
JFP 33, e8, 63 pages, 2023. c© The Author(s), 2023. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796823000047

A type-directed, dictionary-passing translation of
method overloading and structural subtyping in

Featherweight Generic Go

M A R T I N S U L Z M A N N
Karlsruhe University of Applied Sciences, Karlsruhe, Germany

(e-mail: martin.sulzmann@h-ka.de)

S T E F A N W E H R
Offenburg University of Applied Sciences, Offenburg, Germany

(e-mail: stefan.wehr@hs-offenburg.de)

Abstract

Featherweight Generic Go (FGG) is a minimal core calculus modeling the essential features of the
programming language Go. It includes support for overloaded methods, interface types, structural
subtyping, and generics. The most straightforward semantic description of the dynamic behavior of
FGG programs is to resolve method calls based on runtime type information of the receiver. This
article shows a different approach by defining a type-directed translation from FGG− to an untyped
lambda-calculus. FGG− includes all features of FGG but type assertions. The translation of an FGG−
program provides evidence for the availability of methods as additional dictionary parameters, sim-
ilar to the dictionary-passing approach known from Haskell type classes. Then, method calls can be
resolved by a simple lookup of the method definition in the dictionary. Every program in the image
of the translation has the same dynamic semantics as its source FGG− program. The proof of this
result is based on a syntactic, step-indexed logical relation. The step index ensures a well-founded
definition of the relation in the presence of recursive interface types and recursive methods. Although
being non-deterministic, the translation is coherent.

1 Introduction

Go (2022) is a statically typed programming language introduced by Google in 2009. It
supports method overloading by allowing multiple declarations of the same method sig-
nature for different receivers. Receivers are structs, similar to structs in C. The language
also supports interfaces; as in many object-oriented languages, an interface consists of a
set of method signatures. But unlike in many object-oriented languages, subtyping in Go
is structural not nominal.

Earlier work by Griesemer et al. (2020) introduces Featherweight Go (FG), a minimal
core calculus that covers method overloading, structs, interfaces, and structural subtyping.
Their work specifies static typing rules and a dynamic semantics for FG based on runtime
method lookup. However, the actual Go implementation appears to employ a different

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796823000047
mailto:martin.sulzmann@h-ka.de
https://orcid.org/0000-0001-5242-767X
mailto:stefan.wehr@hs-offenburg.de
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796823000047&domain=pdf
https://doi.org/10.1017/S0956796823000047

2 M. Sulzmann and S. Wehr

dynamic semantics. Quoting Griesemer and co-workers: “Go is designed to enable efficient
implementation. Structures are laid out in memory as a sequence of fields, while an inter-
face is a pair of a pointer to an underlying structure and a pointer to a dictionary of
methods.”

In our own prior work (Sulzmann & Wehr, 2021, 2022), we formalize a type-directed
dictionary-passing translation for FG and establish its semantic equivalence with FG’s
dynamic semantics. Griesemer et al. also introduce Featherweight Generic Go (FGG), an
extension of FG with generics. In this work, we show how our translation approach can
be extended to deal with generics. Our focus is on the integration of generics with method
overloading and structural subtyping. Hence, we consider FGG−, which is equivalent to
FGG but does not support type assertions. Our contributions are as follows:

• We specify the translation of source FGG− programs to an untyped λ-calculus with
recursive let-bindings, constructors, and pattern matching. We employ a dictionary-
passing translation scheme à la type classes (Hall et al., 1996) to statically resolve
overloaded method calls. The translation is guided by the typing of the FGG− pro-
gram. As the typing rules include a subsumption rule, the translation is inherently
nondeterministic.

• We establish the semantic correctness of the dictionary-passing translation. The
result relies on a syntactic, step-indexed logical relation (LR) to ensure well-
foundedness of definitions in the presence of recursive interface types and recursive
methods.

• We show that values produced by different translations of the same program are
identical up to dictionaries embedded inside these values.

• We report on an implementation of the translation.

The upcoming Section 2 presents an overview of our translation by example. Section 3
gives a recap of the source language FGG−, whereas Section 4 defines the target language
(TL) and the translation itself. Next, Section 5 establishes the formal properties of the trans-
lation, and rigorous proofs of our results can be found in the Appendix. Section 6 presents
the implementation, and Section 7 covers related work. Finally, Section 8 summarizes this
work and points out directions for future work.

2 Overview

This section introduces FGG (Griesemer et al., 2020) and our type-directed dictionary-
passing translation through a series of examples. FGG is a tiny model of Go that includes
essential typing features such as method overloading, structs, interfaces, structural subtyp-
ing, and the extension with generics. Its original formulation also includes type assertions
(dynamic type casts). As we omitted this feature from our translation, we use the name
FGG− to refer to the source language of our translation. Except for the omission of type
assertions, FGG− and FGG are equivalent.

An FGG− program consists of declarations for structs, interfaces, methods, and a main
function. Function and method bodies only contain a single return statement, and all
expression are free from side effects. For the examples in this section, we extend FGG−

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 3

1 Numtype struct

return
return

return

interface
interfacetype

func
func

func

func
var

let

var
var

type
{ val int }

2 Format { format () string }
3 Pretty { format () string; pretty () string }
4

5 (this Num) format () string { intToString(this.val) }
6 (this Num) pretty () string { this.format () }
7

8 formatSome(x Format) string { x.format () }
9

10 main() {
11 s1 string = formatSome(Num {1})
12 pr Pretty = Num{2}
13 s2 string = formatSome(pr)
14 }

15 -- Field access for struct Num
16 val x = x
17

18 -- Method calls on interfaces
19 formatFormat (x, f) = f x -- call format on receiver of type Format
20 formatPretty (x, (f,p)) = f x -- call format on receiver of type Pretty
21 prettyPretty (x, (f,p)) = p x -- call pretty on receiver of type Pretty
22

23 -- Method definitions (lines 5 and 6 in the FGG code)
24 formatNum this = intToString (val this)
25 prettyNum this = formatNum this
26

27 -- Coercions
28 toFormatNum x = (x,formatNum) -- Num <: Format
29 toPrettyNum x = (x,(formatNum,prettyNum)) -- Num <: Pretty
30 toFormatPretty (x,(f,p)) = (x,f) -- Pretty <: Format
31

32 -- Function definitions (lines 8 and 10 in the FGG code)
33 formatSome x = formatFormat x
34

35 main = s1 = formatSome (toFormatNum 1)
36 pr = toPrettyNum 2
37 s2 = formatSome (toFormatPretty pr)

Fig. 1. String-formatting and its translation.

with primitive types for integers and strings, with an operator + for string concatenation
and a builtin function intToString, with definitions of local variables, and with function
definitions.

We will first consider FGG− without generics to highlight the idea behind our type-
directed dictionary-passing translation scheme. Then, we show how the translation scheme
can be adapted to deal with the addition of generics. All examples have been checked
against our implementation1 of the translation.

2.1 Starting without generics

The upper part of Figure 1 shows an (extended) FGG− program for formatting values as
strings. The code does not use generics yet.

Structs in Go are similar to structs in C. A syntactic difference is the Go convention that
field or variable names precede their types. Here, struct Num has a single field val of type
int, so it simply acts as a wrapper for integers.

1 https://github.com/skogsbaer/fgg-translate and http://doi.org/10.5281/zenodo.
8147425.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://github.com/skogsbaer/fgg-translate
http://doi.org/10.5281/zenodo.8147425
http://doi.org/10.5281/zenodo.8147425
https://doi.org/10.1017/S0956796823000047

4 M. Sulzmann and S. Wehr

Interfaces in Go declare sets of method signatures sharing the same receiver where
method names must be distinct and the receiver is left implicit. Interfaces are types and
describe all receivers that implement the methods declared by the interface. In our exam-
ple, interface Format declares a method format for rendering its receiver as a string. The
second interface Pretty also declares format but adds a second method pretty with the
intention to produce a visually more attractive output.

Methods and functions are introduced via the keyword func. A method can be distin-
guished from a function as the receiver argument in parenthesis precedes the method name.
Methods can be overloaded on the receiver type. In lines 5 and 6, we find methods format
and pretty, respectively, for receiver type Num. In the body of format, we assume a
builtin function intToString for converting integers to strings. Lines 8 and 10 define
two functions.

An interface only names a set of method signatures, its definition is not required for a
method to be valid. For example, the methods in lines 5 and 6 could be defined without the
interfaces in lines 2 and 3, or the methods could be placed before the interfaces.

However, interfaces and method definitions imply structural subtype relations. Interface
Format contains a subset of the methods declared by interface Pretty. Hence, Pretty
is a structural subtype of Format, written (1) Pretty <: Format. Line 5 defines method
format for receiver type Num, we say that Num implements method format. Hence, Num is
a structural subtype of Format, written (2) Num <: Format. Receiver Num also implements
the pretty method, see line 6. Hence, we also find that (3) Num <: Pretty. Structural
subtype relations play a crucial role when type-checking programs.

For example, consider the function call formatSome(Num{1}) in line 11. Here,
formatSome(Num{1}) is a value of the Num struct with val set to 1. From above, we
find that (2) Num <: Format. That is, Num implements the Format interface and therefore
the function call type-checks. Consider the variable declaration and assignment in line 12.
Value formatSome(Num{2}) is assigned to a variable of interface type Pretty. Based on
the subtype relation (3) Num <: Pretty the assignment type-checks. Consider the function
call formatSome(pr) in line 13, where pr has type Pretty. Based on the subtype relation
(1) Pretty <: Format the function call type-checks.

In Griesemer et al. (2020), the dynamic behavior of programs is explained via runtime
lookup of methods, where based on the receiver’s runtime type the appropriate method
definition is selected. The Go (and FGG/FGG−) conditions demand that for each method
name and receiver type, there can be at most one definition. This guarantees that method
calls can be resolved unambiguously.

2.2 Type-directed translation

We explain the meaning of extended FGG− programs by translation into an untyped
λ-calculus with recursive top-level definitions, let-bindings, pattern matching, integers,
strings, an operator ++ for string concatenation, and a builtin function intToString. We
will use a Haskell-style notation.

Method definitions belonging to an interface are grouped together in a dictionary of
methods. Thus, method calls can be turned into primitive function calls by simply looking
up the appropriate method in the dictionary. Structural subtype relations are turned into

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 5

coercion functions that transform, for example, a struct value into an interface value to
make sure that the appropriate dictionaries are available. Where to insert dictionaries and
coercions in the program is guided by the type-checking rules. Hence, the translation is
type-directed.

Our translation strategy can be summarized as follows:

Struct. An FGG− value at the type of a struct with n fields is represented by an n-tuple
holding the values of the fields. We call such an n-tuple a struct value.

Interface. An FGG− value at the type of an interface is represented as a pair (V , D), where
V is a struct value and D is a method dictionary. Such a method dictionary is a tuple
holding implementations of all interface methods for V , in order of declaration in
the interface. We call the pair (V , D) an interface value.

Coercion. A structural subtype relation τ <: σ implies a coercion function to transform
the target representation of an FGG− value at type τ into a representation at type σ.

The lower part of Figure 1 gives the translation of our running example. In this overview
section, we identify a 1-tuple with the single value it holds.

For each field name, we assume a helper function to access the field component, see
line 16. Method calls on interface values look up the respective method definition in
the dictionary and apply it to the struct value embedded inside the interface value. See
lines 19–21. Method definitions translate to plain functions, see lines 24–25. Recall that
for each method name and receiver type, there can be at most one definition. Hence, the
generated function names are all distinct.

Structural subtype relations translate to coercions, see lines 28–30. For example, (2)
Num <: Format translates to the toFormatNum coercion. Input parameter x represents a tar-
get representation of a Num value. The output (x,formatNum) is an interface value holding
the receiver and the corresponding method definition. Coercion toPrettyNum corresponds
to (3) Num <: Pretty and coercion toFormatPretty to (1) Pretty <: Format.

The translation of the main function, starting at line 35, is guided by the type-checking of
the source program. Each application of a structural subtype relation leads to the insertion
of the corresponding coercion function in the target program. For example, the function
call formatSome(Num{1}) translates to formatSome (toFormatNum 1) because typing
of the source requires (2) Num <: Format. The other coercions arise for similar reasons.

2.3 Adding generics

We extend our running example by including pairs, see Figure 2. The struct type Pair[T
Any, U Any] is generic in the type of the pair components, T and U are type variables.
When introducing type variables, we must also specify an upper type bound to constrain
the set of concrete types that will replace type variables. The bounded type parameter T
Any can therefore be interpreted as ∀T.T <: Any. Upper bounds are always interface types.
The upper bound Any is satisfied by any type because the set of methods that need to be
implemented is empty.

To format pairs, we need to format the left and right component that are of generic
types T and U. Hence, the method definition for format in line 4 states the type bound

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

6 M. Sulzmann and S. Wehr

1 Anytype
type

func

func
var
var
var

let

return

interface
struct

{}
2 Pair[T Any, U Any] { left T; right U }
3

4 (this Pair[T Format, U Format]) format () string {
5 "(" + this.left.format () + "," + this.right.format () + ")"
6 }
7

8 main2() {
9 p Pair[Num, Num] = Pair[Num, Num]{ Num{1}, Num{2} }

10 s1 string = p.format ()
11 s2 string = formatSome(p)
12 }

13 -- Field access for struct Pair
14 left (x, _) = x
15 right (_, x) = x
16

17 -- Method definition (line 4 in the FGG code)
18 formatPair (toFormatT, toFormatU) this =
19 "(" ++ formatFormat (toFormatT (left this)) ++
20 "," ++ formatFormat (toFormatU (right this)) ++ ")"
21

22 -- Coercion Pair[T, U] <: Format (given T <: Format and U <: Format)
23 toFormatPair (toFormatT,toFormatU) p = (p,formatPair (toFormatT,toFormatU))
24

25 -- Main function
26 main2 = p = (1, 2)
27 s1 = formatPair (toFormatNum, toFormatNum) p
28 s2 = formatSome (toFormatPair (toFormatNum, toFormatNum) p)

Fig. 2. String-formatting with generics (extending code from Figure 1).

Format for type variables T and U. In general, bounds of type parameters for the receiver
struct of a method declaration must be in a covariant subtype relation relative to the
bounds in the struct declaration. This is guaranteed in our case as we find Format <: Any.
Importantly, the type bounds in line 4 imply the subtype relations (4) T <: Format and (5)
U <: Format. Thus, we can show that the method body type-checks. For example, expres-
sion this.left is of type T. Based on (4), this expression is also of type Format and
therefore the method call in line 5 this.left.format() type-checks.

We consider type-checking the main function. Instances for generic type variables must
always be explicitly supplied. Hence, when constructing a pair that holds number values,
see line 9, we find Pair[Num, Num].

Consider the method call p.format() in line 10. The receiver struct
Pair[T Format, U Format] of the method definition in line 4 matches p’s type
Pair[Num, Num] by replacing T and U by Num. The type bounds in the receiver type
are satisfied as we know from above that (2) Num <: Format. Hence, the method call
type-checks.

By generalizing the above argument, we find that

(6) {T <: Format, U <: Format} � Pair[T, U] <: Format.

That is, under the assumptions T <: Format and U <: Format, we can derive that
Pair[T, U] <: Format. In particular, we find that Pair[Num, Num] <: Format. Hence,
the function call formatSome(p) in line 11 type-checks.

Extending our type-directed translation scheme to deal with generics turns out to be
fairly straightforward.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 7

Bounded type parameter. A bounded type parameter T Ifce where T is a type vari-
able and Ifce is an interface type becomes a coercion parameter toIfceT. At
instantiation sites, coercions need to be inserted.

The lower part of Figure 2 shows the translated program. Starting at line 18 we find
the translation of the definition of method format for pairs. Each bounded type parameter
T Format and U Format is turned into a coercion parameter toFormatT and toFormatU.
In the target, we use a curried function definition where coercion parameters are collected
in a tuple.

A method call of format needs to supply concrete instances for these coercion
parameters. See line 27 which is the translation of calling format on receiver type
Pair[Num,Num]. Hence, we must pass as the first argument the tuple of coercions
(toFormatNum, toFormatNum) to formatPair.

Subtype relation (6) implies the (parameterized) coercion toFormatPair in line 23.
Given coercions toFormatT and toFormatU, we can transform a pair p into an interface
value for Format, where the method dictionary consists of the partially applied translated
method definition formatPair.

We make use of toFormatPair in the translation of the function call formatSome(p),
see line 28. Based on the specific coercion toFormatNum, the call toFormatPair transforms
the pair value p into the interface value (p, formatPair (toFormatNum,toFormatNum)).
Then, we call formatSome on this interface value.

2.4 Bounded type parameters of methods

There may be bounded type parameters local to methods. Consider Figure 3 where we
further extend our running example. Starting at line 1 we find a definition of method
formatSep for pairs. This method takes an argument s that acts as a separator when for-
matting pairs. Argument s is of the generic type S constrained by the type bound Format.
Type parameter S is local to the method and not connected to the receiver struct. Type
arguments for S must also be explicitly specified in the program text, see method calls in
lines 8 and 13.

In the translation, bounded type parameters of methods simply become additional coer-
cion parameters. Consider the translation of formatSep defined on pairs starting at line 21.
The translated method definition first expects the coercion parameters (toFormatT and
toFormatU) that result from the bounded type parameters T Format and U Format of the
receiver. Then, we find the receiver argument this followed by the coercion parameter
toFormatS resulting from S Format and finally the method argument s. The translation
of the method body follows the scheme we have seen so far, see lines 22–24. When calling
method formatSep on a pair, we need to provide the appropriate coercions, see line 37.

From the method definition of formatSep for pairs and from the definition of interface
FormatSep, we find that the following subtype relation holds:

(7) {T <: Format, U <: Format} � Pair[T, U] <: FormatSep.

Subtype relation (7) implies the coercion toFormatSepPair in line 28. Thus, the function
call of formatSepSome from line 14 translates to the target code starting in line 38.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

8 M. Sulzmann and S. Wehr

1 (this Pairfunc

func

func
var
var
var

let

return

return

interfacetype

[T Format, U Format]) formatSep[S Format](s S) string {
2 this.left.format () + s.format () + this.right.format ()
3 }
4

5 FormatSep { formatSep[S Format](s S) string }
6

7 formatSepSome(x FormatSep , s Format) string {
8 x.formatSep[Format](s)
9 }

10

11 main3 () {
12 p Pair[Num, Num] = Pair[Num, Num]{ Num{1}, Num{2} }
13 s1 string = p.formatSep[Num](Num {3}) // result: 132
14 s2 string = formatSepSome(p,Num {4}) // result: 142
15 }

16 -- Method call on interface
17 -- call formatSep on receiver of type FormatSep
18 formatSepFormatSep (x, f) = f x
19

20 -- Method definition (line 1 in the FGG code)
21 formatSepPair (toFormatT, toFormatU) this toFormatS s =
22 formatFormat (toFormatT (left this)) ++
23 formatFormat (toFormatS s) ++
24 formatFormat (toFormatU (right this))
25

26 -- Coercions
27 toFormatFormat x = x -- Format <: Format
28 toFormatSepPair (toFormatT, toFormatU) p =
29 -- Pair[T, U] <: FormatSep (given T <: Format and U <: Format)
30 (p, formatSepPair (toFormatT, toFormatU))
31

32 -- Function definitions (lines 7 and 11 in the FGG code)
33 formatSepSome (x, s) = (formatSepFormatSep x) toFormatFormat s
34

35 main3 =
36 p = (1,2)
37 s1 = formatSepPair (toFormatNum, toFormatNum) p toFormatNum 3
38 s2 = formatSepSome
39 (toFormatSepPair (toFormatNum, toFormatNum) p,
40 toFormatNum 4)

Fig. 3. Bounded type parameters of methods (extending code from Figure 2).

The point to note is that a coercion parameter corresponding to a bounded type parameter
of a method is not part of the dictionary; it is only supplied at the call site of the method.
Consider the call x.formatSep[Format](s) in line 8. In the translation (line 33), we
first partially apply the respective dictionary entry on the receiver. This is done via the
target expression (formatSepFormatSep x). Type Format is a valid instantiation for type
parameter S of formatSep because Format <: Format in FGG−. In the translation, this
corresponds to the (identity) coercion toFormatFormat. Hence, we supply the remaining
arguments toFormatFormat and s.

2.5 Bounded type parameters of structs and interfaces

Structs and interfaces may also carry bounded type parameters. In FGG− and FGG, these
type parameters do not have a meaning at runtime as their purpose is only to rule out more
programs statically. Hence, in our translation approach, they do not translate into additional
dictionary parameters or coercions.

