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Abstract
Maintaining stability while walking on arbitrary surfaces or dealing with external perturbations is of great interest in humanoid
robotics research. Increasing the system’s autonomous robustness to a variety of postural threats during locomotion is the key
despite the need to evaluate noisy sensor signals. The equations of motion are the foundation of all published approaches. In
contrast, we propose a more adequate evaluation of the equations of motion with respect to an arbitrary moving reference
point in a non-inertial reference frame. Conceptual advantages are, e.g., getting independent of global position and velocity
vectors estimated by sensor fusions or calculating the imaginary zero-moment point walking on different inclined ground
surfaces. Further, we improve the calculation results by reducing noise-amplifyingmethods in our algorithm and using specific
characteristics of physical robots. We use simulation results to compare our algorithm with established approaches and test
it with experimental robot data.

Keywords Multi-body dynamics · Equation of motion · Moving reference point · Imaginary zero-moment point · Humanoid
robot

1 Introduction

Humanoid robots have a significant advantage over all other
types of robots. Since they are designed to resemble the
human body, they are suitable for interacting in a human-
made habitat. Consequently, the research field of humanoid
robotics is currently gaining importance. A crucial aspect of
increasing the autonomy of humanoid robots is to improve
dynamic stability during locomotion in challenging settings,
e.g., the robot’s ability to effectively tolerate external pertur-
bations during dynamic, omnidirectional locomotion. On the
other hand, locomotion in arbitrary environments is of great
relevance. In this context, the main focus is to enhance the
robot’s ability to cope with uneven and unknown ground sur-
faces of theman-made habitat.Given that stability-enhancing
control algorithms are implemented, the robot’s autonomy
will increase. This opens up new areas of application. Some
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examples are household chores, care of the elderly, and use
as a service worker.

The prerequisite of control algorithms for maintaining
stability is the calculation of the robot’s dynamics. Euler’s
theorem is often used in robotics as a starting point for
dynamics calculation, e.g. Henze et al. (2016), Buschmann
(2011), Hirukawa et al. (2006) and Kajita et al. (2014) use
it. This theorem states that the absolute time derivative of
the total angular momentum with respect to a fixed reference
point 0 equals the total resultant moment about the same

reference point (L̇
(0) = M(0)).

The approaches from Henze et al. (2016) and Buschmann
(2011) require methods to determine at least the absolute
position vector of one body segment. If this vector is not
explicitly measurable by sensors, it is estimated by sensor
fusion. E.g., Henze et al. (2016) use the kinematics, absolute
position vector and the orientation provided by IMUs of all
end effectors in contact. Buschmann (2011) uses the odome-
try. In general, sensor fusions or odometry can be sensitive to
errors, because of signal noise or undefined contact impacts
the accuracy. Further, the proposed sensor fusion fromHenze
et al. (2016) requires the assumption of rigid contact of at
least one body segment. Likewise, a stand-alone calculation
of absolute position vectors from the kinematic chains of the
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robot is not feasible. Kajita et al. (2014) calculate the angular
momentum L(0) and propose to use a numerical differentia-
tion to determine its timederivative. To calculateL(0) both the
absolute position and linear velocity vector are required. Due
to the mentioned aspects, we regard the requirement of the
absolute position or linear velocity vector as the main prob-
lem of these published approaches. This especially applies
to the need to handle undefined contacts and noisy sensor
signals on real robots.

Also, a human being has no sense organs to directly per-
ceive its global position or absolute velocity with respect to a
fixed spatial point. Further, it does not know the position vec-
tor of its center ofmass (COM). In conclusion, human control
algorithms for stabilizing locomotion can operate without
this information.

Considering all mentioned aspects, we propose an
approach that does not require any information about the
global position, velocity, or COM vector of the robot. We
achieve this by evaluating the Newton–Euler equations of
motion (EOM) with respect to an arbitrary moving reference
point in a non-inertial reference frame (NIF). The dynamics
calculation is then independent of absolute position vectors
of the robot. Similar approaches using a moving reference
point are common in multi-body dynamics, as seen e.g. in
Wittenburg (1977).

