoupled and stable operation by appropriate specifica-
tion of vrPI. However, because inverter-fed three-phase drives
operated via pulse width modulators act more like a discrete-
time system according to the explanations in Sect. 2.4,
stability problems are to be expected in the discrete-time
implementation of Eq. (38) depending on the sampling and
stator frequency. To illustrate this potential risk and how to
avoid it, Fig. 4a through 4l show the simulated ramp-up of an
inverter-fed PMSM based on name plate data, machine and
inverter parameters shown in Table 1.

The acceleration process is to be carried out from standstill
up to 6000 min−1. Due to the number of pole pairs nP �
5, the stator frequency is then 500 Hz. The nominal value
3.4 A of the quadrature axis current is applied as setpoint
iS, q, ref . Because the nominal speed is 5500 min−1, no field
weakening is required. I.e., iS, d, ref � 0 is specified. When
the stated maximum speed is reached, iS, q, ref � −3.4 A is
applied until − 6000 min−1 is reached, and so on (reversing
process). A computational dead time of one sampling interval
was taken into account, while Fig. 4a shows the ramp-up
with a switching and sampling frequency of fPWM � 2 kHz,
Fig. 4b shows the time characteristics for fPWM � 3 kHz
and Fig. 4c the time characteristics for fPWM � 4 kHz,
each for the case of a time-continuously designed decoupling
and disturbance rejection according to Eq. (38) (but see the
note just before Fig. 4d). The controller parameters of the
PI current controller were designed discrete-time. This was
also based on a computational dead time of one sampling

Table 1 Machine and inverter
parameters, including name plate
data

Parameter Symbol Value Unit

Direct axis stator inductance LS, d 5.89 mH

Quadrature axis stator inductance LS, q 5.89 mH

Stator resistance RS 1.9 �

Absolute value of the permanent magnet flux space vector �PM, d 0.08 Vs

Number of pole pairs nP 5

Moment of inertia J 0.000113 kg·m2

Nominal speed nnom 5500 min−1

Nominal stator frequency fS, nom 458.3 Hz

Nominal current (rms) IS, nom 2.4 A

Nominal phase-to-phase voltage (rms) VS, nom 300 V

Nominal torque Tnom 2 N·m

DC-link voltage vdc 565 V

123



4260 Electrical Engineering (2023) 105:4251–4270

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Fig. 4 Course of the stator current setpoint and actual value components
as well as other quantities during a reversing process with direct axis
current set to zero a continuous-time decoupling according to Eq. (38),
switching and sampling frequency 2 kHz b continuous-time decou-
pling according to Eq. (38), switching and sampling frequency 3 kHz
c continuous-time decoupling according to Eq. (38), switching and sam-
pling frequency 4 kHz d continuous-time decoupling, carried out by
means of setpoint components, switching and sampling frequency 4
kHz e discrete-time decoupling according to Eqs. (35) and (36) and
based on the controlled system model in [2–4, 6], switching and sam-
pling frequency 2 kHz f discrete-time decoupling according to Eqs. (35)
and (36) and based on the controlled systemmodel in [2–4, 6], switching
and sampling frequency 4 kHz g discrete-time P-canonical decoupling

according to Eq. (40b) and based on the controlled systemmodel in [5],
switching and sampling frequency 4 kHz h discrete-time P-canonical
decoupling according to Eq. (41b) and based on the controlled system
model in [2–4, 6], switching and sampling frequency 4 kHz i discrete-
timeP-canonical decoupling based onEq. (26) according to an idea from
[8], switching and sampling frequency 4 kHz j discrete-time decoupling
according to Eq. (42) and based on the controlled system model in [1],
switching and sampling frequency 4 kHz k discrete-time P-canonical
decoupling according to Eq. (43) and based on the controlled system
model in [1], switching and sampling frequency 4 kHz l discrete-time
decoupling based on the controlled system model in [2–4, 6], state con-
troller, switching and sampling frequency 2 kHz
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(i)

(k)

(j)

(l)

Fig. 4 continued

interval. In view of this, a double real pole at z � 1
2 was

aimed at for the z-command transfer function of the closed
current control loop, resulting in

KP � RS

4

(
1 − e

− TS
τS

) , KITS � RS

4
(39)

The direct and quadrature axis current setpoint and actual
values (iS, d, ref , iS, d, iS, q, ref , iS, q) as well as the speed (n) and
the reference voltage space vector magnitude (

∣∣vrref
∣∣) can be

seen on all figures. Furthermore, a signal is shown which
indicates, in case of positive values, that the voltage limit has
been reached.