Let us explain with the example in Figure 4. Struct FPair (short for “formatted pairs”)
requires the type bound Format on its type parameters. The generic interface Factory

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 9

1 FPairtype
type

type

struct

struct

interface

func

func

func

var

var

let

in

var

return

return

[T Format, U Format] { left T; right U }
2 Factory[T Format] { create () FPair[T, T] }
3

4 MyFactory {}
5 (this MyFactory) create () FPair[Num, Num] {
6 FPair[Num, Num]{Num{1}, Num {2}}
7 }
8

9 doWork[T Format](factory Factory[T]) string {
10 p FPair[T, T] = factory.create ()
11 t T = p.left
12 t.format ()
13 }
14

15 main4() {
16 s = doWork[Num](MyFactory {})
17 }

16 -- Field access for struct FPair
17 leftFPair (x, _) = x
18 rightFPair (_, x) = x
19

20 -- Method call on interface
21 createFactory (x, f) = f x -- call create on receiver of type Factory
22

23 -- Method definition (line 5 in the source program)
24 createMyFactory this = (1, 2)
25

26 -- Coercion
27 toFactoryMyFactory x = (x, createMyFactory) -- MyFactory <: Factory[Num]
28

29 -- Function definition (line 9 in the source program)
30 doWork toFormatT factory =
31 p = createFactory factory
32 t = leftFPair p
33 formatFormat (toFormatT t)
34

35 main4 = doWork toFormatNum (toFactoryMyFactory ())

Fig. 4. Bounded type parameters of structs and interfaces (extending code from Figure 1).

defines a factory method returning formatted pairs. It requires a type bound T Format
for the type FPair[T, T] in its method signature to be well formed. The need for this
type bound arises because FGG’s type system does not allow to conclude from just an
occurrence of FPair[T, T] that T is already a subtype of Format.

Struct MyFactory defines a concrete factory implementation for FPair[Num, Num],
and function doWork accepts a generic Factory[T] for arbitrary T. Again, doWork
requires a type bound T Format for type Factory[T] to be well formed. The main func-
tion may then call doWork with a MyFactory value because MyFactory is a subtype of
Factory[Num].

The translated code (lower part of Figure 4) demonstrates that bounded type parameters
of structs and interfaces have no representation at runtime, so the translation effectively
ignores them. A struct value is still just a tuple with the fields of the struct (lines 17 and
18), and an interface value just combines a struct value with a method dictionary (e.g.,
line 27). Only bounded type parameters of receiver structs (Figure 2), methods (Figure 3),
and functions (Figure 4) lead to additional coercion parameters.

An important point to note is that there is a difference between generic interfaces and
interfaces with generic methods. Interface Factory[T] in Figure 4 is generic in T, and
a subtype of Factory[U] must provide an implementation of the create method for

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

10 M. Sulzmann and S. Wehr

Struct name ∈ Nstruct
Interface name ∈ Niface
Type variable name ∈ Ntyvar

Type name ::= |

Type ::= | []

Field name ∈ Nfield
Method name ∈ Nmethod
Variable name ∈ Nvar

Struct type ::= []

Interface type ::= []

Expression ::= | [] () | { } |

Method signature ::= [] ()

Declaration ::= type [] struct { }

| type [] interface { }

| func ([]) {return }

Program ::= func main(){ = }

Fig. 5. Syntax of FGG−.

some fixed type U. In contrast, interface FormatSep from Figure 3 is not generic but con-
tains a method formatSep that is generic in S. A subtype of FormatSep must provide an
implementation of formatSep that is also generic in S.

2.6 Outlook

Next, Section 3 formalizes FGG− following the description by Griesemer et al. (2020).
Then, we give the details of our type-directed translation scheme in Section 4 and establish
that the meaning of FGG− programs is preserved in Section 5.

3 Featherweight generic Go−

FG (Griesemer et al., 2020) is a small subset of the full Go language (2022) supporting only
essential features such as structs, interfaces, method overloading, and structural subtyping.
In the same article, the authors add generics to FG with the goal to scale the design to full
Go. The resulting calculus is called FGG. Since version 1.18, full Go includes generics
as well, but with limited expressivity compared to the FGG proposal (see Section 7.1).
For the translation presented in this article, we stick to the original FGG language with
minor differences in presentation but excluding dynamic type assertions. We refer to this
language as FGG−.

The next two subsections introduce the syntax and the dynamic semantics of FGG−. We
defer the definition of its static semantics until Section 4.2, where we specify it as part of
the type-directed dictionary-passing translation.

3.1 Syntax

Figure 5 introduces the syntax of FGG−. We assume several countably infinite, pairwise
disjoint sets for names, ranged over by N with some subscript (upper part of the figure).

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 11

Meta-variables tS and uS denote struct names, tI and uI interface names, α and β type vari-
ables, f field names, m method names, and x, y denote names for variables in expressions.
Overbar notation sn is a shorthand for the sequence s1 . . . sn where s is some syntactic
construct. In some places, commas separate the sequence items. If irrelevant, we omit the
n and simply write s. Using the index variable i under an overbar marks the parts that vary
from sequence item to sequence item; for example, s′ si

n
abbreviates s′ s1 . . . s′ sn and sj

q

abbreviates sj1 . . . sjq.
The middle part of Figure 5 shows the syntax of types in FGG−. A type name t, u is

either a struct or interface name. Types τ and σ include types variables α and instantiated
types t[τ]. For nongeneric structs or interfaces, we often write just t instead of t[]. Struct
types τS , σS and interface types τI , σI denote syntactic subsets of the full type syntax.

The lower part of Figure 5 defines the syntax of FGG− expressions, declarations, and
programs. Expressions, ranged over by e and g, include variables x, method calls, struct
literals, and field selections. A method call e.m[τ](e) invokes method m on receiver e with
type arguments τ and arguments e. If m does not take type arguments, we often write just
e.m(e). A struct literals τS {en} creates an instance of a struct with n fields, the arguments
en become the values of the fields in order of appearance in the struct definition. A field
selection e.f projects the value of some struct field f from expression e.

A method signature R ::=m[α τI](x τ) τ consists of a name m, bounded type parameters
αi with interface type τIi as upper bounds, parameters xi of type τi, and return type τ. It
binds α and x. The scope of a type variable αi is τ, τ, and all upper bounds τI , so FGG−

supports F-bounded quantification (Canning et al., 1989). For nongeneric methods, we
often write just m(xi τi) τ.

A declaration D comes in three forms: a struct type tS[α τI] struct {f τ} with fields fi
of type τi; an interface type tI [α τI] interface {R} with method signatures R; or a method
func (x tS[α τI]) R {return e} providing an implementation of method R for struct tS . All
three forms bind the type variables α, and a method implementation additionally binds the
receiver parameter x. The scope of a type variable αi includes all upper bounds τI , the body
of the declaration enclosed in {. . .}, and for method declarations also the signature R. We
omit the [α τI] part completely if α τI is empty. Finally, a program P consists of a sequence
of declarations together with a main function. Method and function bodies only contain a
single expression. We follow the usual convention and identify syntactic constructs up to
renaming of bound variables or type variables.

The syntax of FGG− as presented here differs slightly from its original form (Griesemer
et al., 2020). The original article encloses type parameters in parenthesis, and an additional
type keyword starts a list of type parameters. Here, we follow the syntax of full Go and
use square brackets without any keyword. Further, the original article prepends package
main to each program, something we omit for succinctness. Finally, we reduce the number
of syntactic meta-variables to improve readability.

3.2 Dynamic semantics

Figure 6 defines a call-by-value dynamic semantics for FGG− using a small-step reduction
semantics with evaluation contexts. The definition is largely taken from Griesemer et al.
(2020).

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

12 M. Sulzmann and S. Wehr

Value ::= { }

Evaluation context E ::= □ | { E, } | E | E [] () | [] (E,)

Value substitution ::= � �
Type substitution ::= � �

−→ Reductions

FG-CONTEXT

−→ ′

E[] −→ E[′]

FG-FIELD

type [] struct { } ∈

[]{ } −→

FG-CALL

= []{ } func ([]) [′ ′] () {return } ∈

[′] () −→ � �� ′ ′ �→ → →

→

→

→

Fig. 6. Dynamic semantics of FGG−.

We use v, u, w to denote values, where a value is a struct literal with all fields being val-
ues. A call-by-value evaluation context E is an expression with a hole � such that the hole
marks the point where the next evaluation step should happen. We write E[e] to denote
the replacement of the hole in E with expression e. A value substitution θ is a finite map-
ping 〈x �→ v〉 from variables to values, whereas a type substitution η is a finite mapping
〈α �→ τ〉 from type variables to types. The (type) variables in the domain of a substitution
must be distinct. Substitution application, written in prefix notation as θe or ηe or ητ, is
defined in the usual, capture-avoiding way. When combining two sequences, we implicitly
assume that both sequences have the same length. For example, combining variables x and
values v to a substitution 〈x �→ v〉 implicitly assumes that there are as many variables as
values.

The reduction relation e −→ e′ denotes that expression e reduces to expression e′. To
avoid clutter, the sequence of declarations D of the underlying program is implicitly avail-
able in the rules defining this reduction relation. Rule FG-CONTEXT applies a reduction
step inside an expression. Rule FG-FIELD reduces a field selection tS[τ]{v}.fi by extracting
value vi corresponding to field fi from the struct literal. Rule FG-CALL reduces a method
call tS[τ]{u}.m[τ′](v). It retrieves a method definition for m and tS and substitutes type
arguments, receiver, and value arguments in the method body.

Reduction in FGG− is deterministic (see Lemma A.1.1 in Appendix A.1 for a formal
proof), assuming the following three restrictions:

FGG-UNIQUE-STRUCTS Each struct tS is defined at most once in the program.
FGG-DISTINCT-FIELDS Each struct definition type tS[α τI] struct {f τ} has distinct field

names f .
FGG-UNIQUE-METHOD-DEFS Each method definition func (x tS[α τI]) m[α′ τ′I](x σ) σ

{return e} is uniquely identified by struct name tS and method name m.

The first two restrictions ensure that the value for a field in rule FG-FIELD is unambiguous.
The third restriction avoids multiple matching method definitions in rule FG-CALL.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 13

Variable ∈ VVar
Constructor ∈ VCon
Expression ::= | | |

| case of Cls

Pattern clause Cls ::= Pat →

Pattern Pat ::=
Program Prog ::= let = in

Value ::= |

Evaluation context R ::= □ | case R of Cls | R | R

Substitution ::= 〈 ↦→ 〉

−→ ′ TL expression reductions

TL-CONTEXT

−→ ′

R[] −→ R[′]

TL-LAMBDA

() −→ 〈 ↦→ 〉

TL-CASE

→ ∈ Cls

case of Cls −→ 〈 ↦→ 〉

TL-METHOD

−→ ()

Prog −→ Prog ′ TL reductions

TL-PROG

= 〈 ↦→ 〉 −→ ′

let = in let = in ′

Fig. 7. Target language (TL).

4 Type-directed translation

This section defines a type-directed, dictionary-passing translation from FGG− to an
untyped λ-calculus extended with recursive let-bindings, constructors, and pattern match-
ing. We first introduce the target language, then specify the translation itself, and last
but not least give some examples. Formal properties of the translation are deferred
until Section 5.

4.1 Target language

Figure 7 defines the syntax and the call-by-value dynamic semantics of the target lan-
guage (TL). We use uppercase letters for constructs of the TL. Variables X and Y
and constructors K are drawn from countably infinite, pairwise disjoint sets VVar and
VCon, respectively. Expressions, ranged over by E and G, include variables X , con-
structors K, function applications E E′, λ-abstractions λX .E, and pattern matching via
case-expressions case E of Pat→ E. Patterns Pat have the form K X , and they do not nest.
We assume that all constructors in Pat are distinct. To avoid some parentheses, we use the
conventions that application binds to the left and that the body of a λ extends to the right
as far as possible.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

14 M. Sulzmann and S. Wehr

A program let X = V in E consists of a sequence of (mutually recursive) definitions and
a (main) expression, where we assume that the variables X are distinct. In the translation
from FGG−, the values V are always functions resulting as translations of FGG− methods.
We identify expressions, pattern clauses, and programs up to renaming of bound variables.
Variables are bound by λ expressions, patterns, and let-bindings of programs.

Some syntactic sugar simplifies the construction of patterns, expressions, and programs.
(a) We use nested patterns to abbreviate nested case-expressions. (b) We assume data
constructors for tuples up to some fixed but arbitrary size. The syntax (E

n
) constructs

an n-tuple when used as an expression, and (Pat
n
) deconstructs it when used in a pat-

tern context. (c) We use patterns in λ-expressions; that is, the notation λPat.E stands for
λX .case X of Pat→ E where X is fresh.

Target values V , U , W are either λ-expressions or constructors applied to values. A con-
structor value K V

n
is short for (. . . (K V1) . . .) Vn. A call-by-value evaluation context R

is an expression with a hole � such that the hole marks the point where the next evalua-
tion step should happen. We write R[E] to denote the replacement of the hole in R with
expression E.

A substitution ρ, μ is a finite mapping 〈X �→ V 〉 from variables to values. The variables
X in the domain must be distinct. Substitution application, written in prefix notation ρE, is
defined in the usual, capture-avoiding way. We use two different meta-variables μ and ρ

for substitutions in the TL with the convention that the domain of μ contains only top-level
variables bound by let. As top-level variables result from translating FGG− methods, we
sometimes call μ a method substitution.

The reduction semantics for the TL is defined by two relations: E −→μ E′ reduces
expression E to E′ under method substitution μ, and Prog −→ Prog′ reduces Prog to Prog′.
The definition of the latter simply forms a method substitution μ from the top-level bind-
ings of Prog and then reduces the main expression of Prog under μ (rule TL-PROG). We
defer the substitution of top-level-bound variables because they might be recursive.

The definition of the reduction relation for expressions extends over four rules. Rule
TL-CONTEXT uses evaluation context R to reduce inside an expression, and rule TL-LAMBDA

reduces function application in the usual way. Pattern matching in rule TL-CASE assumes
that the scrutinee is a constructor value K V

n
; the lookup of a pattern clause matching K

yields at most one result as we assume that clauses have distinct constructors. During a
sequence of reduction steps, a variable bound by let at the top-level might become a redex,
as only λ-bound variables are substituted right away. Thus, rule TL-METHOD finds the value
for the variable in the method substitution μ.

4.2 Translation

Before we dive into the technical details, we summarize our translation strategy.

Struct. An FGG− value of some struct type is represented in the TL as a struct value; that
is, a tuple (V

n
) where n is the number of fields and Vi represents the i-th field of the

struct.
Interface. An FGG− value of some interface type is represented in the TL as an interface

value; that is a pair (V,D), where V is a struct value realizing the interface and D
is a dictionary.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 15

Dictionary. A dictionary D for an interface with methods R
n

is a tuple (V
n
) such that Vi

is a dictionary entry for method Ri.
Dictionary entry. A dictionary entry for a method with signature R =m[α τI](x σ)σ is a

function accepting a triple: (1) receiver, (2) tuple with coercions corresponding to
the bounded type parameters α τI of the method, and (3) tuple for parameters x.

Coercion. A structural subtype relation τ <: σ implies a coercion function to transform
the target representation of an FGG− value at type τ into a representation at type σ.

Bounded type parameter. A bounded type parameter α τI becomes a coercion parame-
ter Xα transforming the type supplied for α to its bound τI . At instantiation sites,
coercions need to be inserted.

Method declaration. A method declaration func (x tS[α τI]) m[α′ τ′I](x σ) σ {return e} is
represented as a top-level function Xm,tS accepting a quadruple: (1) tuple with coer-
cions corresponding to the bounded type parameters α τI of the receiver, (2) receiver
x, (3) tuple with coercions corresponding to bounded type parameters α′ τ′I of the
method, and (4) tuple for parameters x.

In essence, the above is a more detailed description of the translation scheme motivated
in Section 2. The only difference is that dictionary entries and translations of methods are
now represented as uncurried functions. For example, instead of the curried representation
in Figure 3
formatSepPair (toFormatT, toFormatU) this toFormatS x = ...

toFormatSepPair (toFormatT, toFormatU) p =
(p, formatSepPair (toFormatT, toFormatU))

our actual translation scheme uses uncurried functions, as in the following code:
-- translation of method
formatSepPair ((toFormatT, toFormatU), this , toFormatS, x) = ...

toFormatSepPair (toFormatT, toFormatU) p =
(p, \(this ,locals ,arg) -> -- dictionary entry

formatSepPair ((toFormatT, toFormatU),locals ,arg))

Using an uncurried representation instead of a curried representation is just a mat-
ter taste. As we have carried out the semantic equivalence proof initially based on the
uncurried representation, we stick to it from now on.

4.2.1 Conventions and notations

The translation relies on three total injective functions with pairwise disjoint ranges for
mapping FGG− names to TL variables. The first function Nvar→ VVar translates a FGG−

variable x to a TL variable X . To avoid clutter, we do not spell out the translation function
explicitly but use the abbreviation that a lowercase x always translates into its uppercase
counterpart X . The second function Ntyvar→ VVar translates an FGG− type variable α into
a TL variable, abbreviated Xα . The third function Nmethod ×Nstruct→ VVar gives us the TL
variable Xm,tS representing the translation of a method m for struct tS . Here is a summary
of the shorthand notations for name translation functions, where methodName(R) denotes
the name part of method signature R:

x� X α� Xα

m =methodName(R)

func (x tS[α τI]) R {return e}� Xm,tS

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

16 M. Sulzmann and S. Wehr

Δ ↦⊢subst ↦→ : Instantiation of bounded type parameters

TYPE-INST-CHECKED

= 〈 ↦→ 〉 Δ ↦⊢coerce <: (∀ ∈ [])

Δ ↦⊢subst ↦→ : ()

〈 〉 ∈ methods(Δ) methods() = { } Method access

METHODS-STRUCT

func ([]) {return } ∈ Δ ↦⊢subst ↦→ :

〈 〉 ∈ methods(Δ [])

METHODS-IFACE

type [] interface { } ∈ = 〈 ↦→ 〉

methods([]) = { }

Δ ↦⊢subst ↦→ : Instantiation of bounded type parameters

TYPE-INST-CHECKED

= 〈 ↦→ 〉 Δ ↦⊢coerce <: (∀ ∈ [])

Δ ↦⊢subst ↦→ : ()

〈 〉 ∈ methods(Δ) methods() = { } Method access

METHODS-STRUCT

func ([]) {return } ∈ Δ ↦⊢subst ↦→ :

〈 〉 ∈ methods(Δ [])

METHODS-IFACE

type [] interface { } ∈ = 〈 ↦→ 〉

methods([]) = { }

Fig. 8. Auxiliary judgments for the translation.

The notation for translating names slightly differs from the approach used in the exam-
ples of Section 2. For instance, the coercion toFormatT from Figure 3 is now named XT

and method formatSepPair becomes XformatSep,Pair. The notation of the formal translation
stresses that XT and XformatSep,Pair are variables of the TL.

An FGG− type environment Δ is a mapping {α : τI } from type variables αi to their upper
bounds τIi. An FGG− value environment Γ is a mapping {x : τ} from FGG− variables xi

to their types τi. An environment may contain at most one binding for a type variable or
variable. We write ∅ for the empty environment, dom(·) for the domain of an environment,
and ∪ for the disjoint union of two environments. The notation distinct(s) asserts that s is
a sequence of disjoint items. We let [n] denote the set {1, . . . , n}.

In the following, we assume that the declarations D of the FGG− program being trans-
lated are implicitly available in all rules. This avoids the need for threading the declarations
through all translation rules.

4.2.2 Auxiliary judgments

Figure 8 defines some auxiliary judgments. The judgment Δ �subst α τI �→ σ : η� V , defined
by rule TYPE-INST-CHECKED, constructs a type substitution η = 〈α �→ σ〉 and checks that
the σ conform to their upper bounds τI under type environment Δ. In the tuple (V

n
) of

λ-abstractions each Vi coerces the actual type argument to its upper bound. The relevant
premise for checking upper bounds is Δ �coerce σi <: ητIi� Vi, which asserts that σi is a
structural subtype of ητIi giving raise to a coercion function Vi. The judgment will be
defined and explained in the next subsection.

The lower part of Figure 8 defines two judgments for looking up methods defined for a
struct or interface type. Judgment 〈R, V 〉 ∈methods(Δ, τS) states that method signature R is
available for struct type τS under type environment Δ, see rule METHODS-STRUCT. The value
V is a tuple of coercion functions resulting from checking the bounds of the receiver’s type
parameters. Judgment methods(τI) = {R} states that the set of method signatures available

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 17

Δ ↦⊢coerce : Translation of structural subtyping

COERCE-TYVAR

fresh (:) ∈ Δ Δ ↦⊢coerce <:

Δ ↦⊢coerce : . ()

COERCE-STRUCT-IFACE
3 fresh

type [] interface { } ∈ = 〈 ↦→ 〉 〈 〉 ∈ methods(Δ)

= methodName() = (
3
). (,

3
) (∀ ∈ [])

Δ ↦⊢coerce <: [] .(,())

COERCE-IFACE-IFACE

fresh : [] → [] total type [] interface { } ∈

type [] interface { ′ } ∈ 〈 ↦→ 〉 ′ = 〈 ↦→ 〉 () (∀ ∈ [])

Δ ↦⊢coerce [] <: [] (,()).(,((1), . . ., ()))

Fig. 9. Translation of structural subtyping.

for interface type τI is {R}, see rule METHODS-IFACE. As stated before, this rule forms the
substitution 〈α �→ σ〉 by implicitly assuming that α and σ have the same length.

4.2.3 Translation of structural subtyping

Figure 9 defines the relation Δ �coerce τ <: σ� V for asserting that τ is a structural subtype
of σ, yielding a coercion function V to convert the target representations of τ to σ.