Furthermore, one goal is to provide an approach that is
usable on real robots without filtering the sensor signal.
Therefore, we propose to measure the angular acceleration
vector via angular velocity and linear acceleration measure-
ments to reduce the number of noise-amplifying numerical
differentiation. So this work contributes to the practical use
of evaluating the EOMs on physical robots with noisy sensor
signals.

For this work, we choose the imaginary zero-moment
point (IZMP) to evaluate the results of the EOM calcula-
tion. We find the IZMP gives additional valuable insight
into the stability evaluation of gait behaviors compared to
the sole evaluation of the position of the center of pressure
(COP) measured with force/torque sensors. Especially for
gait behaviors with possible external perturbations, calculat-
ing the distance of the IZMP from the support region of the
robot’s feet or as well from the COP could give additional
quantitative information as to the impact of the perturbation
or control strategies.

In the following Sect. 2, we review the state of the art of
referring control algorithms and stability criteria and point
out where we see further contributions achieved through our
approach. In Sect. 3, we explain the mathematical founda-
tions. In Sect. 4, we discuss the methods used for providing
the data and sensor signals required for the core algorithm
(seen in Sect. 3). On the one hand, we describe a way to
measure the total kinematic state, especially the angular
acceleration of the root segment. On the other hand, we show

the calculation of the remaining kinematic quantities for the
following kinematic chain using the relative derivative and
the kinematic state of all joints.

Moreover, we use simulation and experimental results of
the humanoid robot Sweaty to show our approach’s capa-
bilities applied on the physical robots. Section5 illustrates
the outcomes. In the article’s final parts, we discuss the dif-
ferences and impacts on physical robots of our approach
compared to Henze et al. (2016), Buschmann (2011) and
Kajita et al. (2014) and give an outlook to future work.

2 Previous work

Several approaches to describe the stability of humanoid
robots during locomotion have been published. Mostly, their
aim was to determine an indicator assessing stability in
dynamic situations quantitatively. One of the most discussed
and applied stability criteria uses the notion of the zero-
moment point (ZMP). If the ZMP lies within the support
region, the current dynamic equilibrium of the robot can be
assumed stable in the sense that the robot cannot tip over
an edge of the support region. The ZMP is the spatial point
in the ground surface plane where the components of the
moment vector resulting from the reaction force parallel to
this plane are zero. Vukobratovic et al. (1970) and Vuko-
bratović and Stepanenko (1972) introduced this concept to
the field of robotics. Their approach can be regarded as a
generalization of the classical static tilting stability concept
for a rigid body, e.g. Mehrtens (1887), where tipping over
edges of the support region due to external forces is prevented
when the resultant of the externally applied forces and the
body’s weight applied to the effective point of action inter-
sects the support region. Algorithms for calculating the ZMP
are shown by, e.g., Kajita et al. (2014). The work of Sardain
and Bessonnet (2004) shows that the ZMP coincides with the
COP under the assumption that the soles are in flat contact
with one single surface and the robot is free of external per-
turbation forces and moments. If the theoretically calculated
ZMP differs from the COP then this is obviously caused by
perturbation forces or moments, since such perturbations are
not considered in the kinematical ZMP calculation. Vukobra-
tovic et al. (2001) hence proposed the name IZMP for this
configuration of the ZMP, to which we adhere in our work.

Several other concepts exist to quantify stability using
a point in space. For example, there is the foot-rotation-
indicator by Goswami (1999a, 1999b), the feasible-solution-
of-wrench by Saida et al. (2003), the zero-rate-of-change
angular momentum by Goswami and Kallem (2004) or the
capture point (CP) by Pratt et al. (2006). Furthermore, meth-
ods were developed to modulate contact state and control
the ground reaction forces. Hirukawa et al. (2006), Anitescu
and Potra (1997), Pang and Trinkle (2000) propose numer-
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ical methods to search for feasible solutions and, based on
their characteristics, predictions are made about the stability
proposed.