It can be seen that with continuous-time designed decou-
pling, the current control becomes unstable above a certain
stator frequency. For fPWM � 2 kHz, this value is about
380 Hz. At fPWM � 3 kHz, the stability problems start
at about 500 Hz just in the transition range to generator
operation and then subside again below about 280 Hz. It
is important to note that the stability problems occur before
the voltage limit is reached, which is seen by the fact that
the trajectories of iS, d and iS, q begin to diverge just before
the dot-dashed line changes from zero to a positive value.
In this case, reaching the voltage limit is rather a reac-
tion to the unstable behavior of the current control loop. At
fPWM � 4 kHz, unstable operation no longer occurs with the
continuous-time decoupling for the specified driving profile.

To avoid an unsatisfactory decoupling based on a
continuous-time model, one could alternatively generate the
voltages needed for decoupling using the stator current set-
point components. To consider approximately the time delay
between the stator current setpoint and actual value com-
ponents, it would also be convenient to run the setpoint
components before introducing them into Eq. (38) – instead
of i rS – via P–T1 elements with the settling time constant
of the closed-loop current control as time constant. How-
ever, the use of setpoints does not represent decoupling, but
is merely a precontrol of the voltages ideally required for
decoupling. Accordingly, the complex poles of the controlled
system model are at best approximately compensated, but in
no case shifted into real areas where they do not cause cou-
pling and oscillations. To demonstrate that the use of current
setpoints for decoupling does not solve the decoupling task,
Fig. 4d shows the time curves of the stator current direct
and quadrature axis components as well as other quantities
obtained during the described reversing process when, at a
switching and sampling frequency of 4 kHz, this method was
used for decoupling purposes and the current setpoint com-
ponents are previously passed over the aforementioned P–T1

elements. Furthermore, it should be noted that the decoupling
law used in Fig. 4a through 4d still contains the rotation fac-
tor ej2ωSTS as in Eq. (59) (see Sect. 4). Without it, the course
of iS, d and iS, q would have a less favorable appearance.

A comparison with Fig. 4c shows that the oscillations in
both stator current components increase again during the
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reversing process with the decoupling variant using cur-
rent setpoints. As has already been mentioned, replacing
the actual values with setpoint values does not solve the
decoupling problem. This statement is confirmed by another
comparison (see Fig. 5a and b).

With the drive variant with discrete-time decoupling
according to Eqs. (35) and (36), no stability problems occur
even at fPWM � 2 kHz (see Fig. 4e), and at fPWM � 4 kHz
it can be seen in Fig. 4f that the actual values of the sta-
tor current components follow their setpoint values with the
least error with reference to the preceding figures. However,
Fig. 4e also shows that the decoupling is not perfect. This
is because the envelope of iS, d has an unexpected overshoot
when the sign of iS, q, ref changes. A detailed analysis of this
behavior showed that it only occurs at a very high speed
change rate. This is because up to now the assumption was
made implicitly that the stator angular frequency does not
change so fast that different values of ωS would have to be
calculated simultaneously at different points in the current
control algorithm. But this would be necessary for a com-
plete decoupling, where even a value of ωS lying in a future
sampling interval would be required and, strictly speaking,
ωS must not be considered constant even within a sampling
interval. However, because this cannot bemodeled in the cur-
rent control algorithm, non-negligible inaccuracies occur in
case of a relatively large product of stator angular frequency
and sampling time. While a state controller can significantly
attenuate the above-mentioned deviation of iS, d by means of
a more rigidly adjustable integral-action component, there is
no possibility for a PI controller to do so. At fPWM � 4 kHz
and above, however, this problem no longer plays a role in
the example.

If a decoupling structure based on Eq. (27a) is used for the
reversal process and a P-canonical decoupling method in the
z-domain is developed from it, similar to [5], the following
control law is obtained for the decoupling and disturbance
rejection

V r
ref, z(z) � ejωSTS

(
(1 + jωSτ)

z − e− Ts
τ

−jωSTs

z − e− Ts
τ

1 − e− Ts
τ

1 − e− Ts
τ

−jωSTs
V r

PI, z(z) + V r
ind, z(z)

)
(40a)

On the one hand, it is constructed in such a way that with
V r

PI, z(z) or v
r
PI, k , respectively, an input is available towhich a

PI controller can be connected, as in Fig. 3b, whose task is to
control the decoupled and disturbance-compensated system,
e.g., using the controller coefficients given in Eq. (39). On
the other hand, the complex pole fromEq. (27a) can be found
in Eq. (40a) as a zero. Other complex factors from Eq. (27a)
appear in Eq. (40a) in inverted form.