Rule COERCE-TYVAR covers the case of a type variable α. The premise states that type
bound (α : σI) exists in the environment. By convention, Xα is the name of the corre-
sponding coercion function. We further find that Δ �coerce σI <: σ� V . Hence, we obtain
the coercion function for α <: σ by composition of coercion functions V and Xα .

Rule COERCE-STRUCT-IFACE covers structs. The premise 〈ηRi, Vi〉 ∈methods(Δ, τS)
asserts that each method with name methodName(Ri) of interface tI is defined for τS .
Value Vi is a tuple with coercion parameters corresponding to the bounds of the receiver’s
type parameters. Thus, Ui = λ(Y).Xmi,tS (Vi,Y) is the dictionary entry for the i-th method:
a function accepting receiver Y1, coercion parameters Y2 corresponding to bounded type
parameters of the method, and the argument tuple Y3. As written earlier, dictionary entries
and top-level functions Xmi,tS are uncurried. Thus, we need to deconstruct the argument
triple (Y) and construct a new quadruple (V,Y) for calling Xmi,tS .

Rule COERCE-IFACE-IFACE covers structural subtyping between interface types tI [τ] and
uI [σ]. In this case, tI must declare all methods of uI , so we can build a dictionary for uI

from the methods in the dictionary for tI . Thus, the premise of the rule requires the total
function π to be chosen in such a way that the i-th method of uI has the same signature as
the π(i)-th method of tI . The translation uses pattern matching to deconstruct the dictionary
of tI as (X

n
). Then the i-th method in the dictionary of uI is Xπ(i) , so we construct the

wanted dictionary as (Xπ(1), . . .,Xπ(q)).

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

18 M. Sulzmann and S. Wehr

〈Δ, Γ〉 ⊢exp : Translating expressions

VAR

(:) ∈ Γ

〈Δ, Γ〉 ⊢exp :

STRUCT

Δ ⊢ok [] type [] struct { } ∈

〈Δ, Γ〉 ⊢exp : 〈 ↦→ 〉 (∀ ∈ [])

〈Δ, Γ〉 ⊢exp []{ } : [] ()

ACCESS

〈Δ, Γ〉 ⊢exp : [] type [] struct { } ∈

〈Δ, Γ〉 ⊢exp : 〈 ↦→ 〉 case of () →

CALL-STRUCT

〈Δ, Γ〉 ⊢exp : [] 〈 [′ ′] () 〉 ∈ methods(Δ [])

Δ ⊢subst ′ ′ ↦→ ′ : ′ 〈Δ, Γ〉 ⊢exp : (∀ ∈ [])

〈Δ, Γ〉 ⊢exp [′] () : (, , ′,())

CALL-IFACE

〈Δ, Γ〉 ⊢exp :
methods() = = [′ ′] () (for some ∈ [])

Δ ⊢subst
′ ′ ′↦→ : ′ 〈Δ, Γ〉 ⊢exp : (∀ ∈ []) fresh

〈Δ, Γ〉 ⊢exp [′] () : case of (,()) → (, ′,())

SUB

〈Δ, Γ〉 ⊢exp : Δ ⊢coerce :

〈Δ, Γ〉 ⊢exp :

Fig. 10. Translation of expressions.

4.2.4 Translation of expressions

Figure 10 defines the typing and translation relation for expressions. The judgment
〈Δ, Γ〉 �exp e : τ� E states that under type environment Δ and value environment Γ, the
FGG− expression e has type τ and translates to TL expression E.

Rule VAR retrieves the type of FGG− variable x from the environment and translates
x to its TL counterpart X . The context makes variable X available, see the translation of
method definitions in Section 4.2.6. Rule STRUCT type-checks and translates a struct literal
tS[τ](e). Premise Δ �ok tS[τ] checks that type tS[τ] is well formed; the definition of the
judgment Δ �ok τ is given in Figure 11 and will be explained in the next subsection. Each
argument ei translates to Ei, so the result is (E

n
). Rule ACCESS deals with field access

e.fi, where expression e must have struct type tS[τ] such that tS defines field fi. Thus, e
translates to a tuple E, from which we extract the i-th component via pattern matching.

Rule CALL-STRUCT handles a method call e.m[τ′](e), where receiver e has struct type
tS[τ] and translates to E. The V in the premise corresponds to a tuple of coercion func-
tions that result from checking the bounds of the receiver’s type parameters, whereas
V ′ is a tuple of coercion functions for the bounds of the type parameters of the method.
Argument ei translates to Ei. According to our translation strategy, a method declaration
for m and tS is represented as a top-level function Xm,tS accepting a quadruple: coercions

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 19

for the receiver’s type parameters, receiver, coercions for the bounded type parameters
local to the method, and method arguments. Thus, the result of the translation is Xm,tS

(V,E,V ′,(E)).
Rule CALL-IFACE handles a method call e.m[τ′](e), where receiver e has interface type τI

and translates to E. Similar to CALL-STRUCT, V ′ is a tuple of coercion functions that result
from checking the bounds of the type parameters local to the method. Expressions Ei are
the translation of the arguments ei. Following our translation strategy, receiver E is a pair
where the first component is a struct value and the second component is a dictionary for the
interface. Thus, we use pattern matching to extract the struct as Y and the wanted method as
Xj. This Xj is a function accepting a triple: receiver, coercions for bounded type parameters
of the method, and method arguments. Hence, the translation result is Xj (Y,V ′,(E)). The
difference to rule CALL-STRUCT is that there is no need to supply coercions for the bounded
type parameters of the receiver. These coercions have already been supplied when building
the dictionary, see rule COERCE-STRUCT-IFACE of Figure 9.

The last rule SUB is a subtyping rule allowing an expression e with translation E at type
τ to be assigned some (structural) supertype σ. Premise Δ �coerce τ <: σ� V serves two
purposes: it ensures that σ is a supertype of τ and it yields a coercion function V from τ to
σ. The translation of e at type σ is then V E. In Griesemer et al. (2020), the subtype check
is included for each form of expression. For clarity, we choose to have a separate subtyping
rule as in our translation scheme each subtyping relation implies a coercion function.

4.2.5 Well-formedness

Figure 11 defines several well-formedness judgments. The judgments Δ �ok τ and Δ �ok τ

assert that a single type and multiple types, respectively, are well formed under type envi-
ronment Δ. A type variable is well formed if it is contained in Δ (rule OK-TYVAR). A
named type t[τ] is well formed if its type arguments τ are well formed and if they are
subtypes of the upper bounds in the definition of t. The latter is checked by the premise
Δ �subst α τI �→ τ : η� V of rule OK-TYNAMED, thereby ignoring the type substitution η and
the coercion functions V . We have already seen in Section 2.5 that these coercions V are
not represented in the translated program because type bounds of structs and interfaces
have no operational meaning.

Judgment Δ �ok α τI asserts that bounded type parameters α τI are well formed under type
environment Δ (rule OK-BOUNDED-TYPARAMS). Judgment Δ �ok R ensures that a method
signature is well formed (rule OK-MSIG). To form the combined environment Δ∪ {α : τI }
in the premise requires disjointness of the type variables in dom(Δ) and α. This can always
be achieved by α-renaming the type variables bound by R.

Judgment �ok D validates declaration D. A struct declaration is well formed if it is defined
only once (restriction FGG-UNIQUE-STRUCTS in Section 3.2), if all field names are distinct
(restriction FGG-DISTINCT-FIELDS), and if the field types are well formed. An interface dec-
laration is well formed if it is defined only once, if all its method signatures are well formed,
and if all methods have distinct names.

A method declaration for tS and m is well formed if there is no other declaration for tS
and m (restriction FGG-UNIQUE-METHOD-DEFS), if the method signature is well formed, and
if each bound τIi of the method declaration is a structural subtype of the corresponding

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

20 M. Sulzmann and S. Wehr

Δ ↦⊢ok Δ ↦⊢ok Well-formedness of types

OK-TYVAR

(:) ∈ Δ

Δ ↦⊢ok

OK-TYNAMED

Δ ↦⊢ok type [] . . .∈

Δ ↦⊢subst ↦→ :

Δ ↦⊢ok []

OK-MANY-TY

Δ ↦⊢ok (∀ ∈ [])

Δ ↦⊢ok

Δ ↦⊢ok Δ ↦⊢ok Well-formedness of type parameters and method signatures

OK-BOUNDED-TYPARAMS

dom(Δ) ∩ { } = ∅ distinct()

Δ ∪ { : } ↦⊢ok

Δ ↦⊢ok

OK-MSIG

Δ ↦⊢ok distinct()

Δ ∪ { : } ↦⊢ok

Δ ↦⊢ok [] ()

↦⊢ok Well-formedness of declarations

OK-STRUCT

defined once in ∅ ↦⊢ok { : } ↦⊢ok distinct()

↦⊢ok type [] struct { }

OK-IFACE

defined once in ∅ ↦⊢ok (∀ ∈ []) { : } ↦⊢ok

distinct(methodName())

↦⊢ok type [] interface { }

OK-METHOD

contains one func-declaration for and methodName()

∅ ↦⊢ok { : } ↦⊢ok

(type [′] struct . . .) ∈ methods(′) ⊆ methods() (∀ ∈ [])

↦⊢ok func ([]) {return }

Fig. 11. Well-formedness.

bound τ′Ii in the declaration of tS . In FGG−, this boils down to checking that the methods
of τ′Ii are a subset of the methods of τIi. The well-formedness conditions for method dec-
larations do not type-check the method body. We will deal with this in the upcoming
translation rule for methods.

4.2.6 Translation of methods and programs

Figure 12 defines the translation for method declarations and programs. Rule METHOD deals
with method declarations func (x tS[α τI]) m[β σI](x σ) σ {return e}. The translation of
such a declaration is the binding Xm,tS = V . According to our translation strategy, V must be
a function accepting a quadruple: coercions (Xαi) for the bounded type parameters of the
receiver, receiver X corresponding to x, coercions (Xβi) for the bounded type parameters
local to the method, and finally method arguments X corresponding to x. Binding all these
variables with a λ makes them available in the translated body E.

Judgment �prog P� Prog denotes the translation of an FGG− program P to a TL program
Prog. Rule PROG type-checks the main expression e under empty environments against

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 21

↦⊢meth func ([]) {return } = Translating method declarations

METHOD

Δ = { , } Γ = { : [], : }

∉ { } 〈Δ, Γ〉 ⊢exp : = ((), ,(),())

↦⊢meth func ([]) [] () {return } =

⊢prog Prog Translating programs

PROG

implicitly available in all subderivations 〈∅, ∅〉 ⊢exp :
⊢ok (for all ∈)

⊢meth = (for all = func . . .∈)

⊢prog func main(){ = } let = in

Fig. 12. Translation of methods and programs.

type Any interface {}

type Num struct { val int }

type Box[Any] struct { content }

type Eq[Any] interface { eq(that) bool }

func (this Num) eq(that Num) bool { return this.val == that.val }

func (this Box[Eq[]]) eq(that Box[]) bool { return this.content.eq(that.content) }

func main(){ = Box[]{Num{1}}.eq(Box[]{Num{2}}) }

let eq,Num = ((),This,(),(That)). 2 == 3

eq,Box = ((),This,(),(That)). 1
in eq,Box ((3),((1)),(),((2)))

-- translated body of eq for Box
1 = case 1 2 of (,(1)) →

1 (,(),(3))

-- selectors for field content of Box
2 = case This of (1) → 1

3 = case That of (1) → 1

-- coercion : Eq[]

1 = . 2 ()

-- identity coercion Eq[] <: Eq[]

2 = (,()).(,())

-- coercion Num <: Eq[Num]

3 = .(,((
3
). eq,Num ((),

3
)))

Fig. 13. Example: FGG− code (top) and its translation (middle) with abbreviations (bottom).

some type τ to get its translation E. Next, the rule requires all struct or interface declara-
tions to be well formed. Finally, it translates each method declaration to a binding Xi = Vi.
The resulting TL program is then let Xi = Vi in E.

4.3 Example

We now give an example of the translation. The FGG− code in the top part of Figure 13
defines equality for numbers Num and for generic boxes Box[α Any]. Interface Any defines

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

22 M. Sulzmann and S. Wehr

SUB

1 〈Δ, Γ〉 ⊢exp this.content : 2
ACCESS

〈Δ, Γ〉 ⊢exp this.content : Eq[] 1 2

. . .

. . .

〈Δ, Γ〉 ⊢exp that.content : 3
ACCESS

methods(Eq[]) = eq(that)bool
〈Δ, Γ〉 ⊢exp this.content.eq(that.content) : bool 1

CALL-IFACE

Δ = { : Eq[]} Γ = {this : Box[], that : Box[]}

⊢meth func (this Box[Eq[]]) eq(that Box[]) bool {

return this.content.eq(that.content)
} eq,Box = ((),This,(),(That)). 1

METHOD

Subderivation 1

Δ ⊢coerce Eq[] <: Eq[] 2
COERCE-IFACE-IFACE

(: Eq[]) ∈ Δ

Δ ⊢coerce : Eq [] 1
COERCE-TYVAR

Fig. 14. Example: translation of the method declaration for Box and eq.

no methods, and it serves as an upper bound for otherwise unrestricted type variables.
We take the liberty to assume a basic type int and an operator == for equality. Interface
Eq[α] requires a method eq for comparing the receiver with a value of type α. We provide
implementations of eq for Num and Box[α]. Comparing the content of a box requires the
F-bound Eq[α] (Canning et al., 1989). The main function compares two boxes for equality.

The middle part of the figure shows the translation of the FGG− code, using abbrevi-
ations in the bottom part. Variable Xeq,Num holds the translation of the declaration of eq
for Num; it simply compares E2 (translation of this.val) with E3 (translation of that.val).
Remember that the translation of a method declaration takes a quadruple with coercions for
the bounded type parameters of the receiver, the receiver itself, coercions for the bounded
type parameters of the method, and the method arguments. Here, () is a tuple of size zero,
corresponding to the nonexisting type parameters, and (That) denotes a tuple of size one,
corresponding to the single argument that.

The translation of eq for Box is more involved. Figure 14 shows its derivation. We omit
“obvious” premises and some trivial details from the derivation trees. Rule CALL-IFACE

translates the body of the method. It coerces the receiver to the interface type Eq[α] and
then extracts the method to be called via pattern matching, see E1. The construction of
the coercion is done via Δ �coerce α <: Eq[α]� V1, see subderivation 1 . Coercion V1 is
slightly more complicated then necessary because the translation does not optimize the
identity coercion V2. Inside of V1, we use Xα . This variables denotes a coercion from α to
the representation of Eq[α]; it is bound by the λ-expression in the definition of Xeq,Box.

The translation of the main expression calls Xeq,Box with appropriate arguments, see
Figure 15 for the derivation. The values ((1)) and ((2)) are nested tuples of size one,
representing numbers wrapped in Num and Box structs. The method call of eq is translated
by rule CALL-STRUCT, relying on rule METHODS-STRUCT to instantiate the type variable α
to Num, as witnessed by the coercion V3.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 23

. . .

〈eq(That Num) bool, ()〉 ∈ methods(∅,Num)
METHODS-STRUCT

∅ ↦⊢coerce Num <: Eq[Num] 3
COERCE-STRUCT-IFACE

∅ ↦⊢subst Eq[↦→] Num : 〈 ↦→ Num〉 (3)
TYPE-INST-CHECKED

func (this Box[Eq[]]) eq(that Box[]) bool . . .∈
〈eq(That Box[Num]) bool, (3)〉 ∈ methods(∅,Box[Num])

METHODS-STRUCT

〈∅ , ∅〉 ⊢exp Box[Num]{Num{1}} : Box[Num] ((1))
〈∅ , ∅〉 ⊢exp Box[Num]{Num{2}} : Box[Num] ((2))

〈∅ , ∅〉 ⊢exp Box[Num]{Num{1}}.eq(Box[Num]{Num{2}}) : bool
eq,Box ((3),((1)),(),((2)))

CALL-STRUCT

Fig. 15. Example: translation of the main function.

5 Formal properties

In this section, we establish that the type-directed translation from Section 4.2 preserves
the static and dynamic semantics of FGG− programs. The translation as formalized is non-
deterministic: for the same source program we may derive syntactically different target
programs. Thus, we further show that all target programs resulting from the same source
program behave equivalently. Detailed proofs for all lemmas and theorems are given in
the appendix.

5.1 Preservation of static semantics

It is straightforward to verify that the type system originally defined for FGG is equiva-
lent to the type system induced by the type-directed translation presented in Section 4.2,
provided the FGG program does not contain type assertions. In the following, we write
Δ �G τ <: σ for FGG’s subtyping relation, Δ; Γ �G e : τ for its typing relation on expres-
sions, and �G P ok for the FGG typing relation on programs. These three relations were
specified by Griesemer et al. (2020). The original article on FGG also includes support
for dynamic type assertions, something we do not consider for our translation. Hence, we
assume that FGG expressions do not contain type assertions.

Lemma 5.1.1 (FGG typing equivalence). Typing in FGG is equivalent to the type system
induced by the translation, provided there are no type assertions.

(a) If Δ �G τ <: σ then either Δ �coerce τ <: σ� V for some V or σ = τ and τ is not an
interface type.

(b) If Δ �coerce τ <: σ� V then Δ �G τ <: σ.
(c) If Δ; Γ �G e : τ then 〈Δ, Γ〉 �exp e : τ� E for some E.
(d) If 〈Δ, Γ〉 �exp e : τ� E then Δ; Γ �G e : τ′ for some τ′ and Δ �G τ′ <: τ.
(e) �G P ok iff �prog P� Prog.

Claims (a) and (b) state that structural subtyping in FGG is equivalent to the relation
from Figure 9, except that the latter is not reflexive for type variables and struct types.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

24 M. Sulzmann and S. Wehr

Claims (c) and (d) establish that expression typing in FGG and our expression typing from
Figure 10 are equivalent modulo subtyping. The exposition in Griesemer et al. (2020)
includes a subtyping check for each form of expression, whereas we choose to have a
separate subtyping rule. Hence, the type computed by the original rules for FGG might be
a subtype of the type deduced by our system.

FGG enjoys type soundness (see Theorems 4.3 and 4.4 of Griesemer et al. 2020). The
reduction rules for FGG and FGG− are obviously equivalent. Thus, Lemma 5.1.1 gives the
following type soundness result for our type system:

Corollary 5.1.2. Assume 〈∅, ∅〉 �exp e : τ� E for some e, τ, and E. Then either e reduces
to some value of type τ or e diverges.

5.2 Preservation of dynamic semantics

This section proves that evaluating a well-typed FGG− program yields the same behavior
as evaluating one of its translations. Thereby, we consider all possible outcomes of eval-
uation: reduction to a value or divergence. Further, we show that different translations of
the same program have equivalent behavior.

The proof of semantic equivalence is enabled by a syntactic, step-indexed logical rela-
tion that relates an FGG− expression and a TL expression at some FGG− type. We write
e −→k e′ if e reduces to e′ in exactly k ∈N steps, where N denotes the natural numbers
including zero. By convention, we write e −→0 e′ to denote e = e′. The notation e −→∗ e′

states that e −→k e′ for some k ∈N. We write diverge(e) to denote that e does not termi-
nate; that is, for all k ∈N there exists some e′ with e −→k e′. The same definitions apply
analogously to reductions in the TL.

5.2.1 The logical relation

The definition of the logical relation (LR) spreads over two Figures 16 and 17. In these
figures, we assume that the declarations D of the FGG− program being translated are
implicitly available in all rules. Also, we assume that an arbitrary but fixed method sub-
stitution μ is implicitly available to all rules. This μ is used in the reduction rules of the
target language to resolve let-bound variables (i.e., translations of methods). In our main
theorem (Theorem 5.2.6), we will then require that μ results from translating the methods
in D.

We now explain the LR on expressions, see Figure 16. The relation e ≈ E ∈ �τ�k denotes
that FGG− expression e and TL expression E are equivalent at type τ for at most k reduc-
tion steps. We call k the step index. Rule EQUIV-EXP has two implications as its premises.
The first states that if e reduces to a value v in k ′ < k steps, then E reduces to some value V
in an arbitrary number of steps and v is equivalent to V at type τ for the remaining k − k ′

steps. The second premise is for diverging expressions: if e reduces in less than k steps to
some expression e′ and e′ diverges, then E diverges as well.