All the mentioned proposals use the EOMs as a founda-
tion. The level of detail of the mechanical model is essential
for the accuracy. Different approaches have been established
over the last decades. On the one hand, there are concep-
tual models such as the linear inverted pendulum (LIP), e.g.,
shown in Kajita et al. (2010). The use case is to implement
simplified control algorithms in combination with stability
criteria. For example, Englsberger et al. (2011) present a
bipedal walking control approach based on the LIP and the
CP dynamics. Mesesan et al. (2021) introduced a trajectory
adaptation for push and stumble recovery based on the CP.
Kamioka et al. (2018) are optimizing the ZMP and footsteps
based on theCP for aLIP.Also,Wang et al. (2018) and InJoon
et al. (2020) use the concepts of LIP and ZMP to stabilize the
gait of humanoid robots. On the other hand, modeling robots
as rigid multi-bodymodels has become established, see, e.g.,
in Vijaykumar Shah et al. (2013). Featherstone (2008) shows
the floating-base model as a kind of rigid multi-body model
and it is defined most generally.

A further distinctive criterion is the calculation method of
the time derivatives of the EOMs. Either numerical (Kajita
et al., 2014) or analytical derivatives of the equations are
proposed. For the numerical derivatives of the linear and
angular momentum, the knowledge of the linear velocity
of at least one segment is required. Wang et al. (2017) or
Kimura et al. (2018) show approaches to estimate the linear
velocity vector. As mentioned before, mostly the reference
point for the balance of angular momentum is referenced to
a fixed point in the inertial frame (WF) or the immaterial
COM. Kajita et al. (2014) propose to calculate the rate of
change of angular momentum by applying a numerical time
derivative. Hirukawa et al. (2006) use the rate of change of
angular momentum without specifying an explicit equation.
Only the equation of angular momentum is stated explicitly.
Further, Kajita et al. (2003) also propose a method to control
the total linear and angular momentum.

The proposed analytical derivative methods require also
the absolute position vector of the root segment from a spa-
tially fixed reference point as an input. Henze et al. (2016)
use a dynamics calculation based on a fixed reference point in
a WF. They estimate the absolute position vector of the root
segment by sensor fusion. This estimation requires infor-
mation about the kinematics, absolute position vectors and
orientations of all end effectors in contact. In their approach,
they calculate the absolute position vector of the root seg-
ment from each end effector in rigid contact. The redundant
results are combined in a sensor fusion to estimate global
position vectors.

Buschmann (2011) describes a method to introduce a
new reference frame for every gait cycle. Each swing leg

touchdown introduces a new reference frame. It is placed
below the stance foot. This avoids numerical inaccuracies
through large distances from the initial reference point.
Finally, Buschmann (2011) also uses a dynamics calcula-
tion based on a fixed reference point in the current reference
frame.

In contrast, we propose an algorithm to evaluate the EOMs
using Newton–Euler equations for a rigid multi-body system
related to an arbitrary moving reference point in a NIF. To
maintain generality, we use the floating base model. We use
the rigid body theory typically known from the field of multi-
body dynamics to derive the EOMs. We further use the so-
called relative derivative to evaluate the EOMs referenced in
a NIF as well as to calculate all kinematic quantities for the
multi-body segments.

In combination, this will allow us to carry the reference
point and the NIF along with arbitrary locomotion of the
robot. E.g., the reference point can be an arbitrary spatial
point or fixed to anymaterial or immaterial point of the robot.
Thus, for different types of control algorithms, an adapted
reference point can be used. Also, we will show that our
algorithm requires no absolute position and linear velocity
vector of the root segment. Thus, our approach omits themea-
surement or estimation by sensor fusion to determine those.

To evaluate the effects when applying these approaches
on physical robots, we will simulate the influence of realistic
sensor noise behavior. We will also show the impact of feasi-
ble sensor and actuator controller frequencies. In addition,we
will demonstrate a way to measure the angular acceleration
of the root segment using gyroscope and linear acceleration
data. We will compare this method against the numerical
calculation from the angular velocity signal.

Furthermore, using a moving reference point as the origin
of a moving evaluation frame allows following the contour
of the ground’s surface. IMUs located in the feet provide
information about the inclination of the surface during the
stance phase. A transition for changing surface inclinations
is no longer necessary for calculating, e.g., the IZMP.

Besides combining the mentioned approaches with our
work, we intend to fully outline the computation procedure
of the dynamics and the IZMP of a robot omitting noise-
amplifying numerical differentiation for critical terms in the
procedure and without estimations of global vectors. For an
easy application, the backgrounds and the algorithm we are
going to present are fully adapted to use the Kinematics and
Dynamics Library (KDL) and to integrate into the Robot
Operating System 2 (ROS2).