If we now insert Eq. (40a) into Eq. (27a), then the terms
mentioned compensate each other. In order for Eq. (40a) to
remain a causal transfer equation, the complex zero in it is
supplemented by a real pole, which arises from the zero for
ωS � 0. A similar procedure is followed with the other com-
plex factors. The resulting transfer equation contains only
real coefficients, which excludes coupling – if the space
vector of the induced voltages is disregarded. However, by
substituting Eq. (40a) into Eq. (27a), it can also be seen that

the complex pole e− Ts
τ

−jωSTs from Eq. (27a) is not shifted,
but only compensated by a zerowith the same value. Because
such a compensation never takes place completely in reality
and because the complex pole can still be excited by distor-
tions and initial values, a compensated complex pole can still
cause coupling and oscillations.

In order to be able to implement Eq. (40a) in a simple way,
the numerator of the first fraction occurring in it is extended

additively by e− TS
τ − e− TS

τ and then the concerned fraction
is split into two parts. This leads to the following control
law, which in the paths between the PI controller output vari-
ables and the manipulated variables contains exclusively P
elements and discrete-time P-T1elements:

V r
ref, z(z) � ejωSTS((1 + jωSτ)

(
1 − e− Ts

τ +
1 − e− Ts

τ

z − e− Ts
τ

e− Ts
τ

(
1 − e−jωSTs

))

V r
PI, z(z)

1 − e− Ts
τ

−jωSTs
+ V r

ind, z(z)

)
(40b)

Figure 4g shows which time characteristics are obtained
with the decoupling strategy according to Eq. (40b) during
the reversing process and a switching frequency of 4 kHz.

At low stator frequencies, deviations of the stator current
quadrature axis component from its nominal value as well as
drops of the stator current direct axis component during the
change in the quadrature axis current setpoint can be seen.
Whether this is essentially related to the selected discrete-
time model or to the underlying P-canonical decoupling
structure can be clarified most simply by also decoupling
the discrete-time model based on Eq. (25) by means of a P-
canonical structure. In the z-domain, this results in the control
law

V r
ref, z(z) � ej2ωSTS

(
z − e− Ts

τ
−jωSTs

z − e− Ts
τ

V r
PI, z(z)

+
1 − e− Ts

τ
−jωSTs

(1 + jωSτ)
(
1 − e− Ts

τ

)V r
ind, z(z)

⎞
⎠ (41a)

� ej2ωSTs

((
1 +

e− Ts
τ

z − e− Ts
τ

(
1 − e−jωSTs

))
V r

PI, z(z)
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+
1 − e− Ts

τ
−jωSTs

(1 + jωSτ)
(
1 − e− Ts

τ

)V r
ind, z(z)

⎞
⎠ (41b)

As can be seen, there are also slight deformations in the
direct and quadrature axis actual current values in Fig. 4h.
It can therefore be assumed that these slight deformations
are due to the selected P-canonical structure. The drop in
the direct axis component of the stator current in Fig. 4g,
on the other hand, is more likely due to inaccuracies in the
discrete-time model.

For the purpose of completeness, Fig. 4i shows the corre-
sponding time courses when the decoupling is realized as a
P-canonical structure based on Eq. (26). However, there are
no significant differences in the course of iS, q compared to
Fig. 4g. The deviations of iS, d in Fig. 4g, on the other hand,
no longer occur in Fig. 4i.

At the end of the comparison of the different decoupling
methods, the results of the considered reversing process is
presented, if the control is based on the discrete-time model
according to Eq. (28) derived from [1]. If, based on this, the
same considerations are applied as for the decoupling and
disturbance rejection of the discrete-time model according
to Eq. (25), then the control law becomes

vrref, k � sin ωSTs
2

ωSTs
2

ej
3ωSTs

2

(1 + jωSτ)
(
1 − e− Ts

τ

)

1 − e− Ts
τ

−jωSTs

·
(

vrPI, k−1 + R
e− Ts

τ

1 − e− Ts
τ

(
1 − e−jωSTs

)
e− Ts

τ
−jωSTs i rS, k

)

+ e− Ts
τ

(
1 − e−jωSTs

)
vrref, k−1

+
sin ωSTs

2
ωSTs
2

ej
3ωSTs

2

(
1 − e− Ts

τ

(
1 − e−jωSTs

))
vrind, k (42)

Implementing it in the example drive results in the time
courses shown in Fig. 4j.