The relation v ≡ V ∈ �τ�k defines equivalence of FGG− value v and TL value V at type
τ with step index k. Rule EQUIV-STRUCT handles the case where τ is a struct type. Then v

must be a value of this struct type and V must be a struct value such that all field values
of v and V are equivalent. Rule EQUIV-IFACE deals with the case that τ is an interface

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 25

≈ ∈ Expressions

EQUIV-EXP

(∀ −→ =⇒ ∃ −→∗ ∧ ≡ ∈ −)

(∀ −→ ∧ diverge() =⇒ diverge())

≈ ∈

≡ ∈ � Values

EQUIV-STRUCT

type [] struct { } ∈ ∀ ∈ [] ≡ ∈

[]{ } ≡ () ∈ []

EQUIV-IFACE

∃ .∀ 1 ≡ ∈ 1 methods() = { }

∀ ∈ [] 2 methodLookup(methodName()) ≈ ∈ 2

≡ (,()) ∈

methodLookup() = Method lookup

METHOD-LOOKUP

func ([]) {return } ∈ = methodName() =

methodLookup([]) = []

 ≈ .) ∈ Method dictionary entries

EQUIV-METHOD-DICT-ENTRY

∀ ≤ , .
(= ∧ ≈ ∈ ∧ ≈ ∈ ∧ (∀ ∈ [] ≈ ∈))

=⇒ ≈ (.) (, ,()) ∈

[] () ≈ .) ∈ [] ()

≈ ∈ Bounded type parameters

EQUIV-BOUNDED-TYPARAMS

= ∀ ≤ ∈ [] ≈ ∈ =⇒ ≈ ∈

()

→

→

→→

→

→

Fig. 16. Relating FGG− to TL expressions.

type. Hence, V must be an interface value (U,(V)) with two requirements. First, v and
U are equivalent for all step indices k1 < k at some struct type σS . Second, (V) must be
an appropriate dictionary for the methods of the interface with receiver type σS . To check
this requirement, rule METHOD-LOOKUP defines the auxiliary methodLookup(mi, σS) to
retrieve a quadruple 〈x, σS , R, e〉 from the declaration of mi for σS . This quadruple has
to be equivalent to dictionary entry Vi for all step indices k2 < k at the signature of the
method.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

26 M. Sulzmann and S. Wehr

≈ ∈ Δ ≈ ∈ Γ Substitutions

EQUIV-TY-SUBST

≈ () ∈

≈ ∈ { : }

EQUIV-VAL-SUBST

∀(:) ∈ Γ () ≈ () ∈

≈ ∈ Γ

func ([]) {return } ≈ Method declarations

EQUIV-METHOD-DECL

∀ , , , , .
= , ∧ ≈ (,) ∈ , ∧

≈ ∈ [] ∧ (∀ ∈ [] ≈ ∈) =⇒

≈ ((), ,(),()) ∈

func ([]) [] () {return } ≈

≈ Programs

EQUIV-DECLS

are implicitly available in all subderivations
∀ ∈ = func ([]) {return } =⇒ ≈

≈

→ →

→ →

Fig. 17. Relating FGG− to TL substitutions and declarations.

A dictionary entry is always a function value. We write 〈x, τS , R, e〉 ≈ (λX.E) ∈ �R�k
to denote equivalence between a quadruple for a method declaration and some dictionary
entry λX.E. Rule EQUIV-METHOD-DICT-ENTRY defines this equivalence such that method
body e and λX.E take related arguments to related outputs. Thus, the premise of the rule
requires for all step indices k ′ ≤ k, all related type parameters τ and W , all related receiver
values v and V , and all related arguments v and V that e and λX.E yield related results
when applied to the respective arguments.

The judgment σ ≈ V ∈ �α τI�k denotes equivalence between concrete type arguments
σ and their TL realization V when checking the bounds of type parameters α τI . The def-
inition in rule EQUIV-BOUNDED-TYPARAMS relies on our translation strategy that bounded
type parameters are represented by coercions.

Having explained all judgments from Figure 16, we verify that the recursive definitions
of e ≈ E ∈ �τ�k and v ≡ V ∈ �τ�k are well founded. Often, LRs are defined by induction
on the structure of types. In our case, this approach does not work because interface types
in FGG− might be recursive, see our previous work (Sulzmann & Wehr, 2022) for an
example. Thus, we use the step index as part of a decreasing measure M. Writing |V |
for the size of some target value V , we define M(e ≈ E ∈ �τ�k) = (k, 1, 0) and M(v ≡
V ∈ �τ�k) = (k, 0, |V |). In EQUIV-EXP, either k decreases or stays constant but the second
component of M decreases. In EQUIV-STRUCT, k and the second component stay con-
stant but |V | decreases, and in EQUIV-IFACE together with EQUIV-METHOD-DICT-ENTRY and
EQUIV-BOUNDED-TYPARAMS step index k decreases. Note that EQUIV-METHOD-DICT-ENTRY

and EQUIV-BOUNDED-TYPARAMS only require k ′ ≤ k. This is ok because we already have
k2 < k in EQUIV-IFACE.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 27

Figure 17 extends the LR to whole programs. Judgment η ≈ ρ ∈ �Δ�k denotes how a
FGG− type substitution η intended to substitute the type variables from Δ is related to a
TL substitution ρ. The definition in rule EQUIV-TY-SUBST falls back to equivalence of type
parameters. Judgment θ ≈ ρ ∈ �Γ�k similarly relates a FGG− value substitution θ intended
for value environment Γ with a TL substitution ρ. See rule EQUIV-VAL-SUBST.

Judgment func (x tS[α τI]) R {return e} ≈k X states equivalence of a function decla-
ration with a TL variable X . Rule EQUIV-METHOD-DECL takes an approach similar as in
rule EQUIV-METHOD-DICT-ENTRY: method body e and variable X must yield related outputs
when applied to related arguments. Thus, for all related type arguments τ, τ′ and (W,W ′),
all related receiver values v and V , and all related arguments v and V , the expression e and
variable X must be related when applied to the appropriate arguments. However, different
than in EQUIV-METHOD-DICT-ENTRY, we only requires this to hold for all k ′ < k.

Judgment D ≈k μ defines equivalence between FGG− declarations D and TL method
substitution μ. The definition in rule EQUIV-DECLS is straightforward: each method
declaration for some method m and struct tS must be equivalent to variable Xm,tS .

5.2.2 Equivalence between source and translation

To establish the desired result of semantic equivalence between a source program and
one of its translations, we implicitly make the following assumptions about the globally
available declarations D and method substitution μ.

Assumption 5.2.1. We assume that the globally available declarations D are well formed;
that is, �ok Di for all Di ∈D and �meth D′i � Xi = Vi for some Xi and Vi and all D′i = func . . . ∈
D. Further, we assume that the globally available method substitution μ has only variables
of the form Xm,tS in its domain.

Several basic properties hold for our LR. For example, monotonicity gives us that with
e ≈ E ∈ �τ�k and k ′ ≤ k we also have e ≈ E ∈ �τ�k′ . Another property is how target and
source reductions preserve equivalence:

Lemma 5.2.2 (Target reductions preserve equivalence). If e ≈ E ∈ �τ�k and E2 −→∗ E
then e ≈ E2 ∈ �τ�k .

Lemma 5.2.3 (Source reductions preserve equivalence). If e ≈ E ∈ �τ�k and e2 −→ e then
e2 ≈ E ∈ �τ�k+1.

The lemmas for monotonicity and several other properties are stated in Appendix A.3,
together with all proofs. We can then establish that an FGG− expression e is semantically
equivalent to its translation E.

Lemma 5.2.4 (Expression equivalence). Assume D ≈k μ and η ≈ ρ ∈ �Δ�k and θ ≈ ρ ∈
�ηΓ�k . If 〈Δ, Γ〉 �exp e : τ� E then θηe ≈ ρE ∈ �ητ�k .

The proof is by induction on the derivation of 〈Δ, Γ〉 �exp e : τ� E, see Appendix A.3.2.1
(p. 49) for the full proof. We next establish semantic equivalence for method declarations.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

28 M. Sulzmann and S. Wehr

Lemma 5.2.5 (Method equivalence). Let D and μ such that for each D =
func (x tS[α τI]) R {return e} ∈D with m =methodName(R) we have �meth D� Xm,tS = V
and μ(Xm,tS) = V for some V. Then D ≈k μ for any k.

The proof of this lemma is by induction on k, see Appendix A.3.2.2 (p. 59) for the
full proof. Finally, the following theorem states our desired result: semantic equivalence
between an FGG− program and its translation.

Theorem 5.2.6 (Program equivalence). Let �prog D func main(){_ = e}� let Xi = Vi in E
with e having type τ. Let μ= 〈Xi �→ Vi〉. Then both of the following holds:

1. If e −→∗ v for some value v then there exists a TL value V such that E −→∗μ V and
v ≡ V ∈ �τ�k for any k.

2. If e diverges then so does E.

The “with e having type τ” part means that the last rule in the derivation of the program
translation has 〈∅, ∅〉 �exp e : τ� E as a premise. Obviously, D and μ meet the require-
ments of Assumption 5.2.1. The theorem then follows from Lemmas 5.2.4 and 5.2.5. See
Appendix A.3.2.3 (p. 60) for the full proof.

5.2.3 Equivalence between different translations

Our translation is nondeterministic because different translations of the same expression
may contain distinct sequences of applications of the subsumption rule SUB. Recall the
example from Figure 1. There are (at least) two different ways to translate expression
formatSome(Num{1}) at type Format.

1. Use rules COERCE-STRUCT-IFACE and SUB to go directly from Num to supertype
Format. The translation is then toFormatNum 1.

2. First use COERCE-STRUCT-IFACE and SUB to go from Num to Pretty, then use
COERCE-IFACE-IFACE and SUB to go from Pretty to Format. The translation is then
toFormatPretty (toPrettyNum1).

Each choice leads to a syntactically distinct target expression. In general, evaluating the
target expressions might lead to syntactically different target values because target values
might contain dictionaries (i.e., tuple of λ-expressions), and different translations might
produce syntactically different dictionaries.

Another source of nondeterminism is that rule PROG for typing programs is allowed
to choose the type τ of the main expression. For example, instead of typing
formatSome(Num{1}) at type Format, another translation might pick type Pretty or
Num for the main expression. The choice for the type of the main expression might also
lead to syntactically different target expressions.

To summarize, different translations of the same source program might lead to syntacti-
cally different TL programs, and the syntactic differences might persist in the final values
after evaluation. But a slightly weaker property holds: if we remove all dictionaries in the
final values, then the results are syntactically equal.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 29

erase() = erase() = Erasure of dictionaries

erase() = erase()

erase(, (,)) = erase()

erase() = erase()

erase(.) = K

Fig. 18. Erasure of dictionaries.

Figure 18 defines a function erase that removes all dictionaries from a TL value. The
function comes in two variations:

• erase(τ, V) removes all dictionaries from value V when viewed at type τ. Its duty is
to remove the topmost dictionary if τ is an interface type. In this case, the function
is partial but this is not an issue: a value viewed at an interface type is always a pair
of values.

• erase(V) removes all dictionaries from V by replacing the λ-expressions with a
fixed, otherwise unused, nullary constructor Kλ . This definition relies on then fact
that the translation only produces λ-expressions for dictionary entries. We replace
λ-expressions with a dedicated constructor Kλ instead of the nullary tuple () so as
to avoid confusion between an erased λ and a struct value without fields.

The following theorem states that evaluating the outcomes of two translations of the
same source program yields values that are identical up to removal of dictionaries (or
both diverge). This holds even if the two translations assign different types to the main
expression of the source program. That is, there are no semantic ambiguities, and we can
establish that our translation is coherent (Reynolds, 1991).

Theorem 5.2.7 (Coherence). Let P =D func main(){_ = e}. Assume �prog P�
let Xi = Vi in E with e having type τ and �prog P� let X ′i = V ′i in E′ with e having type

τ′. Define μ= 〈Xi �→ Vi〉 and μ′ = 〈X ′i �→ V ′i 〉. Then both of the following holds:

1. If E −→∗μ V for some V, then E′ −→∗μ′ V ′ for some V ′ with erase(τ, V) =
erase(τ′, V ′).

2. If E diverges then so does E′.

See Appendix A.3.3.1 (p. 63) for the proof.

5.3 Getting the step index right

The LR in Figures 16 and 17 requires at some places the step index in the premise to
be strictly smaller than in the conclusion (<), and other places require only less-than-
or-equal (≤). In EQUIV-EXP, we have < to keep the definition of the LR well founded.
The < in rule EQUIV-METHOD-DECL is required for the inductive argument in the proof
of Lemma 5.2.5. Rule EQUIV-IFACE also has <, but rule EQUIV-METHOD-DICT-ENTRY only
requires ≤. For well-foundedness, it is crucial that one of these two rules decreases the step

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

30 M. Sulzmann and S. Wehr

index. However, equally important is that the step index is not forced to decrease more than
once, so we need < in one rule and ≤ in the other. If both rules had <, then the proof of
Lemma 5.2.4 would not go through for case CALL-IFACE.

Consider the following example in the context of Figure 13:

w1 =Num1 at type Eq[Num] � W1 = ((1),(U))
where U = λ(Y).Xeq,Num ((),Y)

w2 =Num2 at type Num � W2 = ((2))
w1.eq(w2) � E = case W1 of (Y,(X1))→ X1 (Y,(),(W2))

For values w1 and w2, we may assume (5.1) w1 ≡W1 ∈ �Eq[Num]�k and w2 ≈W2 ∈
�Num�k for some k. To verify that the translation yields related expressions, we must
show

w1.eq(w2) ≈ E ∈ �bool�k (5.2)

From (5.1), via inversion of rule EQUIV-IFACE, we can derive

methodLookup(eq, Num) ≈U ∈ �eq(that Num) bool�k−1 (5.3)

because the premise of the rule requires this to hold for all k2 < k. Let e be the body of
the method declaration of eq for Num. Inverting rule EQUIV-METHOD-DICT-ENTRY for (5.3)
yields

〈this �→w1, that �→w2〉e ≈U ((1),(),((2))) ∈ �bool�k′ (5.4)

for k ′ = k − 1 because rule EQUIV-METHOD-DICT-ENTRY has ≤ in its premise. Also, we have
w1.eq(w2) −→1 〈this �→w1, that �→w2〉e and E −→∗ U ((1),(),((2))). Thus, with (5.4),
Lemmas 5.2.2, and 5.2.3 we get w1.eq(w2) ≈ E ∈ �bool�k′+1. For k ′ = k − 1, this is exactly
(5.2), as required. But if rule EQUIV-METHOD-DICT-ENTRY required < in its premise, then
(5.4) would only hold for k ′ = k − 2 and we could not derive (5.2).

Whether we have < in EQUIV-IFACE and ≤ in EQUIV-METHOD-DICT-ENTRY or vice versa is
a matter of taste. In our previous work at MPC (Sulzmann & Wehr, 2022), we established
a dictionary-passing translation for FG without generics. The situation is slightly different
there. With generics, we need two rules with respect to methods: EQUIV-METHOD-DECL for
method declarations and EQUIV-METHOD-DICT-ENTRY for dictionary entries where the coer-
cions for the bounds of the receiver’s type parameters have already been supplied. Without
generics, there are no type parameters, so a single rule suffices (rule RED-REL-METHOD

in MPC). So in the article at MPC, we use < for rule RED-REL-METHOD and ≤ for rule
RED-REL-IFACE, the pendant to rule EQUIV-IFACE of the current article.

6 Implementation

We provide an implementation of the translation2 written in Haskell (2022). All examples
in this article were checked against the implementation. Competitive runtime perfor-
mance of the translated code was not our goal. Hence, we took a convenient route and
used Racket (2022) as the TL. The implementation features all language concepts from

2 https://github.com/skogsbaer/fgg-translate and http://doi.org/10.5281/zenodo.
8147425.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://github.com/skogsbaer/fgg-translate
http://doi.org/10.5281/zenodo.8147425
http://doi.org/10.5281/zenodo.8147425
https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 31

181 tests

148 from
OOPSLA 2020

8 from
OOPSLA 2022

25 new

73 eval
good

15 eval
bad

60 type
good

33 type
bad

Fig. 19. Summary of the test suite for the implementation.

Section 3, as well as type assertions, generic functions, and several base types (integers,
characters, strings, and booleans).

Generic functions and base types are straightforward to support. Implementing the
typing and translation rules from Figure 10 requires some care because the presence of sub-
sumption rule SUB renders the translation nondeterministic (see Section 5.2.3). We solved
this problem by “inlining” the subsumption step when checking the arguments of a method
call against the parameter types (rules CALL-STRUCT and CALL-IFACE) and when check-
ing the field values of a struct against the declared field types (rule STRUCT). On formal
grounds, this is justified as FG (2020) inlines the subsumption step in similar ways and typ-
ing in FGG− is equivalent the type system induced by our translation rules (Lemma 5.1.1).
The realization of type assertions (dynamic type casts) uses type tags (Ohori & Ueno,
2021). At runtime, a type assertion e.(τ) checks compatibility between e’s type tag and the
type tag corresponding to τ.

Our implementation comes with a large test suite and contains in total 181 tests, covering
all main features of the source language. See Figure 19 for a summary. We wrote 25 new
tests and included all 148 tests and examples from the OOPSLA 2020 implementation.3

Moreover, we also included eight examples from the OOPSLA 2022 implementation.4

(The implementation for OOPSLA 2022 builds on the one for OOPSLA 2020, adding
12 new test cases. We ignored four test cases because they use concurrency features not
supported by our implementation.) Most tests from OOPSLA 2020/2022 could be inte-
grated in our test suite without changes, and for some we had to perform minor syntactic
adjustments.

Each test is a source file in one of the following categories:

1. eval good, 73 tests: The test type-checks and evaluates successfully. For the test to
succeed, the result of evaluation must match the expected result. We arrived at the
expected result by inspecting the program and (if applicable) comparing it against
the run of the OOPSLA 2020/2022 implementation.

3 Griesemer et al. (2020), https://github.com/rhu1/fgg.
4 Ellis et al. (2022), https://github.com/sfzhu93/fgg2go.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://github.com/rhu1/fgg
https://github.com/sfzhu93/fgg2go
https://doi.org/10.1017/S0956796823000047

32 M. Sulzmann and S. Wehr

2. eval bad, 15 tests: The test type-checks successfully but fails at runtime. For the test
to succeed, the error message must match an expected string. We determined the
expected string in similar way as for the eval good category.

3. type good, 60 tests: The test type-checks successfully but is not executed because it
has no interesting operational behavior.

4. type bad, 33 tests: The test fails to type-check. For the test to succeed, the error
message must match an expected string.

Some of the tests behave differently under our implementation when compared with the
original implementations for OOPSLA 2020/2022:

• The OOPSLA 2020 implementation compiles generics by monomorphization; that
is, generic code is specialized for all type arguments appearing in the program. But
monomorphization cannot deal with all programs, so their type-checker rejects sev-
eral programs based on some syntactic condition (see Section 7.1 for details). Our
implementation type-checks these programs successfully.

• The OOPSLA 2020 implementation statically rejects type assertions e.(τ) where
the type of e is a struct type, even though evaluation might succeed at runtime. Our
implementation is more liberal and only rejects type assertions statically that are
guaranteed to fail at runtime.

• The OOPSLA 2020 implementation rejects recursive definitions of structs. For
simplicity, we omitted this check from our implementation.

• The OOPSLA 2020 implementation runs several tests only for a fixed number of
reduction steps because these tests would diverge otherwise. Our implementation
only type-checks such tests.

7 Related work

The related work section covers generics in Go, type classes in Haskell, LRs, and a sum-
mary of our own prior work.5 At the end, we give an overview of the existing translations
with source language FGG.

7.1 Generics in Go

The results of this work rest on the definition of FGG provided by Griesemer et al. (2020).
FGG is a minimal core calculus modeling the essential features of the programming lan-
guage Go (2022). It includes support for overloaded methods, interface types, structural
subtyping, generics, and type assertions. Our formalization of FGG ignores dynamic type
assertions but otherwise sticks to the original definition of FGG, apart from some minor
cosmetic changes in presentation. We prove that the type system implied by our translation
is equivalent to the original type system of FGG, and that translated programs behave the
same way as under the original dynamic semantics.

5 Several points in Sections 7.1, 7.2, and 7.3 were already included in own prior work (Sulzmann & Wehr, 2021,
2022).

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 33

The original dynamic semantics of FGG uses runtime method lookup, in the same way
as we did in Section 3. The authors define an alternative semantics via monomorphiza-
tion; that is, they specialize generic code for all type arguments appearing in the program.
This alternative semantics is equivalent to the one based on runtime method lookup,
but there exist type-correct FGG programs that cannot be monomorphized. For instance,
polymorphic recursion leads to infinitely many type instantiations, so programs with a
polymorphic–recursive method cannot be monomorphized.6 Further, monomorphization
often leads to a blowup in code size. In contrast, our translation handles all type-correct
FGG programs, and instantiations of generic code with different type arguments do not
increase the code size. However, we expect that monomorphized code will offer better
performance than code generated by our dictionary-passing translation, because method
dictionaries imply several indirections not present in monomorphized programs.

The current implementation of generics (Taylor & Griesemer, 2021) in Go versions 1.18,
1.19, and 1.20 (2022) differs significantly from the formalization in FGG. For example, full
Go requires a method declaration for a generic struct to have exactly the same type bounds
as the struct. In FGG, bounds of the receiver struct in a method declaration might be stricter
than the bounds in the corresponding struct declaration. In Figure 2, we used this feature
to implement formatting for the fully generic Pair type, provided the type parameters can
be formatted as well. Go cannot express this scenario without falling back to dynamic type
assertions.