3 Backgrounds

At first, we introduce in Fig. 1 the frames and vectors. NIF is
the frame, in which the EOMs are evaluated. Its origin rep-
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Fig. 1 Definition of the vectors and frames used to describe the kine-
matic description of a rigid multi-body system

resents the arbitrary moving reference point for the angular
momentum balance. Each rigid-body part is given a body-
fixed frame (BFF). The origin of a BFF is located at the
center of the joint axis considering themechanical joint struc-
ture. The equivalent transformations used in the following are
based on the rigid body theory used in multi-body dynamics.
The vector from the origin of the NIF to the corresponding
BFF of an arbitrary segment i is called rHi . The vector from
an arbitrarily positioned inertial frame to the origin of a BFF
is denoted as rOi . The vector from the origin of theBFF to any
mass element dm is declared as rk . The vector si points from
the origin of the BFF to the segment COM and x points from
the COM to an arbitrary mass element dm. The definitions
of these vectors are given by

r = rOi + rk (1)

rOi = rNIF + rHi (2)

rCOMi = rOi + si . (3)

Here, rNIF is the position vector pointing from the origin
of a arbitrary WF to the origin of NIF. The absolute time
derivative of an arbitrary vector p = ∑

β piβeiβ is calculated
according to the basic equation of kinematics as follows

dp
dt

=
∑

β=x,y,z

dpiβ
dt

eiβ +
∑

β=x,y,z

deiβ
dt

piβ

= idp
dt

+ ωi0 × p.

(4)

Here, piβ is the coordinate in direction β of p and eiβ is the
unit vector of direction β. The suffix i indicates an arbitrary
frame in which the vector is referenced and ωi0 indicates the
frame’s angular velocity. The term idp

dt represents the so called
relative derivative. This termcanbe interpreted as the vector’s
rate of change that one would observe if one were fixed to

the moving reference frame. The term ωi0 × p describes the
rate of change of the vector due to the rotation of frame i .

For the implemented EOMs, Newton’s second law and
angular momentum theorem of Euler, are taken as starting
point. Hence

Ṗ = F (5)

L̇
(0) = M(0). (6)

apply. Here, P = mvCOM is the linear and L(0) the angular
momentum, which we discuss in more detail in the follow-
ing section. F is the total external force and M(0) the total
moment with respect to the origin ofWF applied on the body.
Due to the linearity of the mathematical operators used, the
balance of momentum and angular momentum for the whole
robot can be calculated as the sum of the single rigid-body
segments.

In the following, the velocity vX is the first and the accel-
eration aX is the second total time derivative of rX. In this
context, X represents all the following different subscripts
used, e.g. Oi or COMi . Substituting the second total time
derivative of Eq.3 into Eq.5 and by taking into account the
law of the COM, results in

Fi = mi
(
aOi + ω̇i0 × si + ωi0 × (ωi0 × si )

)
. (7)

For Li
(0), we start from the following equation

Li
(0) = mi

(
rOi × (

vOi + ωi0 × si
)

+si × vOi

) + �(Oi )ωi0,
(8)

proposed by Wittenburg (1977), who therefrom derived a
formulation with respect to an arbitrary moving reference
point.However, our approach differs so far thatwewill derive
a formulation that assumes an arbitrary moving reference
point for themomentswhile using another arbitrary reference
point, e.g., pivot points for the inertia tensors. The latter is
a common practice in the generic description of input data,
e.g., in C++ libraries.

Form now, i indicates the reference of the quantities to the
i th body of a multi-body system. In Eq.8,�(Oi ) is the inertia
tensor of the i th body with respect to the reference point Oi .
We substitute Eq.2 and the total time derivative of Eq.3 into
Eq.8. Further, we take the total time derivative of Eq.8. This
gives

L̇i
(0) = mi

((
rNIF + rHi

) × aCOMi

+si × aOi

)

+ �(Oi )ω̇i0 + ωi0 × �(Oi )ωi0

= M(0)
i .

(9)
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We see all absolute velocity terms cancel out.
Next, we subtract the term rNIF × miaCOMi from Eq.9.