If one finally generates from Eq. (28) a decoupling set
up as a P-canonical structure, it leads in the z-domain to the
control law

V r
ref, z(z) � sin ωSTs

2
ωSTs
2

ej
3ωSTs

2 · ((1 + jωSτ)

(
1 − e− Ts

τ +
1 − e− Ts

τ

z − e− Ts
τ

e− Ts
τ

(
1 − e−jωSTs

))

V r
PI, z(z)

1 − e− Ts
τ

−jωSTs
+ V r

ind, z(z)

)
(43)

The resulting time courses are shown in Fig. 4k.
On the one hand, this shows that the decoupling method

based on Fig. 4j delivers the same control quality for the

reversal process as the method based on Fig. 4f. On the
other hand, all decoupling methods based on a P-canonical
structure produce a slight deformation in the stator current
components in some areas. This is due to the fact that the
complex poles of the z-transfer function of the controlled sys-
tem are not shifted but only compensated. This is not the case
with decouplingmethods based on feedback structures, if the
controlled system poles are shifted to real, decoupling and
non-oscillatory positions. For this reason, feedback struc-
tures are to be preferred, whereby the decouplings according
to Eqs. (35) and (36) as well as Eq. (42) have the highest
control quality, at least in the example drive considered.

To demonstrate that a state controller is in principle capa-
ble of significantly mitigating the effects of incomplete
decoupling, Fig. 4l shows the time responses corresponding
to the previous figures when a current state controller is used
instead of a PI current controller at the switching frequency
fPWM � 2 kHz and this is parameterized according to the
setting rules as discussed in Sect. 3.3. The control eigenval-
ues zR, 1 and zR, 2 are set to 0.5 for better comparability of the
results with those from the previous figures, as are the poles
of the z-command transfer function there.

As can be clearly seen, for the state controller at fPWM �
2 kHz, hardly any more overshoot of the envelope of iS, d
occurs.

In order to be able to observe the transient response with
higher resolution, Fig. 5a–g shows responses of the current
control loop at quadrature axis current setpoint steps exe-
cuted in quick succession. For this purpose, the speed profile
is modified in such a way that the nominal value of the stator
current quadrature axis component is used to accelerate only
up to a speed of approx. 4500 min−1, where a sign change
of iS, q, ref then takes place until the speed has dropped to
4200 min−1. As soon as this speed is fallen below, the sign
of iS, q, ref is changed again. As a result, the current con-
trol loop is excited within a few milliseconds with changing
quadrature axis current setpoints, at a stator frequency in the
range of 375 Hz. The maximum frequency was reduced in
comparison to the profile in Fig. 4a–k in order to prevent the
magnitude of the reference voltage space vector from being
limited because the stator current setpoint steps now take
place partly in motor operation and need therefore higher
voltage.

Figure 5a is based on a continuous-time designed decou-
pling by means of stator current actual value components
according to Eq. (59), while in Fig. 5b the decoupling is
performed by means of stator current setpoint components.
In Fig. 5c a discrete-time designed decoupling according to
Eq. (35) is implemented,which is based on amodel according
to Eq. (25) [2–4, 6]. For comparison purposes, Fig. 5d shows
the system response when the decoupling is also based on
a model according to Eq. (25), but realized as a P-canonical
structure according to Eq. (41b). Finally, Fig. 5e–g illustrates
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(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Fig. 5 a–h Course of the stator current setpoint and actual value
components as well as other quantities during repetitive accelera-
tion and deceleration with direct axis current setpoint set to zero,
a switching and sampling frequency of 6 kHz and various decou-
pling methods. a Continuous-time designed decoupling according to
Eq. (59), b continuous-time designed decoupling, realized with set-
points, c discrete-time designed decoupling according to Eq. (35),

following [2–4, 6], d discrete-time designed P-canonical decoupling
according to Eq. (41b), e discrete-time designed P-canonical decou-
pling according to Eq. (40b), following [5], f discrete-time designed

P-canonical decoupling according to Eq. (40b), but with ej
3
2 ωSTs instead

of ejωSTs , following [8], g discrete-time designed decoupling according
to Eq. (43), following [1], h discrete-time dead beat state controller
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the corresponding time courses when the decouplings are
implemented according to Eqs. (40b) and based on [5], (40b)

with ej
3
2ωSTS instead of ejωSTS and based on [8] as well as (42)

[1]. All curve shapes in Fig. 5a–g are based on a switching
and sampling frequency of 6 kHz.

As shown in Fig. 5c–g, the curves of the quadrature
axis current actual value hardly show any differences for
the discrete-time designed decouplings, if combined with a
PI current controller. With the time-continuously designed
decoupling, on the other hand, there are control deviations in
the quadrature axis current which hardly decrease. The rea-
son for this is the insufficient decoupling in the given stator
frequency range, which is why the controller integrators have
to take over decoupling tasks. For them to be able to do this, a
control deviation must be present at their inputs. Significant
differences between the discrete-time decoupling methods
can be seen above all in the curves of the actual direct axis
current values. Ideally, they are close to zero.Deviations from
this then indicate incomplete decoupling. This is the case for
all decoupling methods investigated except for those based
on Eqs. (35) and (42) and, with minor constraints, for the
method based on Eq. (26). Even in the case of the method
based on the correct controlled system model (25) but real-
ized as a P-canonical structure, deviations of iS, d, k from the
nominal value zero are present. This is another indication
that feedback structures should be preferred over P-canonical
structures for decoupling.