Ellis et al. (2022) formalize a dictionary-passing translation from a restricted subset of
FGG to FG. The restriction for FGG is the same as previously explained for full Go: a
method declaration must have the same type bounds as its receiver struct. The translation
utilizes this restriction to translate an FGG struct together with all its methods into a single
FG struct (dictionary). This approach would scale to full Go even with separate compi-
lation because a struct and all its methods must be part of the same package. Further, the
translation of Ellis et al. replaces all types in method signatures with the top-type Any, rely-
ing on dynamic type assertions to enable type-checking of the resulting FG program. The
authors provide a working implementation and a benchmark suite to compare their trans-
lation against several other approaches, including the current implementation of generics
in full Go. Our translation targets an extended λ-calculus and does not restrict the type
bounds of the receiver struct in a method declaration. We also provide an implementation
but no evaluation of its performance.

Method dictionaries bear some resemblance to virtual method tables (vtables) used to
implement virtual method dispatch in object-oriented languages (Driesen & Hölzle, 1996).
The main difference between vtables and dictionaries is that there is a fixed connection
between an object and its vtable (via the class of the object), whereas the connection
between a value and a dictionary may change at runtime, depending on the type the value
is used at. Dictionaries allow access to a method at a fixed offset, whereas vtables in the
presence of multiple inheritance require a more sophisticated lookup algorithm (Alpern
et al., 2001).

Generics in class-based languages such as Java (Bracha et al., 1998; Igarashi et al.,
2001), and C� (Kennedy & Syme, 2001; Emir et al., 2006) do not require a dictionary-
passing translation because all methods are part of the virtual method table of an object.

6 See Griesemer et al. (2020), Figure 10 for an example.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

34 M. Sulzmann and S. Wehr

In Go, however, methods are not necessarily attached to the receiver struct, so additional
evidence in form of dictionaries must be passed for such methods. Further, subtyping in
Java and C� is nominal, whereas Go has structural subtyping.

A possible optimization to the dictionary-passing translation is selective code specializa-
tion (Dean et al., 1995). With this approach, the dictionary-passing translation generates
code that runs for all type arguments. In addition, specialized code is generated for fre-
quently used combinations of type arguments. This approach allows to trade code size
against runtime performance. The GHC compiler for Haskell supports a SPECIALIZE
pragma (GHC User’s Guide, 2022, Section 6.20.11.) that allows developers to special-
ize a polymorphic function to a particular type. The specialization also supports type class
dictionaries.

7.2 Type classes in Haskell

The dictionary-passing translation is well studied in the context of Haskell type classes
(Wadler & Blott, 1989; Hall et al., 1996). A type class constraint translates to an extra
function parameter, and constraint resolution provides a dictionary with the methods of
the type class for this parameter. In FGG, structural subtyping relations imply coercions
and bounded type parameters translate to coercion parameters. An interface value pairs a
struct value with a dictionary for the methods of the interface. Thus, interface values can
be viewed as representations of existential types (Mitchell & Plotkin, 1988; Läufer, 1996;
Thiemann & Wehr, 2008).

Another important property in the type class context is coherence. Bottu et al. (2019)
make use of LRs to state equivalence among distinct target terms resulting from the same
source type class program. In the setting of FGG-, we first establish semantic equivalence
among source and target programs, see Theorem 5.2.6. From this property, we can derive
the coherence property (Theorem 5.2.7) almost for free. We believe it is worthwhile to
establish a property similar to this theorem for type classes. We could employ a simple
denotational semantics for source type class programs similar as Thatte (1994) or Morris
(2014), which would then be related to target programs obtained via the dictionary-passing
translation.

Section 2.5 demonstrated that type bounds on generic structs and interfaces have no
operational meaning. This situation is similar to contexts of data type definitions in
Haskell 2010 (Marlow, 2010). A data type such as:

data Eq a => Set a = NilSet | ConsSet a (Set a)

may require the context Eq a. However, an occurrence of type Set a does not imply that
Eq a holds but always requires the constraint to be justified elsewhere. The GHC manual
states that “this is widely considered a misfeature” (GHC Team, 2021, Section 6.4.2).

7.3 Logical relations

LRs have a long tradition of proving properties of typed programming languages. Such
properties include termination (Tait, 1967; Statman, 1985), type safety (Skorstengaard,
2019), and program equivalence (Pierce, 2004, Chapters 6, 7). A LR is often defined

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 35

inductively, indexed by type. If its definition is based on an operational semantics, the
LR is called syntactic (Pitts, 1998; Crary & Harper, 2007). With recursive types, a step-
index (Appel & McAllester, 2001; Ahmed, 2006) provides a decreasing measure to keep
the definition well founded. See Mitchell (1996, Chapter 8) and Skorstengaard (2019) for
introductions to the topic.

LRs are often used to relate two terms of the same language. For our translation,
the two terms are from different languages, related at a type from the source language.
Benton & Hur (2009) prove correctness of compiler transformations. They use a step-
indexed LR to relate a denotational semantics of the λ-calculus with recursion to
configurations of a SECD machine. Hur & Dreyer (2011) build on this idea to show equiv-
alence between an expressive source language (polymorphic λ-calculus with references,
existentials, and recursive types) and assembly language. Their biorthogonal, step-indexed
Kripke LR does not directly relate the two languages but relies on abstract language
specifications.

Our setting is different in that we consider a source language with support for overload-
ing. Besides structured data and functions, we need to cover recursive interface values.
This leads to some challenges to get the step index right (Sulzmann & Wehr, 2022).

Simulation or bisimulation (see e.g., Sumii & Pierce 2007) is another common technique
for showing program equivalences. In our setting, using this technique amounts to proving
that reduction and translation commutes: if source term e reduces to e′ and translates to
target term E, then e′ translates to E′ such that E reduces to E′′ (potentially in several steps)
with E′ = E′′. One challenge is that the two target terms E′ and E′′ are not necessarily
syntactically equal but only semantically. In our setting, this might be the case if E′ and
E′′ contain coercions for structural subtyping. Even if such coercions behave the same,
their syntax might be different. With LR, we abstract away certain details of single-step
reductions, as we only compare values, not intermediate results. A downside of the LR is
that getting the step index right is sometimes not trivial.

Paraskevopoulou & Grover (2021) combine simulation and an untyped, step-indexed
LR (Acar et al., 2008) to relate the translation of a reduced expression (the E′ from the
preceding paragraph) with the reduction result of the translated expression (the E′′). They
use this technique to prove correctness of CPS transformations using small-step and big-
step operational semantics. Resource invariants connect the number of steps a term and its
translation might take, allowing them to prove that divergence and asymptotic runtime is
preserved by the transformation. Our LR does not support resource invariants but includes
a case for divergence directly.

7.4 Prior work

Our own work published at APLAS (Sulzmann & Wehr, 2021) and MPC (Sulzmann &
Wehr, 2022) laid the foundations for the dictionary-passing translation and its correct-
ness proof of the present article. For the APLAS paper, we defined a dictionary-passing
translation for FG (Griesemer et al., 2020), the nongeneric variant of FGG. That trans-
lation is similar in spirit to the translation presented here; it supports type assertions but
not generics. The APLAS paper includes a proof for the semantic equivalence between
the source FG program and its translation. The result is, however, somewhat limited as

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

36 M. Sulzmann and S. Wehr

FG TL

FGG FG TL

TL

MPC 2022

OOPSLA 2020 MPC 2022

this article

OOPSL
A 202

2

Fig. 20. Summary of translations. Arrows represent translations, and P� is a program in language �.
Program PFGG� is subject to certain restrictions, depending on the translation being performed.

semantic equivalence only holds for terminating programs whose translation is also known
to terminate.

In the MPC paper, we addressed the aforementioned limitation by extending the proof
of semantic equivalence to all possible outcomes of an FG program: termination, panic
(failure of a dynamic type assertion), and divergence. The proof uses a LR similar to the
one used here, but without support for generics. We have already shown more differences
in Section 5.3.

7.5 Summary of translations

The diagram in Figure 20 summarizes the existing translations by Griesemer et al.
(OOPSLA 2020), by Ellis et al. (OOPSLA 2022), from our MPC 2022 paper (Sulzmann &
Wehr, 2022), and from the article at hand. The three resulting TL programs PTL, P′TL, and
P′′TL are semantically equivalent because all translations preserve the dynamic semantics.
Each translation with PFGG� as its source has different restrictions. OOPSLA 2022 requires
the receiver struct of some method declaration to have exactly the same type bounds as the
struct declaration itself. OOPSLA 2020 requires PFGG to be monomorphizable, checked by
a simple syntactic condition. The translation of this article does not support type assertions.

8 Conclusion and future work

This article defined a type-directed dictionary-passing translation from FGG without type
assertions to an extension of the untyped λ-calculus. The translation represents a value at
the type of an interface as a combination of a concrete struct value with a dictionary for
all methods of the interface. Bounded type parameters become extra function arguments
in the target. These extra arguments are coercions from the instantiation of a type variable
to its upper bound.

Every program in the image of the translation has the same dynamic semantics as its
source program. Different translations of the same source program may result in syn-
tactically different but equivalent target programs. The proof of semantic equivalence is
based on a syntactic, step-indexed LR. The step index ensures a well-founded definition

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 37

of the relation in the presence of recursive interface types and recursive methods. We also
reported on an implementation of the translation.

In this article, we relied on FGG as defined by Griesemer et al. (2020), without recon-
sidering design decisions. But our translation raises several questions with respect to the
design of generics in FGG and more generally also in Go. For example, the translation
clearly shows that type bounds in structs and interfaces have no operational meaning.
Should we eliminate these type bounds? Or should we give them a meaning inspired by
Haskell’s type class mechanism? Further, a method declaration in full Go must reuse the
type bounds of its struct and must be defined in the same package as the struct. Clearly,
this limits extensibility and flexibility. Can we provide a more flexible design to solve
the expression problem (Wadler, 1998) in Go, without resorting to unsafe type assertions?
We would like to use the insights gained through this article to answer these and similar
questions in future work.

A somewhat related point is performance. As explained earlier, generics in Go are com-
piled by monomorphization. This gives the best possible performance because the resulting
code is specialized for each type argument. However, not all programs can be monomor-
phized and the increase in code size is often considered problematic. This raises another
interesting question for future work. Could selective monomorphization or specialization
offer a viable trade-off between performance, code size, and the ability to compile Go
programs which are not monomorphizable?

A statically typed TL typically offers more room for compiler optimization (Harper &
Morrisett, 1995). Thus, another interesting direction for future work is a translation to a
typed backend, for example, System F (Girard, 1972; Reynolds, 1974).

The work presented here does not include type assertions (dynamic type casts), although
FGG supports them. We omitted type assertions from our theory for two reasons: firstly,
type assertions are largely orthogonal to the dictionary-passing translation, so their inclu-
sion would obscure the working of the translation. Secondly, type assertions would require
some extra design choices to consider. In our implementation, we construct the check for
a type assertion at the same place as in the source program, relying on dynamic type-tag-
passing for gathering all information necessary. But other approaches are possible. For
example, one could construct downcast coercions at call sites and pass these coercions
around. The second option could make the treatment of type assertions more lightweight
but would require significant research in this direction.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable feedback and con-
structive suggestions, which greatly improved the quality of this paper. We acknowledge
support by the Open Access Publication Fund of the Offenburg University of Applied
Sciences, Germany.

Conflicts of interest

The authors report no conflict of interest.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

38 M. Sulzmann and S. Wehr

Supplementary material

For supplementary material for this article, please visit https://github.com/
skogsbaer/fgg-translate and http://doi.org/10.5281/zenodo.8147425.

References

Acar, U. A., Ahmed, A. & Blume, M. (2008) Imperative self-adjusting computation. In Proceedings
of POPL 2008. ACM.

Ahmed, A. (2006) Step-indexed syntactic logical relations for recursive and quantified types. In
Proceedings of ESOP 2006. Springer-Verlag.

Alpern, B., Cocchi, A., Fink, S. J., Grove, D. & Lieber, D. (2001) Efficient implementation of Java
interfaces: Invokeinterface considered harmless. In Proceedings of OOPSLA 2001. ACM.

Appel, A. W. & McAllester, D. A. (2001) An indexed model of recursive types for foundational
proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683.

Benton, N. & Hur, C. (2009) Biorthogonality, step-indexing and compiler correctness. In
Proceedings of ICFP 2009. ACM.

Bottu, G.-J., Xie, N., Marntirosian, K. & Schrijvers, T. (2019) Coherence of type class resolution.
Proc. ACM Program. Lang. 3(ICFP), 1–28.

Bracha, G., Odersky, M., Stoutamire, D. & Wadler, P. (1998) Making the future safe for the past:
Adding genericity to the java programming language. SIGPLAN Not. 33(10), 183–200.

Canning, P., Cook, W., Hill, W., Olthoff, W. & Mitchell, J. C. (1989) F-bounded polymorphism for
object-oriented programming. In Proceedings of FPCA 1989. ACM.

Crary, K. & Harper, R. (2007) Syntactic logical relations for polymorphic and recursive types.
Electron. Notes Theor. Comput. Sci. 172, 259–299.

Dean, J., Chambers, C. & Grove, D. (1995) Selective specialization for object-oriented languages.
In Proceedings of PLDI 1995. ACM.

Driesen, K. & Hölzle, U. (1996) The direct cost of virtual function calls in C++. In Proceedings of
OOPSLA 1996. ACM.

Ellis, S., Zhu, S., Yoshida, N. & Song, L. (2022) Generic go to go: Dictionary-passing, monomor-
phisation, and hybrid. Proc. ACM Program. Lang. 6(OOPSLA2), 1207–1235.

Emir, B., Kennedy, A., Russo, C. V. & Yu, D. (2006) Variance and generalized constraints for c#

generics. In ECOOP 2006 - Object-Oriented Programming, 20th European Conference, Nantes,
France, July 3–7, 2006, Proceedings. Springer.

GHC Team. (2021) GHC User’s Guide.
GHC User’s Guide. (2022) https://downloads.haskell.org/ghc/9.4.1/docs/users_
guide/index.html.

Girard, J. (1972) Interpretation fonctionnelle et elimination des coupures de l’arithmetique d’ordre
superieur. Thèse d’état. Université Paris 7.

Go Programming Language. (2022) https://golang.org.
Griesemer, R., Hu, R., Kokke, W., Lange, J., Taylor, I. L., Toninho, B., Wadler, P. & Yoshida, N.

(2020) Featherweight Go. Proc. ACM Program. Lang. 4(OOPSLA), 149:1–149:29.
Hall, C. V., Hammond, K., Peyton Jones, S. L. & Wadler, P. L. (1996) Type classes in Haskell. ACM

Trans. Program. Lang. Syst. 18(2), 109–138.
Harper, R. & Morrisett, J. G. (1995) Compiling polymorphism using intensional type analysis. In

Proceedings of POPL 1995. ACM.
Haskell Programming Language. (2022) https://www.haskell.org.
Hur, C. & Dreyer, D. (2011) A Kripke logical relation between ML and Assembly. In Proceedings

of POPL 2011. ACM.
Igarashi, A., Pierce, B. C. & Wadler, P. (2001) Featherweight java: A minimal core calculus for java

and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://github.com/skogsbaer/fgg-translate
https://github.com/skogsbaer/fgg-translate
http://doi.org/10.5281/zenodo.8147425
https://downloads.haskell.org/ghc/9.4.1/docs/users_guide/index.html
https://downloads.haskell.org/ghc/9.4.1/docs/users_guide/index.html
https://golang.org
https://www.haskell.org
https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 39

Kennedy, A. & Syme, D. (2001) Design and implementation of generics for the .net common
language runtime. In Proceedings of PLDI 2001. ACM.

Läufer, K. (1996) Type classes with existential types. J. Funct. Program. 6(3), 485–517.
Marlow, S. (2010) Haskell 2010 language report. https://www.haskell.org/onlinereport/
haskell2010/.

Mitchell, J. C. (1996) Foundations for Programming Languages. Foundation of Computing Series.
MIT Press.

Mitchell, J. C. & Plotkin, G. D. (1988) Abstract types have existential type. ACM Trans. Program.
Lang. Syst. 10(3), 470–502.

Morris, J. G. (2014) A simple semantics for Haskell overloading. In Proceedings of Haskell 2014.
ACM.

Ohori, A. & Ueno, K. (2021) A compilation method for dynamic typing in ML. In Programming
Languages and Systems - 19th Asian Symposium, APLAS 2021, Chicago, IL, USA, October
17–18, 2021, Proceedings. Springer.

Paraskevopoulou, Z. & Grover, A. (2021) Compiling with continuations, correctly. Proc. ACM
Program. Lang. 5(OOPSLA), 1–29.

Pierce, B. (2004) Advanced Topics in Types and Programming Languages. The MIT Press.
Pitts, A. M. (1998) Existential types: Logical relations and operational equivalence. In Proceedings

of ICALP 1998. Springer.
Racket Programming Lanugage. (2022) https://racket-lang.org.
Reynolds, J. C. (1974) Towards a theory of type structure. In Programming Symposium, Proceedings

Colloque sur la Programmation. Springer-Verlag, pp. 408–423.
Reynolds, J. C. (1991) The coherence of languages with intersection types. In Theoretical Aspects of

Computer Software, International Conference TACS’91, Sendai, Japan, September 24–27, 1991,
Proceedings. Springer.

Skorstengaard, L. (2019) An introduction to logical relations. http://arxiv.org/abs/1907.
11133.

Statman, R. (1985) Logical relations and the typed lambda-calculus. Inf. Control. 65(2/3), 85–97.
Sulzmann, M. & Wehr, S. (2021) A dictionary-passing translation of Featherweight Go. In

Proceedings of APLAS 2021. Springer.
Sulzmann, M. & Wehr, S. (2022) Semantic preservation for a type directed translation scheme of

Featherweight Go. In Proceedings of MPC 2022. Springer.
Sumii, E. & Pierce, B. C. (2007) A bisimulation for type abstraction and recursion. J. ACM. 54(5).
Tait, W. W. (1967) Intensional interpretations of functionals of finite type I. J. Symb. Log. 32(2),

198–212.
Taylor, I. L. & Griesemer, R. (2021) Type parameters proposal. https://go.googlesource.com/
proposal/+/refs/heads/master/design/43651-type-parameters.md.

Thatte, S. R. (1994) Semantics of type classes revisited. In Proceedings of LISP 1994. ACM.
Thiemann, P. & Wehr, S. (2008) Interface types for Haskell. In Proceedings of APLAS 2008.

Springer.
Wadler, P. (1998) The expression problem. Posted on the Java Genericity mailing list. http://
homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt.

Wadler, P. & Blott, S. (1989) How to make ad-hoc polymorphism less ad hoc. In Proceedings of
POPL 1989. ACM.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://racket-lang.org
http://arxiv.org/abs/1907.11133
http://arxiv.org/abs/1907.11133
https://go.googlesource.com/proposal/+/refs/heads/master/design/43651-type-parameters.md
https://go.googlesource.com/proposal/+/refs/heads/master/design/43651-type-parameters.md
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://doi.org/10.1017/S0956796823000047

40 M. Sulzmann and S. Wehr

A Proofs

A.1 Deterministic evaluation in FGG− and TL

Lemma A.1.1 (Deterministic evaluation in FGG−). If e −→ e′ and e −→ e′′ then e′ = e′′.
If E −→ E′ and E −→ E′′ then E′ = E′′.

Proof. We first state and prove three sublemmas:
(a) If e = E1[E2[e′]] then there exists E3 with e = E3[e′]. The proof is by induction on E1.
(b) If e −→ e′ then there exists a derivation of e −→ e′ that ends with at most one consec-

utive application of rule FG-CONTEXT. The proof is by induction on the derivation of
e −→ e′. From the IH, we know that this derivation ends with at most two consecu-
tive applications of rule FG-CONTEXT. If there are two such consecutive applications,
(a) allow us to merge the two evaluation contexts involved so that we need only one
consecutive application of FG-CONTEXT.

(c) We call an FGG− expression directly reducible if it reduces but not by rule
FG-CONTEXT. If e1 and e2 are now directly reducible and E1[e1] = E2[e2] then E1 = E2

and e1 = e2. For the proof, we first note that E1 = � iff E2 = �. This holds because
directly reducible expressions have no inner redexes. The rest of the proof is then a
straightforward induction on E1.

Now assume e −→ e′ and e −→ e′′. By (b), we may assume that both derivations ends with
at most one consecutive application of rule FG-CONTEXT. It is easy to see (as values do
not reduce) that both derivations must end with the same rule. If this rule is FG-FIELD,
then e′ = e′′ by restrictions FGG-UNIQUE-STRUCTS and FGG-DISTINCT-FIELDS. If this rule is
FG-CALL, then e′ = e′′ by FGG-UNIQUE-METHOD-DEFS. If the rule is FG-CONTEXT, we have
the following situation with R1 � FG-CONTEXT and R2 � FG-CONTEXT:

FG-CONTEXT

R1
g1 −→ g′1

E1[g1]
︸��������︷︷��������︸

=e

−→ E1[g′1]
︸��������︷︷��������︸

=e′

g2 −→ g′2
R2

E2[g2]
︸��������︷︷��������︸

=e

−→ E2[g′2]
︸��������︷︷��������︸

=e′′

FG-CONTEXT

As neither R1 nor R2 are FG-CONTEXT, we know that g1 and g2 are directly reducible.
Thus, with E1[g1] = E2[g2] and (c) we get E1 = E2 and g1 = g2. With R1 and R2 not being
FG-CONTEXT, we have g′1 = g′2, so e′ = e′′ as required. �

Lemma A.1.2 (Deterministic evaluation in TL). If E −→μ E′ and E −→μ E′′ then E′ = E′′.
Further, if E −→ E′ and E −→ E′′ then E′ = E′′.