Further, for the moment on body i and by using Eq.5

M(P)
i = M(0)

i − rNIF × Fi

= M(0)
i − rNIF × miaCOMi

(10)

applies in general. Here, M(P)
i describes the total moment

applied on body i with respect to the arbitrary moving refer-
ence point P. We get finally

M(P)
i = mi (rHi × aOi + rHi × (ω̇i0 × si )

+ rHi × (ωi0 × (ωi0 × si )) + si × aOi )

+ �(Oi )ω̇i0 + ωi0 × �(Oi )ωi0.

(11)

Equation11 describes the change in angular momentum
for an arbitrary moving reference point. From Eq.11, we
see that all absolute position and velocity vectors cancel out.
The Eqs. 7 and 11 describe the Newton–Euler EOMs for an
arbitrary moving reference point in a NIF.

4 Methods for a robust and efficient
evaluation of the inverse dynamics

With our approach, we intend to provide an effective cal-
culation of the inverse dynamics. We use this to calculate
the IZMP exemplarily. We believe the IZMP provides an
additional benefit in evaluating gait situations under exter-
nal perturbations compared to a COP measured using 6-axis
force/torque sensors. For example, the distance of the IZMP
from the tipping edge or themeasured COP provides ametric
for the needed response to stabilize the robot in the presence
of external perturbations. We set the goal that our approach
is efficient and works stand-alone with noisy and unfiltered
inertia sensor signals. Other inaccuracies or disturbances in
the evaluation of the EOMs are, e.g., measurement errors of
encoder inadequacies in the mechanical design of the robot,
the underlying rigid body hypothesis, or modeling errors of
the inertia data. However, these types of disturbance are not
part of this work. By sensor fusion with 6-axis force/torque
sensors and combined with an adapted Kalman filter, our
contribution is extendable to become less sensitive to the
mentioned inaccuracies in the model assumption.

4.1 EOMs for amulti-body system

To describe the dynamics of a multi-body system, we sum
up the Eqs. 7 and 11 for all n rigid bodies. In this sum, the
reaction forces and moments between two body segments i
and i +1 cancel out, due to Newton’s third law. The external

forces and moments, e.g., caused by the gravity force or the
ground reaction force remain. This results in

Fext =
n∑

i=1

(mi (aOi + ω̇i0 × si

+ ωi0 × (ωi0 × si ))) (12)

M(P)
ext =

n∑

i=1

(

mi (rHi × aOi + rHi × (ω̇i0 × si )

+ rHi × (ωi0 × (ωi0 × si )) + si × aOi )

+ �
(Oi )
i ω̇i0 + ωi0 × �

(Oi )
i ωi0

)

. (13)

The algorithm is recursively designed and thus generic. The
mechanical structure and the physical properties of each rigid
body segment of the robot canbeprovidedvia aUnifiedRobot
Description Format file.

For the implementation in the code, we switch from vec-
tor to coordinate matrix notation. E.g., the representation of
Eq.13 is given by

NIFM(P)
ext =

n∑

i=1

(

mi RNIF i(i rHi × iaOi

+ i rHi ×
(
i ω̇i0 × i si

)

+ i rHi × (iωi0 × (iωi0 × i si ))

+ i si × iaOi ) + i�i
(O)i ω̇i0

+ iωi0 × i�i
(O) iωi0

)

.

(14)

Here, RNIF i is a 3 × 3 rotation matrix that transforms the
coordinates with respect to the frame i to the coordinates
with respect to the frame NIF. If a symbol is superscripted
on the left side by i , this means that the referring vector or
tensor is expressed as its 3 × 1 (vector) or 3 × 3 (tensor)
coordinate matrix with respect to frame i . This notation is
adopted from Woernle (2016). Each summand of the right-
hand side of Eq.14 is a 3×1 coordinate matrix. The number
of n rigid bodies corresponds to the number of summands.

4.2 Analytically derived EOMs

We link the arbitrarymoving reference point and the origin of
the NIF to a material point of the robot. This point coincides
with the origin of the root segment, called pelvis. As seen
in Fig. 2, the x-axis of the NIF is defined as pointing always
parallel to the sagittal plane of the robot and the z-axis points
parallel to the normal vector of the ground surface. Also, it
is feasible to place the NIF on the ground surface. E.g., the
origin could coincide with the moving immaterial point of
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Fig. 2 Visualization of the vectors and frames WF and NIF in the
mentioned application related to the robot Sweaty. The vector rpelvis
describes the absolute position of the root segment with respect to the
origin of the WF. rfootR and rfootL indicate the relative position vectors
from the origin of the NIF to origin of each foot

the vertical projection of the origin of the BFF from the root
segment onto the ground surface.