It is interesting to note that in Fig. 5d–f there is nothing to
indicate that, when the stator frequency range in question is
passed through quickly using P-canonical decoupling meth-
ods, deformations occur in certain areas in the quadrature
axis current profile similar to those in Fig. 4g, h, i and k.

3.3 Comparison with state controller based
decoupling

If a state controller with integral-action component is
designed for the controlled system according to Eq. (25) for
the case of a computaional dead time of one sampling inter-
val, then corresponding to [6] the following control law is
obtained

vrref, k � Mi rS, ref, k − K Pi
r
S, k − KTvrT, k + K Iv

r
I, k + K zv

r
ind, k

(44a)

vrI, k+1 � vrI, k + i rS, ref, k − i rS, k (44b)

vrT, k+1 � e−j2ωSTS
(
vrref, k − K zv

r
ind, k

)
(44c)

using the controller coefficients

M � R ej2ωSTS

1 − e− TS
τ

(
1 − zR, 1

)
(45a)

K P � R ej2ωSTS

1 − e− TS
τ

((
1 − zR, 1

)(
1 − zR, 2

)

+e− TS
τ

−jωSTS
(
1 − zR, 1 − zR, 2

)
+ e

−2
(
Ts
τ
+jωSTS

))

(45b)

KT � ej2ωSTS
(
e− TS

τ
−jωSTS + 1 − zR, 1 − zR, 2

)
(45c)

K I � R ej2ωSTS

1 − e− TS
τ

(
1 − zR, 1

)(
1 − zR, 2

)
(45d)

K z � ej2ωSTS

1 − e− TS
τ

1 − e− TS
τ

−jωSTS

1 + jωSτ
(45e)

In it, zR, 1 and zR, 2 denote the predeterminable control
eigenvalues, which can also be interpreted as poles of the z-
command transfer function. Newly, in Eqs. (44a) and (44c)
the space vector vrT appears. It represents a state variable
which is used to describe the influence of the computational
dead time. The underlying state space model is a 3rd order
system. Thus, three control eigenvalues can be specified. In
addition to the already mentioned control eigenvalues zR, 1
and zR, 2, the fixed control eigenvalue zR, 3 � 0was specified,
which is used to model the dynamics of the computational
dead time which cannot be eliminated by the control.

In order to be able to theoretically separate the dynamics
of the control from the required decoupling in the current
state controller, the two control eigenvalues zR, 1 and zR, 2 are
specified in a thought experiment as real numbers with their
amounts matching exactly the amounts of the corresponding

eigenvalues of the controlled system. That is, zR, 1 � e− TS
τ

and zR, 2 � 1 (open integrator) are chosen. Thus, the state
controller is only supposed to effect a decoupling, which is
just characterized by the fact that the resulting difference
equations describing the relation between i rS, ref and i rS have
exclusively real coefficients (cf. Sect. 3.1). If this is done
in that way, the following setting values result from Eqs.
(45b)–(45d)

K P � −
R
(
e− TS

τ

)2
ejωSTS

1 − e− TS
τ

(
1 − e− jωSTS

)

KT � −ej2ωSTSe− TS
τ

(
1 − e−jωSTS

)
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K I � 0

Substituting them into the current state control law (44a)
and neglecting the terms Mi rS, ref, k and K zv

r
ind, k , we just get

the decoupling part of the state controller. If we denote its
output quantity by vrdec, k as in the case of the more classical
current controller from Sect. 3.1, then the decoupling part of
the current state controller is as follows

vrdec, k �
R
(
e− TS

τ

)2
ejωSTs

1 − e− TS
τ

(
1 − e−jωSTS

)
i rS, k

+ ej2ωSTSe− TS
τ

(
1 − e−jωSTS

)
vrT, k .