Proof. We first prove the first implication of the lemma:

∀E, E′, E′′, μ . E −→μ E′ ∧ E −→μ E′′ =⇒ E′ = E′′ (A1)

There are three sublemmas, analogously to the proof of Lemma A.1.1.
(a) If E =R1[R2[E′]] then there exists R3 with E =R3[E′].
(b) If E −→μ E′ then there exists a derivation of E −→μ E′ that ends with at most one

consecutive application of rule TL-CONTEXT.

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 41

(c) We call a TL expression directly reducible if it reduces but not by rule TL-CONTEXT.
If E1 and E2 are now directly reducible and R1[E1] =R2[E2], then R1 =R2 and
E1 = E2.

The proofs of these lemmas are similar to the proofs of the sublemmas in Lemma A.1.1.
Then (A1) follows with reasoning similar to the proof of Lemma A.1.1. If the derivations
of E −→μ E′ and E −→μ E′′ both end with rule TL-CASE, then our assumption that the
constructors of a case-expression are distinct ensures determinacy.

The second claim of the lemma (E −→ E′ and E −→ E′′ imply E′ = E′′) then follows
directly from (A1). Our assumption that the variables of a top-level let-binding are distinct
ensures that the substitution μ built from the top-level let-bindings is well defined. �

A.2 Preservation of static semantics

Proof of Lemma 5.1.1. We prove (a) and (b) by case distinctions on the last rule of the
given derivations; (c) and (d) follow by induction on the derivations, using (a) and (b).
Claim (e) then follows by examining the typing rules, using (c) and (d). �

A.3 Preservation of dynamic semantics

Convention A.3.1. We omit μ from reductions in the TL, writing E −→ E′ instead of
E −→μ E′.

Definition A.3.2. We make use of some extra meta-variables and notations.
• Φ,Ψ denote formal type parameters α τI .
• Φ̂ denotes the type variables of Φ; that is, if Φ = α τI then Φ̂ = α.
• φ, ψ denote actual type arguments τ.
• M ::= [Φ](x τ) τ denotes the type part of a method signature R.
• L denotes a type literal struct {f τ} or interface {R}.
• Φ �→ φ : η create a type substitution η form type parameters Φ and arguments φ. It is

defined like this: α τn �→ σn : 〈αi �→ σi
n〉

A.3.1 The logical relation

Lemma A.3.3 (Monotonicity for expressions). Assume k ′ ≤ k. If e ≈ E ∈ �τ�k then e ≈ E ∈
�τ�k′ . If v ≡ V ∈ �τ�k then v ≡ V ∈ �τ�k′ .

Proof. We proceed by induction on (k, s) where s is the combined size of v, V .
Case distinction on the last rule used in the two derivations.

• Case rule EQUIV-EXP: We label the two implications in the premise of the rule as (a)
and (b).

(a) Assume k ′′ < k ′ and e −→k′′ u for some value u. From e ≈ E ∈ �τ�k
∃U . E −→∗ U

u ≡U ∈ �τ�k−k′′ (A2)

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

42 M. Sulzmann and S. Wehr

If k = k ′ then u ≡U ∈ �τ�k′−k′′ . Otherwise, k ′ − k ′′ < k − k ′′, so the IH (induc-
tion hypothesis) applied to (A2) also yields u ≡U ∈ �τ�k′−k′′ . This proves
implication (a).

(b) Assume k ′′ < k ′ and e −→k′′ e′ and diverge(e′). Then we get with e ≈ E ∈ �τ�k
and k ′ ≤ k that diverge(E).

• Case rule EQUIV-STRUCT: Follows from IH.
• Case rule EQUIV-IFACE: Obvious.

End case distinction. �

Lemma A.3.4 (Monotonicity for method dictionaries). If 〈x, τS , R, e〉 ≈ V ∈ �R′�k and k ′ ≤
k then 〈x, τS , R, e〉 ≈ V ∈ �R′�k′ .

Proof. Obvious. �

Lemma A.3.5 (Monotonicity for type parameters). If φ ≈ V ∈ �Φ�k and k ′ ≤ k then φ ≈
V ∈ �Φ�k′ .

Proof. Obvious. �

Lemma A.3.6 (Monotonicity for method declarations). Assume declaration D =
func (x tS[Φ]) R {return e} and k ′ ≤ k. If D ≈k X then D ≈k′ X .

Proof. Obvious. �

Lemma A.3.7 (Monotonicity for programs). If D ≈k μ and k ′ ≤ k then D ≈k′ μ.

Proof. Follows from Lemma A.3.6. �

A.3.2 Equivalence between source and translation

Proof of Lemma 5.2.2. Straightforward.

Proof of Lemma 5.2.3. We label the two implications in the premise of rule EQUIV-EXP

with (a) and (b).
(a) Assume k ′ < k + 1 and e2 −→k′ v. Then by Lemma A.1.1 e2 −→ e −→k′−1 v. Noting

that k ′ − 1 < k we get with the assumption e ≈ E ∈ �τ�k
∃V . E −→∗ V ∧ v ≡ V ∈ �τ�k+1−k′

But this is exactly what is needed to prove implication (a) for e2 ≈ E ∈ �τ�k+1.
(b) Assume k ′ < k + 1 and e2 −→k′ e′ and diverge(e′). Then by Lemma A.1.1 e2 −→

e −→k′−1 e′. Noting that k ′ − 1 < k we get with the assumption e ≈ E ∈ �τ�k that
diverge(E). This proves implication (b). �

Lemma A.3.8 (Expression equivalence implies value equivalence). If k ≥ 1 and v ≈ V ∈
�τ�k then v ≡ V ∈ �τ�k .

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 43

Proof. From the first implication of rule EQUIV-EXP, we get for k ′ = 0 < k and with v −→0

v that ∃V ′ . V −→∗ V ′ ∧ v ≡ V ′ ∈ �τ�k . But V is already a value, so V ′ = V . �

Lemma A.3.9 (Value equivalence implies expression equivalence). If v ≡ V ∈ �τ�k then
v ≈ V ∈ �τ�k for any k.

Proof. We have v −→0 v, so we get the first implication of rule EQUIV-EXP by setting
E = V and by assumption v ≡ V ∈ �τ�k . The second implication holds vacuously because
values do not diverge. �

Lemma A.3.10. Assume func (x tS[Φ]) mM {return e} ≈k X . Then the following holds:

∀k ′ < k, φ, W . φ ≈W ∈ �Φ�k′ =⇒ Φ �→ φ : η ∧
〈x, tS[φ], ηmM , ηe〉 ≈ λ(Y1,Y2,Y3).X (W,Y1,Y2,Y3) ∈ �ηmM�k′

Proof. Let M = [Φ′](xi τi
n) τ and assume for any k ′, φ, W

k ′ < k (A3)

φ ≈W ∈ �Φ�k′ (A4)

Obviously

Φ �→ φ : η (A5)

To show that

〈x, tS[φ], ηm[Φ′](xi τi
n) τ, ηe〉 ≈ λ(Y1,Y2,Y3).X (W,Y1,Y2,Y3) ∈ �ηmM�k′

holds, we assume the left-hand side of the implication in the premise of rule
EQUIV-METHOD-DICT-ENTRY for some k ′′, φ′, W ′, u, U , vn, V

n
:

k ′′ ≤ k ′ (A6)

ηΦ′ �→ φ′ : η ′ (A7)

φ′ ≈W ′ ∈ �ηΦ′�k′′ (A8)

u ≈U ∈ �tS[φ]�k′′ (A9)

(∀i ∈ [n]) . vi ≈ Vi ∈ �η ′ητi�k′′ (A10)

We then need to prove (A11) to show the overall goal:

θη ′ηe ≈ V (U,W ′,(V
n
)) ∈ �η ′ητ�k′′ (A11)

θ = 〈x �→ u, xi �→ vi
n〉

V = λ(Y).X (W,Y1,Y2,Y3) (A12)

Let Φ = α σp, Φ′ = β σ′q, φ = σ′′p, φ′ = σ′′′q. Then by (A5) and (A7)

η = 〈αi �→ σ′′i
p〉 (A13)

η ′ = 〈βi �→ σ′′′i

q〉 (A14)

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

44 M. Sulzmann and S. Wehr

Define

Ψ := αi σi
p βi σ

′
i

q

φ′′ := σ′′pσ′′′q

η ′′ := 〈αi �→ σ′′i
p
βi �→ σ′′′i

q〉 (A15)

Then

Ψ �→ φ′′ : η ′′ (A16)

The β
q

are sufficiently fresh, so ftv(σ′′p) ∩ βq
= ∅. Hence by (A13), (A14), (A15)

η ′ησ′i
q
= η ′′σ′i

q
η ′ητi

n = η ′′τi
n η ′ητ = η ′′τ η ′ηe = η ′′e (A17)

We have from (A4) and (A8)

W = (W
p
) (A18)

W ′ = (W ′q) (A19)

We now prove

φ′′ ≈ (W
p
,W ′q) ∈ �Ψ�k′′ (A20)

by verifying the implication in the premise of rule EQUIV-BOUNDED-TYPARAMS. We
consider two cases for every � ≤ k ′′.
Case distinction whether i in [p] or in [q].

• Case i ∈ [p]: We need to prove ∀u, U . u ≈U ∈ �σ′′i �� =⇒ u ≈Wi U ∈ �η ′′σi�� .

From (A4) we get with u ≈U ∈ �σ′′i �� and � ≤ k ′′
(A6)≤ k ′ that u ≈Wi U ∈ �ησi�� .

By assumption 5.2.1 ftv(σi) ⊆ αp, so η ′′σi = ησi by (A13) and (A15).
• Case i ∈ [q]: We need to prove ∀u, U . u ≈U ∈ �σ′′′i �� =⇒ u ≈W ′i U ∈ �η ′′σ′i �� .

From (A8) we get with u ≈U ∈ �σ′′′i �� that u ≈W ′i U ∈ �η ′ησ′i �� . Also, η ′ησ′i =
η ′′σ′i by (A17).

End case distinction. This finishes the proof of (A20).
From (A9) and (A15), we have

u ≈U ∈ �η ′′tS[αp]�k′′ (A21)

From (A10) and (A17),

vi ≈ Vi ∈ �η ′′τi�k′′ (A22)

From the assumption func (x tS[Φ]) mM {return e} ≈k X , we can invert rule

EQUIV-METHOD-DECL. Noting that k ′′
(A6)≤ k ′

(A3)
< k and that (A16), (A20), (A21),and

(A22) give us the left-hand side of the implication in the premise of the rule, we get by the
right-hand side of the implication:

θη ′′e ≈ X ((W
p
),U,(W ′q),(V

n
)) ∈ �η ′′τ�k′′

With (A17), (A18), and (A19)

θη ′ηe ≈ X (W,U,W ′,(V
n
)) ∈ �η ′ητ�k′′ (A23)

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 45

We have by (A12)

V (U,W ′,(V
n
)) = (λ(Y).X (W,Y1,Y2,Y3)) (U,W ′,(V

n
))

so

V (U,W ′,(V
n
)) −→∗ X (W,U,W ′,(V

n
))

Thus, with (A23) and Lemma 5.2.2

θη ′ηe ≈ V (U,W ′,(V
n
)) ∈ �η ′ητ�k′′

as required to prove (A11). �

Definition A.3.11 (Domain). We write dom(·) for the domain of a substitution η, θ, ρ or
μ, of a type environment Δ, of a value environment Γ, or some type parameters Φ.

Definition A.3.12 (Free variables). We write fv(·) for the set of free term variables, and
ftv(·) for the set of free type variables.

Lemma A.3.13 (Subtyping preserves equivalence). Let D ≈k μ. Assume Δ �coerce τ <: σ�
V and η ≈ ρ ∈ �Δ�k and e ≈ E ∈ �ητ�k . Then e ≈ (ρV) E ∈ �ησ�k .

We prove Lemma A.3.13 together with the following two lemmas.

Lemma A.3.14. Assume D ≈k μ and η ≈ ρ ∈ �Δ�k . Let 〈R, V 〉 ∈methods(Δ, tS[φ])
and define U = λ(Y).Xm,tS (ρV,Y1,Y2,Y3). Then we have for all k ′ < k that
methodLookup(m, ηtS[φ]) ≈U ∈ �ηR�k′ .

Lemma A.3.15 (Substitution preserves equivalence). Assume D ≈k μ and η ≈ ρ ∈ �Δ�k . If
Δ �subst Φ �→ φ : η ′� V then ηφ ≈ ρV ∈ �ηΦ�k .

Proof of Lemmas A.3.13, A.3.14, and A.3.15. We show the three lemmas by induc-
tion on the combined height of the derivations for Δ �coerce τ <: σ� V and 〈R, V 〉 ∈
methods(Δ, tS[φ]) and Δ �subst Φ �→ φ : η ′� V .

We start with the proof for Lemma A.3.13. We have from the assumptions:

e ≈ E ∈ �ητ�k (A24)

Assume k ′ < k and e −→k′ e′. The second implication in the premise of rule EQUIV-EXP

holds obviously, because with diverge(e′) we get from (A24) diverge(E), so also
diverge((ρV) E).

Thus, we only need to prove the first implication. Assume that e′ = v for some value v.
Then via (A24) for some U

E −→∗ U (A25)

v ≡U ∈ �ητ�k−k′ (A26)

We then need to verify that (ρV) U −→∗ U ′ for some U ′ with v ≡U ′ ∈ �ησ�k−k′ . In fact,
k ′ < k, so with Lemma A.3.8 it suffices to show that v ≈U ′ ∈ �ησ�k−k′ .

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

46 M. Sulzmann and S. Wehr

Case distinction on the last rule in the derivation of Δ �coerce τ <: σ� V .
• Case COERCE-TYVAR:

X fresh (a : τI) ∈ Δ Δ �coerce τI <: σ�W

Δ �coerce α

=

τ

<: σ� λX.W (Xα X)
︸������������������������������︷︷������������������������������︸

=V

Our goal to show is

e ≈ (ρXα) U ∈ �ητI�k (A27)

With (A27) and the IH for Lemma A.3.13, we then get

e ≈ (ρW) ((ρXα) U) ∈ �ησ�k
Then, with e −→k′ v, we get (ρV) U −→ (ρW) ((ρXα) U) −→∗ U ′ for some U ′ with
v ≡U ′ ∈ �ησ�k−k′ .
We now prove (A27). From the assumption η ≈ ρ ∈ �Δ�k , we have

Δ = αi : τi
n

η = 〈αi �→ σi
n〉

ρ= 〈Xαi �→ Vi
n〉

σn ≈ V
n ∈ �αi τi

n�k (A28)

such that α = αj and τI = τj for some j ∈ [n]. Inverting rule
EQUIV-BOUNDED-TYPARAMS on (A28) yields

∀k ′′ ≤ k, w, W ′ . w ≈W ′ ∈ �σj�k′′ =⇒ w ≈ Vj W ′ ∈ �ητj�k′′ (A29)

From (A26) by ητ = σj, then v ≡U ∈ �σj�k−k′ . Thus, with (A29) and Lemma A.3.9

v ≈ Vj U ∈ �ητj�k−k′

With Lemma 5.2.3 and e −→k′ v then

e ≈ Vj U ∈ �ητj�k

But τj = τI and Vj = ρXα , so this proves (A27).
• Case COERCE-STRUCT-IFACE:

X , Y1, Y2, Y3 fresh
type tI [Φ] interface {mM

n} ∈D (A30)
Φ �→ φ : η ′ (A31)

〈η ′(miMi), Vi〉 ∈methods(Δ, tS[ψ]) (A32)
V ′i = λ(Y1,Y2,Y3).Xmi,tS (Vi,Y1,Y2,Y3) (∀ i ∈ [n]) (A33)

Δ �coerce tS[ψ]

=

τ

<: tI [φ]

=

σ

� λX.(X,(V ′i
n
))

︸���������������������������������︷︷���������������������������������︸

=V

Hence, (ρV) U −→ (U,ρ(V ′n)) and U ′ := (U,ρ(V ′n)) is a value. We now want
to show v ≈U ′ ∈ �ησ�k−k′ via rule EQUIV-IFACE. Define the σS in the premise of
EQUIV-IFACE as ητ = tS[ηψ].

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 47

The first premise of EQUIV-IFACE:

∀k1 < k − k ′ . v ≡U ∈ �ητ�k1 (A34)

follows from (A26) and Lemma A.3.3. From (A30) and (A31), we get with σ = tI [φ]
the second premise as:

methods(ησ) = ηη ′mM
n

(A35)

We next prove the third premise of EQUIV-IFACE. Pick some j ∈ [n] and k2 < k − k ′.
With the assumptions D ≈k μ and η ≈ ρ ∈ �Δ�k and with (A32), (A33), and the IH
for Lemma A.3.14 we get

methodLookup(mj, ηtS[ψ]) ≈ ρV ′j ∈ �ηη ′mjMj�k2 (A36)

(A34), (A35), (A36), and the definition of U ′ are the pieces required to derive v ≈
U ′ ∈ �ησ�k−k′ via rule EQUIV-IFACE.

• Case COERCE-IFACE-IFACE:

Y , X
n

fresh π : [q]→ [n] total
type tI [Φ1] interface {Rn} ∈D (A37)

type uI [Φ2] interface {R′q} ∈D (A38)
Φ1 �→ φ1 : η1 Φ2 �→ φ2 : η2

η2R′i = η1Rπ(i) (∀ i ∈ [q]) (A39)

Δ �coerce tI [φ1]

=

τ

<: uI [φ2]

=

σ

� λ(Y,(X
n
)).(Y,(Xπ(1), . . .,Xπ(q)))

︸��︷︷��︸

=V (A40)

As ητ = ηtI [φ1] is an interface type, we get from (A26) by inverting rule
EQUIV-IFACE for some W , σS , W

n
that

∀k1 < k − k ′ . v ≈W ∈ �σS�k1 (A41)

methods(ητ) = ηη1R
n
=mM

n
(A42)

∀i ∈ [n], k2 < k − k ′ . methodLookup(mi, σs) ≈Wi ∈ �miMi�k2 (A43)

U = (W,(W
n
)) (A44)

Our goal is to show (ρV) U −→∗ U ′ for some U ′ with v ≈U ′ ∈ �ησ�k−k′ . Via (A40)
and (A44)

(ρV) U = V U −→∗ (W,(Wπ(1), . . .,Wπ(q))) =: U ′ (A45)

From (A37), (A38), (A39), and (A42), we have

m′M ′q = ηη2R′q = ηη1Rπ(1) , . . . , ηη1Rπ(q)

=mπ(1)Mπ(1) , . . . , mπ(q)Mπ(q)

(A46)

methods(ησ) = {m′M ′q} (A47)

Pick j ∈ [q]. Then via (A46)

methodLookup(m′j , σS) =methodLookup(mπ(j) , σs)

Hence, with (A43) and (A46)

∀j ∈ [q], k2 < k − k ′ . methodLookup(m′j , σS) ≈Wπ(j) ∈ �m′j M ′j �k2 (A48)

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

48 M. Sulzmann and S. Wehr

With (A41), (A48), (A47) and the definition of U ′ in (A45), we then get by applying
rule EQUIV-IFACE v ≈U ′ ∈ �ησ�k−k′ and with (A45) also (ρV) U −→∗ U ′.

End case distinction on the last rule in the derivation of Δ �coerce τ <: σ� V .
This finishes the proof of Lemma A.3.13.

We next prove Lemma A.3.14. By inverting rule METHODS-STRUCT for the assumption
〈R, V 〉 ∈methods(Δ, tS[φ]), we get

func (x tS[Φ]) mM {return e} ∈D (A49)

Δ �subst Φ �→ φ : η ′� V (A50)

R = η ′mM (A51)

Inverting (A50) yields

Φ = α τn

η ′ = 〈αi �→ σi
n〉

φ = σn

Δ �coerce σi <: η ′τi� Vi (∀i ∈ [n])

V = (V
n
)

Define η ′′ = 〈αi �→ ησi
n〉. Then by rule METHOD-LOOKUP and (A49)

methodLookup(m, ηtS[φ]) = 〈x, ηtS[φ], η ′′mM , η ′′e〉 (A52)

By Assumption 5.2.1, the αn can be assumed to be fresh, ftv(Φ) ⊆ αn, and ηΦ =Φ.
Applying the IH for Lemma A.3.15 on (A50) yields ηφ ≈ ρV ∈ �ηΦ�k .

ηφ ≈ ρV ∈ �Φ�k (A53)

From the assumption D ≈k μ, we get with (A49)

func (x tS[Φ]) mM {return e} ≈k Xm,tS

Then for any k ′ < k by Lemma A.3.10, where (A53) and Lemma A.3.5 give the left-hand
side of the implication:

Φ �→ ηφ : η ′′

〈x, ηtS[φ], η ′′mM , η ′′e〉 ≈
λ(Y).Xm,tS (ρV,Y1,Y2,Y3)
︸���︷︷���︸

=U

∈ �η ′′mM�k′ (A54)

We have ηR
(A51)
= ηη ′mM = η ′′mM , where the last equality holds because ftv(mM) ⊆ αn

and αn fresh by Assumption 5.2.1. Hence, (A52) and (A54) give the desired claim.
Finally, we prove Lemma A.3.15. By inverting rule TYPE-INST-CHECKED for the

assumption Δ �subst Φ �→ φ : η ′� V , we get

Φ = α τn

φ = σn

η ′ = 〈αi �→ σi
n〉

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 49

Δ �coerce σi <: η ′τi� Vi (∀i ∈ [n]) (A55)

V = (V
n
)

Define η ′′ = 〈αi �→ ησi
n〉. To prove ηφ ≈ ρV ∈ �ηΦ�k , we need to show the implication

∀j ∈ [n], k ′ ≤ k . u ≈U ∈ �ησj�k′ =⇒ u ≈ (ρV) U ∈ �η ′′ητj�k′ from the premise of rule
EQUIV-BOUNDED-TYPARAMS. Assume j ∈ [n], k ′ ≤ k, and u ≈U ∈ �ησj�k′ . Applying the IH
for Lemma A.3.13 on (A55) yields together with Lemmas A.3.5 and A.3.7 that

u ≈ (ρVj) U ∈ �ηη ′τj�k′ (A56)

As the α are bound inΦ, we may assume that dom(η) ∩ α = ∅ = ftv(η) ∩ α. We now argue
that

ηη ′τj = η
′′ητj (A57)

by induction on the structure of τj. The interesting case is were τj is a type variable
(otherwise the claim follows by the IH). If τj ∈ α, then

ηη ′τj
def. of η′′
= η ′′τj

dom(η)∩α=∅
= η ′′ητj

If τj ∈ dom(η), then

ηη ′τj
dom(η)∩α=∅
= ητj

ftv(η)∩α=∅
= η ′′ητj

If τj is some other type variable, (A57) holds obviously. With (A56) and (A57) we get
u ≈ (ρVj) U ∈ �η ′′ητj�k′ as required. �

Lemma A.3.16 (Free variables of coercion values). If Δ �coerce τ <: σ� V then fv(V) ⊆
{Xα | α ∈ dom(Δ)} ∪X where X = {Xm,tS | m method name, tS struct name}.

Proof. By straightforward induction on the derivation of Δ �coerce τ <: σ� V . �

A.3.2.1 Proof of Lemma 5.2.4. By induction on the derivation of 〈Δ, Γ〉 �exp e : τ� E.
Case distinction on the last rule in the derivation.

• Case VAR:

(x : τ) ∈ Γ
〈Δ, Γ〉 �exp x : τ� X

with θηe = θx and ρE = ρX . From the assumption θ ≈ ρ ∈ �ηΓ�k , we get θx ≈ ρX ∈
�ητ�k as required.

• Case STRUCT:

Δ �ok tS[φ]

type tS[Φ] struct {f τn} ∈D (A58)
Φ �→ φ : η ′ (A59)

〈Δ, Γ〉 �exp ei : η ′τi� Ei (∀ i ∈ [n]) (A60)

〈Δ, Γ〉 �exp� tS[φ]{en}
︸��������������︷︷��������������︸

=e

: tS[φ]
︸����︷︷����︸

=τ

(E
n
)

︸�����︷︷�����︸

=E

(A61)

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

50 M. Sulzmann and S. Wehr

Applying the IH to (A60) yields

θηei ≈ ρEi ∈ �ηη ′τi�k (∀i ∈ [n]) (A62)

We now consider the two implications in the premise of rule EQUIV-EXP

(a) Assume k ′ < k and θηe −→k′ v for some value v. The goal is to show that there
exists some value V with ρE −→∗ V and v ≡ V ∈ �ητ�k−k′ .
With θηe −→k′ v there must exist values vn such that

θηei −→ki vi (∀i ∈ [n])

ki ≤ k ′ (∀i ∈ [n]) (A63)

v = tS[ηφ]{vn} (A64)

Via (A62) and ki ≤ k ′ < k then for all i ∈ [n]

ρEi −→∗ Vi for some Vi (∀i ∈ [n]) (A65)

vi ≡ Vi ∈ �ηη ′τi�k−ki (∀i ∈ [n]) (A66)

We have k − k ′ ≤ k − ki for all i ∈ [n] by (A63). Thus, with (A66) and
Lemma A.3.3

vi ≡ Vi ∈ �ηη ′τi�k−k′ (∀i ∈ [n]) (A67)

We also have with (A65) and the definition of E in (A61)

ρE −→∗ (V
n
) (A68)

Assume Φ̂ = αp and φ = σp. Then by (A59) η ′ = 〈αi �→ σi
p〉 and for η ′′ =

〈αi �→ ησi
p〉, we have

Φ �→ ηφ : η ′′ (A69)

By Assumption 5.2.1, we have ftv(τn) ⊆ {α}, so

ηη ′τi = η
′′τi (∀i ∈ [n]) (A70)

With (A58), (A67), (A64), (A69), (A70), and rule EQUIV-STRUCT, then

v ≡ (V
n
) ∈ �tS[ηφ]�k−k′

Together with (A68), this finishes subcase (a) for V = (V
n
).

(b) Assume k ′ < k and θηe −→k′ e′ and diverge(e′). Then diverge(ej) for some
j ∈ [n], so with (A62) and (A63) also diverge(ρEj). Thus, by definition of E in
(A61), diverge(ρE) as required.

• Case ACCESS:

〈Δ, Γ〉 �exp e′ : tS[φ]� E′ (A71)

type tS[Φ] struct {f τn} ∈D
Φ �→ φ : η ′

〈Δ, Γ〉 �exp� e′.fj
︸�︷︷�︸

=e

: η ′τj
︸�︷︷�︸

=τ

case E′ of (X
n
)→ Xi

︸���︷︷���︸

=E

(A72)

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 51

Applying the IH to (A71) yields

θηe′ ≈ ρE′ ∈ �tS[ηφ]�k (A73)

We now consider the two implications in the premise of rule EQUIV-EXP

(a) Assume k ′ < k and θηe −→k′ v for some value v. The goal is to show that there
exists some value V with ρE −→∗ V and v ≡ V ∈ �ητ�k−k′ .
With θηe −→k′ v then θηe′ −→k′′ v′ for some v′ and k ′′ < k ′. With (A73) then
for some V ′

ρE′ −→∗ V ′ (A74)

v′ ≡ V ′ ∈ �tS[ηφ]�k−k′′ (A75)

Inverting rule EQUIV-STRUCT on (A75) yields

v′ = tS[ηφ]{vn} (A76)

V ′ = (V
n
) for some V

n

vi ≡ Vi ∈ �η ′′τi�k−k′′ (∀i ∈ [n]) (A77)

where η ′′ = 〈αi �→ ησi
p〉, assuming Φ̂ = αp and φ = σp. By Assumption 5.2.1

we have ftv(τj) ⊆ {α}. Thus, η ′′τj = ηη
′τj

(A72)
= ητ. Also, k ′′ ≤ k ′, so k − k ′ ≤

k − k ′′. Hence, with (A77) and Lemma A.3.3

vj ≡ Vj ∈ �ητ�k−k′ (A78)

With (A74) and the definition of E in (A72), we get

ρE −→∗ Vj (A79)

With θηe −→k′ v and θηe′ −→k′′ v′ and the form of v′ in (A76), we get
θηe −→k′ vj and v = vj by rule FG-FIELD. Define V = Vj and we are done with
subcase (a) by (A78) and (A79).

(b) Assume k ′ < k and θηe −→k′ e′′ and diverge(e′′). Then we must have that
θηe′ −→k′′ e′′′ for some k ′′ < k ′ and some e′′′. Thus, diverge(e′′′) by the def-
inition of e in (A72) and the evaluation rules for FGG−. With (A73) then
diverge(ρE′). By definition of E in (A72), then diverge(ρE) as required.

• Case CALL-STRUCT:

〈Δ, Γ〉 �exp g : tS[φ]� G (A80)
〈m[Ψ](x σn)σ, W 〉 ∈methods(Δ, tS[φ]) (A81)

Δ �subst Ψ �→ ψ : η1�W ′ (A82)
〈Δ, Γ〉 �exp ei : η1σi� Ei (∀i ∈ [n]) (A83)

〈Δ, Γ〉 �exp g.m[ψ](en)
︸��������������������︷︷��������������������︸

=e

: η1σ
︸��︷︷��︸

=τ

� Xm,tS (W,G,W ′,(E
n
))

︸��︷︷��︸

=E

(A84)

From the IH applied to (A80) and (A83)

θηg ≈ ρG ∈ �ηtS[φ]�k (A85)

θηei ≈ ρEi ∈ �ηη1σi�k (∀i ∈ [n]) (A86)

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

52 M. Sulzmann and S. Wehr

Assume θηe −→k′ e′ for some k ′ < k. We first consider the following situation for
some values u, vn:

θηg −→k′′ u (A87)

θηei −→ki vi (A88)

θηe −→k′′+Σki u.m[ηψ](vn) −→k′−k′′−Σki e′ (A89)

with k ′′ + Σki ≤ k ′. (A87), (A88), and (A89) are intermediate assumptions, which
become true when we later prove the two implications of rule EQUIV-EXP.
We have from (A85), (A87), (A86), and (A88)

ρG −→∗ U for some U with u ≡U ∈ �ηtS[φ]�k−k′′ (A90)

(∀i ∈ [n]) ρEi −→∗ Vi for some Vi with vi ≡ Vi ∈ �ηη1σi�k−ki (A91)

From (A81), we get by inverting rule METHODS-STRUCT:

func (x tS[Φ])m[Ψ′](x σ′n) σ′, {return g′} ∈D (A92)

Δ �subst Φ �→ φ : η2�W (A93)

m[Ψ](x σn) σ = η2(m[Ψ′](x σ′n) σ′) (A94)

From the assumption D ≈k μ and (A92),

func (x tS[Φ])m[Ψ′](x σ′n) σ′, {return g′} ≈k Xm,tS (A95)

Define

k ′′′ :=min(k − k ′′, k − Σki) − 1 (A96)

We have k ′ − k ′′ − Σki < k ′′′ + 1 by the following reasoning:

k ′′′ + 1
(A96)
= min(k − k ′′, k − Σki)
= k −max(k ′′, Σki)
≥ k − k ′′ − Σki

k′<k
> k ′ − k ′′ − Σki

(A97)

With (A95) and k ′′′ < k, we now want to use the implication from the premise
of rule EQUIV-METHOD-DECL. We instantiate the universally quantified variables of
the implication as follows: k ′ = k ′′′, φ = η(φ, ψ), W

p
= ρW , W ′q = ρW ′, v = u, V =

U , vn = vn, V
n
= V

n
. Next, we prove the left-hand side of the implication. But first

assume (see (A93), (A82), (A94))

Φ = α τp φ = τ′p W =W
p

(A98)

Ψ′ = β τ′′q ψ = τ′′′q W ′ =W ′q (A99)

and define

η3 = 〈αi �→ ητ′i
p
, βi �→ ητ′′′i

q〉 (A100)

– We start by showing the first two conjuncts of the implication’s left-hand side:

Φ,Ψ′ �→ η(φ, ψ) : η3 ∧ η(φ, ψ) ≈ ρ(W,W ′) ∈ �Φ,Ψ′�k′′′ (A101)

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 53

The left part of the conjunction follows from (A100). We then show η(φ, ψ) ≈
ρ(W,W ′) ∈ �Φ,Ψ′�k by proving the two implications required to fulfill the
premise of rule EQUIV-BOUNDED-TYPARAMS. The right part of the conjunction
in (A101) then follows via Lemma A.3.5.

* First implication: uj ≈Uj ∈ �ητ′j �k =⇒ uj ≈ (ρWj) Uj ∈ �η3τj�k for all j ∈
[p] and all uj, Uj.
From (A93) and Lemma A.3.15, we have ηφ ≈ ρW ∈ �ηΦ�k Hence,
with uj ≈Uj ∈ �ητ′j �k and the implication in the premise of rule

EQUIV-BOUNDED-TYPARAMS, we have uj ≈ (ρWj) Uj ∈ �〈αi �→ ητ′i 〉ητj�k .
From Assumption 5.2.1, (A92), and (A98), we know that ftv(τj) ⊆ {α}
and α fresh, so 〈αi �→ ητ′i 〉ητj = η3τj. Thus, uj ≈ (ρWj) Uj ∈ �η3τj�k as
required.

* Second implication: uj ≈Uj ∈ �ητ′′′j �k =⇒ uj ≈ (ρW ′j) Uj ∈ �η3τ
′′
j �k for

all i ∈ [q] and all uj, Uj.
From (A82) and Lemma A.3.15, we have ηψ ≈ ρW ′ ∈ �ηΨ�k .
Hence, with uj ≈Uj ∈ �ητ′′′j �k , the implication in the premise of
rule EQUIV-BOUNDED-TYPARAMS, and (A94) then uj ≈ (ρW ′j) Uj ∈
�〈βi �→ ητ′′′i 〉ηη2τ

′′
j �k . We have with (A93) and (A98) that η2 =

〈αi �→ τ′i 〉. Because of Assumption 5.2.1, (A92), and (A99), we

know that ftv(τ′′j) ⊆ {α, β} and α, β fresh. Hence, 〈βi �→ ητ′′′i 〉ηη2τ
′′
j =

〈βi �→ ητ′′′i 〉〈αi �→ ητ′i 〉τ′′j
(A100)
= η3τ

′′
j . Thus, uj ≈ (ρW ′j) Uj ∈ �η3τ

′′
j �k as

required.

This finishes the proof of (A101).
– We next show the third conjunct of the implication’s left-hand side:

u ≈U ∈ �tS[η3α]�k′′′ (A102)

We have tS[η3α] = tS[ηφ] by (A100) and (A98). Hence, with (A90), Lemmas
A.3.9, and A.3.3, it suffices to show that k ′′′ ≤ k − k ′′. But this follows from
construction of k ′′′ in (A96).

– Finally, we show the fourth conjunct:

vi ≈ Vi ∈ �η3σ
′
i �k′′′ (∀i ∈ [n]) (A103)

By (A82), (A94), and (A99) we have η1 = 〈βi �→ τ′′′i

q〉. By (A93) and (A98),

we have η2 = 〈αi �→ τ′i
p〉. Thus,

ηη1σi
(A94)
= ηη1η2σ

′
i

(A100)
= η3σ

′
i

For the last equation, note that ftv(σ′i) ⊆ {α, β} by Assumption 5.2.1 and
(A92), (A98), (A99). Hence, with (A91), Lemmas A.3.9, and A.3.3, it suffices
to show that k ′′′ ≤ k − ki. But this follows from construction of k ′′′ in (A96).

Now (A101), (A102), and (A103) are the left-hand side of the implication of
rule EQUIV-METHOD-DECL, which we get from (A95). The right-hand side of the
implication then yields

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

54 M. Sulzmann and S. Wehr

〈x �→ u, xi �→ vi
n〉

︸���������������������������������︷︷���������������������������������︸

=:θ′

η3g′ ≈ Xm,tS (ρW,U,ρW ′,(V)) ∈ �η3σ
′�k′′′ (A104)

From (A90), we have u = tS[ηφ] by inverting rule EQUIV-STRUCT. Hence by (A92),
(A100), and rule FG-CALL

u.m[ηψ](v) −→ θ ′η3g′ (A105)

Also we have

ητ
(A84)
= ηη1σ

(A94)
= ηη1η2σ

′ = η3σ
′

where the last equation follows from (A82), (A94), (A99), (A93), (A98)
and ftv(σ′) ⊆ {α, β} with Assumption 5.2.1. Thus, with (A104), (A105), and
Lemma 5.2.3

u.m[ηψ](v) ≈ Xm,tS (ρW,U,ρW ′,(V)) ∈ �ητ�k′′′+1 (A106)

By definition of E in (A84) and with (A90) and (A91), we have

ρE −→∗ μ(Xm,tS) (ρW,U,ρW ′,(V)) (A107)

Also, we have by rules TL-CONTEXT and TL-METHOD

Xm,tS (ρW,U,ρW ′,(V)) −→ μ(Xm,tS) (ρW,U,ρW ′,(V)) (A108)

So far, we proved everything under the assumptions (A87), (A88), and (A89). We
next consider the two implications of rule EQUIV-EXP.

(a) Assume e′ = v for some value v. Our goal is to prove that there exists some
value V such that ρE −→∗ V and v ≡ V ∈ �ητ�k−k′ . Noting that (A87), (A88),
and (A89) hold, we have together with (A105):

θηe −→k′′+Σki u.m[ηψ](v) −→k′−k′′−Σki v (A109)

with k ′′ + Σki < k ′. We have k ′ − k ′′ − Σki < k ′′′ + 1 by (A97). Hence with
(A106) and (A109), we know that there exists some value V with

Xm,tS (ρW,U,ρW ′,(V)) −→∗ V (A110)

v ≡ V ∈ �ητ�k′′′+1−k′+k′′+Σki (A111)

We have k − k ′ ≤ k ′′′ + 1 − k ′ + k ′′ + Σki by the following reasoning:

k ′′′ + 1 − k ′ + k ′′ + Σki
(A96)
= min(k − k ′′, k − Σki) − k ′ + k ′′ + Σki

= k −max(k ′′, Σki) − k ′ + k ′′ + Σki

≥ k − k ′′ − Σki − k ′ + k ′′ + Σki

= k − k ′

With (A111) and Lemma A.3.3 then v ≡ V ∈ �ητ�k−k′ . And from (A107),
(A108), (A110), and Lemma A.1.2, we have that ρE −→∗ V .

(b) Assume diverge(e′). We then have to show diverge(ρE).
Case distinction whether receiver, argument, or method call diverges.

– Case receiver diverges: Then θηg −→k′ g′′ and diverge(g′′). With (A85)
and k ′ < k then diverge(ρG), so by the definition of E in (A84) we get
diverge(ρE).

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 55

– Case j-th argument diverges: then θηg −→k′′ u and θηei −→ki vi for all i <
j and θηej −→kj e′′ and diverge(e′′). With (A86) and kj ≤ k ′ < k we get
diverge(ρEj). By definition of E in (A84), then diverge(ρE).

– Case method call diverges: Then we are in the situation that (A87), (A88),
and (A89) hold. We then have

u.m[ηψ](vn) −→k′−k′′−Σki e′

Hence, with (A97), (A106), and the second implication in the premise
of rule EQUIV-EXP, we have that diverge(Xm,tS (ρW,U,ρW ′,(V))). With
(A107) and (A108) and Lemma A.1.2 then also diverge(ρE) as required.

End case distinction.
This finishes the proof for rule CALL-STRUCT.