If vrT, k is replaced by the right-hand side of Eq. (44c) writ-
ten for k instead of k + 1 and assuming vrind, k−1 � vrind, k ,
we obtain, taking into account Eqs. (36) and (45e), exactly
Eq. (35). This means that the decoupling part of the cur-
rent state controller exactly matches the decoupling derived
in Sect. 3.1. Accordingly, both controller structures produce
identical decoupling. The only difference is the control of
the decoupled system, for which the current state controller
has more degrees of freedom. In Fig. 4l they have already
been used to reduce decoupling errors due to fast changing
stator angular frequency. Another possibility to demonstrate
the degrees of freedom of a state controller is shown in
Fig. 5h, where a state controller with integral-action com-
ponent is used as a current controller and is parameterized as
a dead beat controller with respect to the command response.
This realizes the shortest possible command step response.
However, themanipulated variable deviations during setpoint
changes are then significantly higher than with the PI con-
troller, so that the voltage limit is briefly reached during the
transition processes from negative to positive quadrature axis
current in Fig. 5h. For the same reason, some controller coef-
ficients are significantly larger in the dead beat controller
setting than with the PI controller, so that the noise compo-
nents typically contained in the current measurement signals
are amplified correspondingly more than with the PI con-
troller. Moreover, because the dead beat controller reacts
more sensitively than the PI controller to system parame-
ters that are not precisely known, it is advisable to set the
dynamics of a state controller in real drives somewhat less
stiffly than in the dead beat configuration – for example as it
is done in Fig. 4l.

4 Theoretical considerations on the stability
of continuous-time decouplingmethods

As can be seen from the curves shown in Sect. 3.2, stability
problems can occur in the current control loop with an unfa-
vorable product of stator frequency and sampling time, if the

decoupling is designed to be continuous-time. Therefore, it
is to be estimated in the following where the stability limit
lies in this case. For this purpose, Eq. (38) implemented in
discrete-time but designed using a continuous-time model is
inserted into Eq. (25), first for the case of a negligible com-
putational dead time. Thus the stator current space vector
difference equation is obtained

i rS, k+1 �
⎛
⎜⎝e− Ts

τ
−jωSTS + jωSL

(
1 − e− TS

τ

)
e−jωSTS

R

⎞
⎟⎠i rS, k

+

(
1 − e− TS

τ

)
e−jωSTS

R
vrPI, k

+

⎛
⎜⎝

(
1 − e− TS

τ

)
e−jωSTS

R
− 1 − e− TS

τ
−jωSTS

R(1 + jωSτ)

⎞
⎟⎠vrind, k

(46)

If, for simplicity, it is assumed that instead of a PI con-
troller only a P controllerwith the proportional coefficient KP

is used, then the characteristic equation of the closed current
loop follows from Eq. (46) under consideration of Eq. (20)

z − e− TS
τ

−jωSTS +

(
KP

R
− jωSτ

)(
1 − e− TS

τ

)
e−jωSTS � 0

(47)

If we denote the zero of Eq. (47) by z1, then it is as follows

z1 � e−jωSTS

(
e− TS

τ − KP

R

(
1 − e− TS

τ

)
+ jωSτ

(
1 − e− TS

τ

))

(48)

For a stable control loop, |z1| < 1 must hold for it [11].

Even for themost favorable case in this respect,where e− TS
τ −

KP
R

(
1 − e− TS

τ

)
would be zero –whichwould correspond to a

dead-beat controller apart from the incomplete decoupling –
the current control loop decoupled in this way is stable only
for

|ωSTS| <
TS

τ
(
1 − e− TS

τ

) (49a)

If, on the other hand, a more practically relevant propor-
tional coefficient were used, as given in Eq. (39), then stable
operation would be given for R � RS und τ � τs only within
the range

|ωSTS| <

TS

√
1 −

(
e− TS

τ − 1
4

)2

τ
(
1 − e− TS

τ

) (49b)
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For τ � TS this means stability for |ωSTS| < 1 or
|ωSTS| < 0.66, respectively.

In order to compensate the rotation by the factor e−jωSTS

(cf. Equation (25) with neglected computational dead time)
contained in the controlled system model, the following
approach can be used as an alternative to the discretized
Eq. (38)

vrref, k � ejωSTS
(
vrPI, k + jωSLi

r
S, k + vrind, k

)
(50)

Substituted intoEq. (25), it leads to the characteristic equa-
tion

z − e− TS
τ

−jωSTS +

(
KP

R
− jωSτ

)(
1 − e− TS

τ

)
� 0 (51)

with the zero

(52a)

z1 � e− TS
τ cosωSTS − 1

4

+ j
(
−e− TS

τ sinωSTS + ωSτ
(
1 − e− TS

τ

))

applicable for KP � R

4

(
1−e−

TS
τ

) . If it is now assumed that

at least |ωSTS| < 0.66 applies as before, the approximations
cosωSTS ≈ 1 and sinωSTS ≈ ωSTS can be roughly made.
This gives the approximate solution for z1

z1 � e− TS
τ − 1

4
+ jωSTS

⎛
⎜⎝

τ
(
1 − e− TS

τ

)

TS
− e− TS

τ

⎞
⎟⎠ (52b)

and with the requirement |z1| < 1 the stability range

|ωSTS| <

√
1 −

(
e− TS

τ − 1
4

)2

τ
TS

(
1 − e− TS

τ

)
− e− TS

τ

(53)

The consequence of this would be in the case τ � TS an
almost unlimited stability range with respect to ωS. In any
case, the addition of the rotation factor ejωSTS to the con-
trol law results in a significant improvement of the stability
behavior.