• Case CALL-IFACE:

〈Δ, Γ〉 �exp g : τI � G (A112)
methods(τI) = R

q
(A113)

Rj =m[Ψ](x σn)σ (for some j ∈ [q]) (A114)
Δ �subst Ψ �→ ψ : η1� V (A115)

〈Δ, Γ〉 �exp ei : η1σi� Ei (∀ i ∈ [n]) (A116)
Y , X

q
fresh

〈Δ, Γ〉 �exp� g.m[ψ](en)
︸��������������������︷︷��������������������︸

=e

: η1σ
︸��︷︷��︸

=τ

E (A117)

with

E = case G of (Y,(X
q
))→ Xj (Y,V,(E

n
)) (A118)

From the IH applied to (A112) and (A116)

θηg ≈ ρG ∈ �ητI�k (A119)

θηei ≈ ρEi ∈ �ηη1σi�k (∀i ∈ [n]) (A120)

Assume θηe −→k′ e′ for some k ′ < k. We first consider the following situation for
some values u, vn:

θηg −→k′′ u (A121)

θηei −→ki vi (A122)

θηe −→k′′+Σki u.m[ηψ](vn) −→k′−k′′−Σki e′ (A123)

with k ′′ + Σki ≤ k ′. (A121), (A122), and (A123) are intermediate assumptions,
which become true when we later prove the two implications of rule EQUIV-EXP.
We have from (A119), (A120), (A121), and (A122)

ρG −→∗ U for some U with u ≡U ∈ �ητI�k−k′′ (A124)

(∀i ∈ [n]) ρEi −→∗ Vi for some Vi with vi ≡ Vi ∈ �ηη1σi�k−ki (A125)

From (A124) and (A113), we get by inverting rule EQUIV-IFACE

∃σS = tS[φ] (A126)

U = (U ′,(U
q
)) (A127)

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

56 M. Sulzmann and S. Wehr

∀�1 < k − k ′′ . u ≡U ′ ∈ �σS��1 (A128)

∀�2 < k − k ′′ . methodLookup(mj, σS) ≈Uj ∈ �ηRj��2 (A129)

Hence, we have by (A126), (A129), (A114), and rule METHOD-LOOKUP

func (x tS[Φ]) m[Ψ′](x σ′n) σ′
︸���������������������������������︷︷���������������������������������︸

=:R′

{return e′′} ∈D (A130)

Φ �→ φ : η2 (A131)

methodLookup(mj, σS) = 〈x, tS[φ], η2R′, η2e′′〉 (A132)

η2R′ = ηRj = η(m[Ψ](xi σi
n) σ) (A133)

Then by (A129) and (A132)

〈x, tS[φ], η2R′, η2e′′〉 ≈Uj ∈ �ηRj�k−k′′−1 (A134)

Define k ′′′ :=min(k − k ′′ − 1, k − Σki − 1). Then

k ′′′ ≤ k − k ′′ − 1 (A135)

k ′′′ < k (A136)

k ′′′ < k − k ′′ (A137)

k ′′′ < k − ki (∀i ∈ [n]) (A138)

k ′ − k ′′ − Σki < k ′′′ + 1 (A139)

The first four of these claims are straightforward to verify. The last can be shown
with the following reasoning:

k ′′′ + 1 = k −max(k ′′ + 1, Σki + 1) + 1
> k − (k ′′ + 1 + Σki + 1) + 1
= k − 1 − k ′′ − Σki

k′<k≥ k ′ − k ′′ − Σki

From (A134), we get the implication in the premise of rule
EQUIV-METHOD-DICT-ENTRY. We now show that the left-hand side of the implication
holds. The universally quantified variables of the rule’s premise are instantiated as
follows: k ′ = k ′′′, φ = ηψ, W = ρV , v = u, V =U ′, vn = vn, V

n
= V

n
. The variables

in the conclusion are instantiated as follows: x = x, τS = tS[φ], m[Φ](xi τi
n) τ =

η2R′, e = η2e′′. The requirement k ′′′ ≤ k − k ′′ − 1 follows from (A135).
We have from (A115) and (A133) the first conjunct:

ηΨ �→ ηψ : 〈α �→ ητ〉
︸����������������︷︷����������������︸

=η4

(assuming η1 = 〈α �→ τ〉, Ψ̂ = α, ψ = τ) (A140)

From (A115), we get the second conjunct by Lemma A.3.15, (A136), by the
assumptions D ≈k μ and η ≈ ρ ∈ �Δ�k , and by Lemma A.3.5:

ηψ ≈ ρV ∈ �ηΨ�k′′′
With (A137), (A128), (A126), and Lemma A.3.9, we get the third conjunct:

u ≈U ′ ∈ �tS[φ]�k′′′

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 57

With (A138), (A125), Lemmas A.3.9, and A.3.3, we have

vi ≈ Vi ∈ �ηη1σi�k′′′ (∀i ∈ [n]) (A141)

We next prove

ηη1σi = η4ησi (∀i ∈ [n]) (A142)

ηη1σ = η4ησ (A143)

by induction on σi or σ. The interesting case is where σi or σ is a type variable α ∈
dom(η1) ∪ dom(η). As the α = dom(η1) = dom(η4) are bound in Ψ (see (A140)),
we may assume that α ∩ dom(η) = ∅ = α ∩ ftv(η). If α ∈ dom(η1), then

ηη1α
(A140)
= η4α

dom(η1)∩dom(η)=∅
= η4ηα

If α ∈ dom(η), then

ηη1α
dom(η)∩dom(η1)=∅

= ηα
dom(η1)∩ftv(η)=∅

= η4ηα

We now get with (A133) and (A142) that ηη1σi = η4η2σ
′
i . Hence with (A141) the

fourth conjunct:

(∀i ∈ [n]) vi ≈ Vi ∈ �η4η2σ
′
i �k′′′

Now the right-hand side of the implication of rule EQUIV-METHOD-DICT-ENTRY yields
with (A134)

〈x �→ u, xi �→ vi
n〉η4η2e′′ ≈Uj (U ′,ρV,(V

n
)) ∈ �η4η2σ

′�k′′′ (A144)

Define η3 such that

Φ,Ψ′ �→ φ, ηψ : η3 (A145)

Then with (A131) and (A140)

η4η2e′′ = η3e′′ (A146)

by induction on e′′. The interesting case is the one for a type variable α. By
Assumption 5.2.1 and (A130), we know that α ∈ Φ̂∪ Ψ̂′. Further we may assume
that the type variables Ψ̂′ are fresh, and we have dom(η2) = Φ̂ by (A131) and
dom(η4) = Ψ̂′ by (A140). Thus, if α ∈ Φ̂ then η4η2α = η2α because Ψ̂′ fresh, and
η3α = η2α by (A131) and (A145). If α ∈ Ψ̂′ then η4η2α = η4α because Ψ̂′ fresh,
and η3α = η4α by (A145) and (A140).
With (A143) and (A133) η4η2σ

′ = ηη1σ. Hence, we have with (A146), (A144)

〈x �→ u, xi �→ vi
n〉η3e′′ ≈Uj (U ′,ρV,(V

n
)) ∈ �ηη1σ�k′′′ (A147)

From (A126) and (A128), we get by inverting rule EQUIV-STRUCT that u = tS[φ]{. . .}.
Hence, by rule FG-CALL with (A130) and (A145)

u.m[ηψ](vn) −→ 〈x �→ u, xi �→ vi
n〉η3e′′

Then with (A147) and Lemma 5.2.3

u.m[ηψ](vn) ≈Uj (U ′,ρV,(V
n
)) ∈ �ηη1σ�k′′′+1 (A148)

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

58 M. Sulzmann and S. Wehr

We also have

ρE
(A124),(A118)

−→∗ case U of (Y,(X
q
))→ Xj (Y,V,(E

n
))

(A127)−→ Uj (U ′,ρV,ρ(E
n
))

(A125)

−→∗ Uj (U ′,ρV,(V
n
)) (A149)

So far, we proved everything under the assumptions (A121), (A122), and (A123).
We next consider the two implications of rule EQUIV-EXP.

(a) Assume e′ = v for some value v. Then (A121), (A122), and (A123) hold.
We now need to show that there exists some W with ρE −→∗W and v ≡
W ∈ �ητ�k−k′ . We have k ′ − k ′′ − Σki < k ′′′ + 1 by (A139) Also, we have with
(A123) that

u.m[ηψ](vn) −→k′−k′′−Σki v

Hence, (A148) gives us the existence of some W such that

Uj (U ′,ρV,(V
n
)) −→∗W (A150)

v ≈W ∈ �ηη1σ�k′′′+1−(k′−k′′−Σki)

We get k − k ′ ≤ k ′′′ + 1 − (k ′ − k ′′ − Σki) by

k ′′′ + 1 − (k ′ − k ′′ − Σki)
= k −max(k ′′ + 1, Σki + 1) + 1 − k ′ + k ′′ + Σki

= k −max(k ′′, Σki) − k ′ + k ′′ + Σki

≥ k − (k ′′ + Σki) − k ′ + (k ′′ + Σki)
= k − k ′

Hence, by Lemma A.3.3

v ≈W ∈ �ηη1σ�k−k′

By (A117) η1σ = τ so v ≈W ∈ �ητ�k−k′ and with (A149) and (A150)
ρE −→∗W .

(b) Assume diverge(e′). We then have to show diverge(ρE).
Case distinction whether receiver, argument, or method call diverges.

– Case receiver diverges: Then θηg −→k′ g′ and diverge(g′). With (A119)
and k ′ < k then diverge(ρG), so by the definition of E in (A118) we get
diverge(ρE).

– Case j-th argument diverges: Then θηg −→k′′ u. By (A119) and rule
EQUIV-IFACE, we know that U = (U ′,U

q
) for some U ′, U

q
. Hence,

ρE −→∗ Uj (U ′,ρV,ρ(E
n
)) (A151)

Because the j-th argument diverges, we also have θηei −→ki vi for all i < j
and θηej −→kj e′′ and diverge(e′′). With (A120) we get diverge(ρEj), so
with (A151) also diverge(ρE).

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 59

– Case method call diverges: Then we are in the situation that (A121),
(A122), and (A123) hold. Thus, we get with (A123), (A148), and (A139)

u.m[ηψ](vn) −→k′−k′′−Σki e′

u.m[ηψ](vn) ≈Uj (U ′,ρV,(V
n
)) ∈ �ηη1σ�k′′′+1

k ′ − k ′′ − Σki < k ′′′ + 1

Hence,diverge(Uj (U ′,ρV,(V
n
))) by the implication in the premise of

rule EQUIV-EXP. So by (A149) also diverge(ρE) as required.
End case distinction.

• Case SUB:
SUB

〈Δ, Γ〉 �exp e : σ� E′ Δ �coerce σ <: τ� V

〈Δ, Γ〉 �exp e : τ� V E′
︸����︷︷����︸

=E

From the IH, then θηe ≈ ρE′ ∈ �ησ�k . From Lemma A.3.13, we get θηe ≈
(ρV) ρE′ ∈ �ητ�k with ρE = (ρV) (ρE′) as required.

End case distinction on the last rule in the derivation of 〈Δ, Γ〉 �exp e : τ� E. �

A.3.2.2 Proof of Lemma 5.2.5. We proceed by induction on k. For k = 0, we
first note that e ≈ E ∈ �τ�0 holds for any e, E, τ because the two implications in
the premise of rule EQUIV-EXP hold trivially. Thus, we get D ≈0 Xm,tS for all D =
func (x tS[Φ]) mM {return e} ∈D by rule EQUIV-METHOD-DECL. Hence, D ≈0 μ by rule
EQUIV-DECLS.

Now assume D ≈k μ (IH) for some k and prove D ≈k+1 μ. By rule EQUIV-DECLS, we need
to show D ≈k+1 Xm,tS for all

D = func (x tS[Φ])m[Ψ′](x σ′n) τ, {return e} ∈D (A152)

Thus, we assume the left-hand side of the implication in the premise of rule
EQUIV-METHOD-DECL and then show the right-hand side of the implication. More specifi-
cally, let

Φ = αi σi
p Φ′ = βi σ

′
i

q
Ψ =Φ,Φ′ = αi σi

p βi σ
′
i

q

and assume for arbitrary k ′ < k + 1, φ = σ′′p, φ′ = σ′′′q, W
p
, W ′q, u, U , vn, V

n
the left-

hand side of the implication:

Ψ �→ φ, φ′ : η with η = 〈αi �→ σ′′i
p
βi �→ σ′′′i

q〉 (A153)

φ, φ′ ≈ (W
p
,W ′q) ∈ �Ψ�k′ (A154)

u ≈U ∈ �tS[ηαp]�k′ (A155)

vi ≈ Vi ∈ �ητi�k′ (∀i ∈ [n]) (A156)

From this, we need to prove the following goal:

〈x �→ u, xi �→ vi
n〉

︸���������������������������������︷︷���������������������������������︸

=:θ

ηe ≈ Xm,tS ((W
p
),U,(W ′q),(V

n
)) ∈ �ητ�k′ (A157)

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

60 M. Sulzmann and S. Wehr

Define

ρ= 〈Xαi �→Wi
p
, Xβi �→W ′i

q
, X �→U , Xi �→ Vi

n〉 (A158)

Δ = {αi : σi
p, βi : σ′i

q}
Γ = {x : tS[αp], xi : τi

n}
Then with (A153), (A154), and rule EQUIV-TY-SUBST

η ≈ ρ ∈ �Δ�k′ (A159)

And with (A155), (A156), the definition of θ in (A157), and rule EQUIV-VAL-SUBST

θ ≈ ρ ∈ �ηΓ�k′ (A160)

From the assumption �meth D� Xm,tS = V , we get by inverting rule METHOD

〈Δ, Γ〉 �exp e : τ� E (A161)

V = λ((Xαi

p
),X,(Xβi

q
),(X

n
)).E (A162)

With k ′ < k + 1 we have k ′ ≤ k. With the IH and Lemma A.3.7 then

D ≈k′ μ (A163)

(A163), (A159), (A160), and (A161) are the requirements of Lemma 5.2.4. The lemma
then yields

θηe ≈ ρE ∈ �ητ�k′ (A164)

We also have

Xm,tS ((W
p
),U,(W ′q),(V

n
)) −→ V ((W

p
),U,(W ′q),(V

n
)) −→∗ ρE

where the first reduction follows from assumption μ(Xm,tS) = V and rule TL-METHOD, the
remaining steps by (A162) and (A158). With (A164) and Lemma 5.2.2 we then get (A157)
as required. �

A.3.2.3 Proof of Theorem 5.2.6. We first prove that the assumptions of the theorem
imply e ≈ E ∈ �τ�k for any k. D and μ are the declarations and the substitution whose exis-
tence we assumed globally. Obviously, they meet the requirements of Assumption 5.2.1.

Assume k ∈N. From Lemma 5.2.5, we get D ≈k μ. By the assumption �prog

D func main(){_ = e}� let Xi = Vi in E, by inverting rule PROG, and by the assumption
that e has type τ, we find 〈∅, ∅〉 �exp e : τ� E. Lemma 5.2.4 then yields e ≈ E ∈ �τ�k as
required.

From e ≈ E ∈ �τ�k for any k and the two implications in the premise of rule EQUIV-EXP,
we then get the two claims needed to show. �

A.3.3 Equivalence between different translations

Lemma A.3.17. If v ≡ (V) ∈ �τ�k then none of the Vi is a lambda.

Proof.
Case distinction on the last rule in the derivation of v ≡ (V) ∈ �τ�k .

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 61

• Case rule EQUIV-STRUCT: Then we know that v = τS {v} and τ = τS and for all i exists
some σi with vi ≡ Vi ∈ �σi�k . But then obviously Vi cannot be a lambda.

• Case rule EQUIV-IFACE: Obvious.
End case distinction. �

Lemma A.3.18. If v ≡ (U,(W)) ∈ �τI�k with k > 0, then all Wi are lambdas.

Proof. The derivation of v ≡ (U,(W)) ∈ �τI�k ends with rule EQUIV-IFACE. The premise
of the rule gives us for each Wi

methodLookup(methodName(Ri), σS) ≈Wi ∈ �Ri�k2 (A165)

for some method signature Ri, struct type σS and all k2 < k. As k > 0 we know that
(A165) holds for at least one k2. Further, the derivation of (A165) ends with rule
EQUIV-METHOD-DICT-ENTRY, and this rule requires that Wi is a lambda. �

Lemma A.3.19. If v ≡ V ∈ �tI [τ]�k for all k ∈N, then V = (U,(W
n
)) where n is the

number of methods defined by tI , v = τS {v}, and v ≡U ∈ �τS�k for all k ∈N.

Proof. The derivation of v ≡ V ∈ �tI [τ]�k ends with rule EQUIV-IFACE for any k ∈N. Also
for all k ∈N, the conclusion of this rule requires V = (U,(W

n
)), the premise of this rule

states that interface tI has n methods and further gives us

∃σs.∀k1 < k.v ≡U ∈ �σS�k1 (A166)

Obviously, v ≡U ∈ �σS�k1 ends with rule EQUIV-STRUCT. Because value v must have the
form v = τS {v}, we then know that the existentially quantified σS is the same as τS . Because
(A166) holds for any k ∈N, we then get v ≡U ∈ �τS�k for all k ∈N as required. �

Lemma A.3.20. If v ≡ V ∈ �τ�k and v ≡ V ′ ∈ �τ�k for any k ∈N, then erase(V) =
erase(V ′).

Proof. Define a measure function

M(v, τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

(|v |, 0) if τ is a struct type

(|v |, 1) if τ is an interface type

(|v |, 2) if τ is a type variable

and proceed by induction on M(v, τ). We first note that the derivations of v ≡ V ∈ �τ�k
all end with the same rule, independent from k ∈N.
Case distinction on the last rule in the derivations of v ≡ V ∈ �τ�k .

• Case rule EQUIV-STRUCT: Then τ is a struct type, so the derivations of v ≡ V ′ ∈ �τ�k
also all end with EQUIV-STRUCT. Thus, we have

v = tS[τ]{vn}
V = (V

n
)

V ′ = (V ′n)

type tS[α τI] struct {f σn} ∈D

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

62 M. Sulzmann and S. Wehr

η = 〈α �→ τ〉
(∀i ∈ [n]) vi ≡ Vi ∈ �ησi�k (A167)

(∀i ∈ [n]) vi ≡ V ′i ∈ �ησi�k (A168)

As this holds for any k ∈N and we have M(vi, ησi) <M(v, τ), we may apply
the IH to (A167) and (A168) and get erase(Vi) = erase(V ′i) for all i ∈ [n]. Then
erase(V) = erase(V ′) follows by definition of erase.

• Case rule EQUIV-IFACE: Then τ is interface type. With Lemma A.3.19 then for some
σS and n

V = (U,(W
n
))

V ′ = (U ′,(W ′n))
(∀k ∈N).v ≡U ∈ �σS�k (A169)

(∀k ∈N).v ≡U ′ ∈ �σS�k (A170)

Noting that M(v, σS) <M(v, τ), we apply the IH to (A169) and (A170) and get
erase(U) = erase(U ′). With Lemma A.3.18 applied to assumptions (∀k ∈N).v ≡
V ∈ �τ�k and (∀k ∈N).v ≡ V ′ ∈ �τ�k , we know that all Wi, W ′i are lambdas. Thus,
by definition of erase

erase(V) = (erase(U),(Kλ
n
)) = erase(V ′)

End case distinction. �

Lemma A.3.21. If v ≡ V ∈ �τ�k and v ≡ V ′ ∈ �τ′�k for any k ∈N, then erase(τ, V) =
erase(τ′, V ′).

Proof. We label the assumptions:

(∀k ∈N).v ≡ V ∈ �τ�k (A171)

(∀k ∈N).v ≡ V ′ ∈ �τ′�k (A172)

We then perform a case distinction on the form of τ and τ′. Note that neither of them can
be a type variable; otherwise, (A171) and (A172) would not be derivable.
Case distinction on the forms of τ and τ′.

• Case τ and τ′ are both struct types: Then all derivations of (A171) and
(A172) end with rule EQUIV-STRUCT. Hence, τ = τ′. Thus, erase(V) = erase(V ′) by
Lemma A.3.20. But by definition of erase, we also have erase(τ, V) = erase(V) and
erase(τ′, V ′) = erase(V).

• Case τ is a struct type and τ′ is an interface type: Then all derivations of (A171) end
with rule EQUIV-STRUCT, so we know that v = τ{v}. Then we get with Lemma A.3.19
and (A172)

V ′ = (U,W)

(∀k ∈N).v ≡U ∈ �τ�k
With (A171) and Lemma A.3.20 and the definition of erase then

erase(τ, erase(V)) = erase(V) = erase(U) = erase(τ′, V ′)

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

A type-directed, dictionary-passing translation of method overloading 63

• Case τ is an interface type and τ′ is a struct type: Analogously to the preceding case.
• Case τ and τ′ are both interface types: Then with Lemma A.3.19 and (A171) and

(A172)

v = σS {v}
V = (U,W)

V ′ = (U ′,W ′)
(∀k ∈N).v ≡U ∈ �σS�k
(∀k ∈N).v ≡U ′ ∈ �σS�k

Now Lemma A.3.20 and the definition of erase

erase(τ, V) = erase(U) = erase(U ′) = erase(τ′, V ′)

as required.
End case distinction. �

A.3.3.1 Proof of Theorem 5.2.7. From �prog P� let Xi = Vi in E and �prog P�
let X ′i = V ′i in E′ and e having type τ and τ′, respectively, we get

〈∅, ∅〉 �exp e : τ� E

〈∅, ∅〉 �exp e : τ′� E′

With Corollary 5.1.2, we get that either e reduces to some value v or diverges.
We now start with the first claim. Assume E −→∗μ V for some V . Then e must reduce to

some value v because of Theorem 5.2.6. Again with Theorem 5.2.6 and with Lemma A.1.2:

v ≡ V ∈ �τ�k (∀k ∈N) (A173)

E −→∗μ′ V ′ for some V ′

v ≡ V ′ ∈ �τ′�k (∀k ∈N) (A174)

Applying Lemma A.3.21 yields erase(τ, V) = erase(τ′, V ′) as required.
For the second claim, we assume that E diverges. With Theorem 5.2.6, we know that e

must diverge as well. Again with Theorem 5.2.6 we get that E′ also diverges. �

https://doi.org/10.1017/S0956796823000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000047

	A type-directed, dictionary-passing translation of method overloading and structural subtyping in Featherweight Generic Go
	Introduction
	Overview
	Starting without generics
	Type-directed translation
	Adding generics
	Bounded type parameters of methods
	Bounded type parameters of structs and interfaces
	Outlook

	Featherweight generic Go-
	Syntax
	Dynamic semantics

	Type-directed translation
	Target language
	Translation
	Conventions and notations
	Auxiliary judgments
	Translation of structural subtyping
	Translation of expressions
	Well-formedness
	Translation of methods and programs

	Example

	Formal properties
	Preservation of static semantics
	Preservation of dynamic semantics
	The logical relation
	Equivalence between source and translation
	Equivalence between different translations

	Getting the step index right

	Implementation
	Related work
	Generics in Go
	Type classes in Haskell
	Logical relations
	Prior work
	Summary of translations

	Conclusion and future work
	Proofs
	Deterministic evaluation in FGG- and TL
	Preservation of static semantics
	Preservation of dynamic semantics
	The logical relation
	Equivalence between source and translation
	Equivalence between different translations