If a computational dead time of one sampling interval is
to be considered, then Eq. (38) in the variant

vrref, k � vrPI, k + jωSLi
r
S, k−1 + vrind, k−1 (54)

inserted in Eq. (25) and again under the simplifying assump-
tion of a pure P current controller, leads to the characteristic
equation

z2 − e− TS
τ

−jωSTS z +

(
KP

R
− jωSτ

)(
1 − e− TS

τ

)
e−j2ωSTS � 0

(55)

The two zeros of this are

z1/2 �e−jωSTS

(
1

2
e− TS

τ ±
(
1

4
e− 2TS

τ

−KP

R

(
1 − e− TS

τ

)
+ jωSτ

(
1 − e− TS

τ

)) 1
2
)

(56)

Looking at this result for practically relevant values of
KP, it is found that the real part of the bracket expression,
which is exponentiated by 1

2 , is nearby the stability limit
significantly smaller in magnitude than the imaginary part.
As an approximation, the real part of this bracket expression
can therefore be neglected, so that the root can simply be
taken. The following then applies approximately for the zeros
z1 and z2

z1/2 ≈ e−jωSTS

⎛
⎜⎜⎝
1

2
e− TS

τ ±

√√√√ |ωSτ |
(
1 − e− TS

τ

)

2
(1 + j)

⎞
⎟⎟⎠

(57)

If one forms the absolute value from this and requires that
it should be smaller than 1, this leads to the inequality for the
zero with the larger absolute value

|ωST | <
TS
τ

1 − e− TS
τ

√
1
2 − 1

16e
− 2TS

τ

1 − e− TS
τ

(58)

If again τ � TS applies, then stability exists for |ωSTS| <

0.34.
Obviously, it is also to be expected in the case of a

computational dead time of one sampling interval that the
compensation of the rotation factor e−j2ωSTS present in the
controlled system leads to an extension of the stability area.
In order to verify this, the correspondinglymodified approach

vrref, k � ej2ωSTs
(
vrPI, k + jωSLi

r
S, k−1 + vrind, k−1

)
(59)

is used and inserted into Eq. (25), which generates the char-
acteristic equation

z2 − e− TS
τ

−jωSTS z +

(
KP

R
− jωSτ

)(
1 − e− TS

τ

)
� 0 (60)

Its zeros are for KP � R

4

(
1−e−

TS
τ

)
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z1/2 �1

2
e− TS

τ
−jωSTS

±
(
1

4
e− 2TS

τ
−j2ωSTS − 1

4
+ jωSτ

(
1 − e− TS

τ

)) 1
2

�1

2
e− TS

τ
−jωSTS

±
(
1

4
e− 2TS

τ cos 2ωSTS

−1

4
+ j

(
−1

4
e− 2TS

τ sin 2ωSTS + ωSτ
(
1 − e− TS

τ

))) 1
2

(61a)

With regard to the bracket expression to be exponenti-
ated by 1

2 , in view of the previously obtained estimates for
|ωSTS|, it is also to be expected here that the real part of this
bracket expression is significantly smaller in amount than the
amount of the imaginary part, which is why the real part can
again be neglected during the square root extraction. As an
approach, with an additional approximation of sin 2ωSTS by
ωSTS (not 2ωSTS, because otherwise the approximation term
at the stability boundary would be greater than 1, which is the
maximum for sin 2ωSTS), the result is obtained as follows

z1/2 ≈ 1

2
e− TS

τ
−jωST

±

√√√√ |ωSTS|
(

τ
TS

(
1 − e− TS

τ

)
− 1

4e
− 2TS

τ

)

2
(1 + j)

(61b)

The magnitude of this, in conjunction with the

requirement
∣∣z1/2

∣∣<1 and neglecting the term e− TS
τ

(cosωSTS − sinωSTS)

√
|ωSTs|

(
τ
TS

(
1−e−

TS
τ

)
− 1

4 e
− 2TS

τ

)

2 , leads
to the stability range

|ωSTS| <
1 − 1

4e
− TS

τ

τ
TS

(
1 − e− TS

τ

)
− 1

4e
− TS

τ

(62)

For τ � TS then |ωSTS| < 1 holds.
If one evaluates Eq. (62) with the data on which the simu-

lations in Fig. 4a–c were based (sampling frequency 2 kHz,
3 kHz and 4 kHz, respectively, time constant τ ≈ 3.27 ms),
then the estimated stator frequency values fS ≈ 349.4 Hz
(for TS � 1

2 kHz ), fS ≈ 509 Hz (for TS � 1
3 kHz ) and

fS ≈ 668.3 Hz (for TS � 1
4 kHz ) result at the stability limit.

The first two agree quite well with those read in Fig. 4a and
b, respectively. Regarding the third, this frequency was not
approached in Fig. 4c. The quite good agreement of the the-
oretically predicted stability limits with the stability limits
that occurred in the simulation are a further indication that

the favored discrete-time systemmodel according to Eq. (25)
describes the true system behavior sufficiently accurately.

To conclude the above stability considerations, the case
where the continuous-time designed decoupling is carried
out with the help of the stator current setpoint components
will briefly be touched upon. There the terms containing jωSτ

multiplicatively are left out in the characteristic Eqs. (47),
(51), (55) and (60). The stability region widens thereby
in comparison to the case where the stator current actual
value components are used for the continuous-time designed
decoupling. However, the stator current direct and quadra-
ture axis components remain more strongly coupled to each
other, which can sometimes even lead to unacceptable oper-
ating states (cf. Figure 4d). For this reason, a stability analysis
for time-continuous designed decouplings realized with sta-
tor current setpoint components is omitted here.

5 Experimental results

To verify the simulation results, in a real PMSM drive whose
machine parameters are already used in the simulations of
Sect. 3.2, the control structure shown in Fig. 3a and alter-
natively as current state controller was implemented and
thus the time responses contained in Figs. 4e, f, l and 5c
were reproduced with the same switching and sampling fre-
quency as there. Moreover, for the state controller, curves
were recorded for the switching frequencies fPWM � 4 kHz
and fPWM � 6 kHz. In addition, the motion profile from
Fig. 4e and f is further supplemented by a variant with the
switching frequency fPWM � 6 kHz. The results obtained
are shown in Figs. 6a–f and 7, although only two quantities
could be recorded at a time and therefore only the quanti-
ties iS, d, k and iS, q, k are presented. Furthermore, it should
be taken into account that the simulation results also show
the curves between the sampling time instants, whereas the
figures in Sect. 5 only display the sampled values, connected
by interpolation.

It can be seen that the decoupling errors decrease sig-
nificantly with increasing switching or sampling frequency
and that they are considerably smaller for the state controller
than for the PI controller. However, it is also visible that at
fPWM � 2 kHz, the real PI-controlled drive has consid-
erably greater problems in performing decoupling correctly
than the simulation suggested. These enhanced problems are
due to model inaccuracies, which are always to be expected
with real drives. It should also be remembered that runtime
aspects must be considered in the encoder evaluation that
were not taken into account in the simulations. Therefore,
the use of a state controller is recommended at the latest for
such unfavorable quotients of stator and sampling frequency
as they are based on Fig. 6a.
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Fig. 6 a–c Course of the stator current actual value components eval-
uated on a real PMSM drive during reversing operation with direct
axis current setpoint set to zero, PI controller with discrete-time decou-
pling according to Eqs. (35) and (36) in the stator frequency range
−500 Hz ≤ fS ≤ 500 Hz as well as a switching and sampling fre-
quency of a 2 kHz b 4 kHz c 6 kHz. d–f Course of the stator current

actual value components evaluated on a real PMSMdrive during revers-
ing operation with direct axis current setpoint set to zero and state
controller in the stator frequency range −500 Hz ≤ fS ≤ 500 Hz
as well as a switching and sampling frequency of a 2 kHz b 4 kHz
c 6 kHz
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Fig. 7 Course of the stator current actual value components evaluated
on a real PMSM drive with stepwise quadrature axis current setpoint
change, direct axis current setpoint set to zero, PI controller with
discrete-time decoupling according to Eqs. (35) and (36) in the sta-
tor frequency range about 375 Hz as well as a switching and sampling
frequency of 6 kHz

With respect to Fig. 7, it should be noted that in the real
drive, due to the lower priority of the interrupt responsible for
the driving profile compared to the current controller inter-
rupt, the acceleration and deceleration times differ slightly
from those in Fig. 5c. Furthermore, a slight influence of iS, d, k
during the settling of iS, q, k is observed in Fig. 7.

6 Conclusion

In this paper, different decoupling strategies for inverter-
fed, current-controlled and pulse-width modulated PMSM
and IM drives were compared on the basis of simulations.
It has been shown that discrete-time methods are supe-
rior to continuous-time methods, especially for a relatively
large product of stator frequency and sampling time. Within
the discrete-time decoupling methods, the feedback-based
ones have been shown to be more advantageous than those
implemented as a P-canonical structure. To complement
the simulations, the effectiveness of the favored decoupling
method was verified on a real drive.
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