On the other hand, the approaches based on L̇
(0) = M(0)

evaluate the EOMs with respect to a fixed spatial point. Fig-
ure2 displays the difference between the mentioned (Henze
et al., 2016; Buschmann, 2011; Kajita et al., 2014) and our
approach. These approaches use an absolute position vec-
tor pointing from the fixed reference point to at least one
material point of the robot, e.g., rpelvis. With kinematics, it
is then feasible to calculate the absolute position vectors of
all segments with respect to the fixed reference point. Since
our chosen reference point coincides with onematerial point,
no absolute position vector is needed. Thus we can use rela-
tive vectors, e.g., rfootR and rfootL pointing from the reference
point to the origin of each foot.

4.3 Relative derivative of angular velocity

We use the relative derivative to link the joint kinematics
with the total angular velocity ωi0 and angular acceleration
ω̇i0. Using the law of time derivative (Eq.4), the following
relationship generally applies

ω̇i0 = idωi0

dt
+ ωi0 × ωi0 = idωi0

dt
. (15)

Due to the addition formula of angular velocities, for Eq. 15
follows

idωi0

dt
= idω(i−1)0

dt
+ idωi(i−1)

dt

:= idω(i−1)0

dt
+ q̈in.

(16)

Here, q̈in is the joint acceleration vector. The vector n
describes the unit vector of the joint axis. In general, ω̇(i−1)0

can be calculated by

ω̇(i−1)0 = idω(i−1)0

dt
+ ωi0 × ω(i−1)0, (17)

using Eq.4. Equation17 can be rearranged accordingly

idω(i−1)0

dt
= ω̇(i−1)0 − ωi0 × ω(i−1)0

= ω̇(i−1)0

− (ω(i−1)0 + ωi(i−1)) × ω(i−1)0

= ω̇(i−1)0 − q̇in × ω(i−1)0.

(18)

Here, q̇i is the joint velocity of body i compared to i −1. For
ω̇i0 finally follows

ω̇i0 = ω̇(i−1)0 + ω(i−1)0 × q̇in + q̈in. (19)

The matrix i ω̇i0 is given by,

i ω̇i0 = i ω̇(i−1)0 + iω(i−1)0 × q̇ii n + q̈ii n. (20)

4.4 IZMP calculation

To calculate the IZMP, the EOMswill be evaluatedwithmea-
sured sensor and actuator information at discrete points in
time. Due to the time derivatives being available as measured
values, we can interpret the coupled nonlinear differential
equations as algebraic equations. We formulate all equations
presented in Sect. 3 as continuous-time equations. They can
be evaluated without adjustments at any discrete instant in
time tk .

For the calculation of the IZMP,we use Eq.13.We assume
the ground reaction force Fgr and the gravity force mg act
externally on the robot. Then the following applies to the sum
of all applied external moments M(P)

ext ,

M(P)
ext = M(IZMP) + rIZMP × Fgr + rCOM × mg (21)

Here,M(IZMP) is the resultant vector of the moment at point
rIZMP. Per the definition of the IZMP, the components of
M(IZMP) are zero for the horizontal plane. When we substi-
tute Eq.5 into 21, the ground reaction force can be replaced.
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Further, substituting this into Eq.13, the IZMP calculation
equation is given by

M(IZMP) + rIZMP × (Ṗ − mg) + rCOM × mg

=
n∑

i=1

(

mi (rHi × aOi + rHi × (ω̇i0 × si )

+ rHi × (ωi0 × (ωi0 × si )) + si × aOi )

+ �
(Oi )
i ω̇i0 + ωi0 × �

(Oi )
i ωi0

)

.

(22)

This system of the coordinate equations fromEq. 22 is under-
determined due to the skew-symmetric property of the cross
product. To obtain a single unique solution of the equation
system, we calculate the IZMP coordinates upon the assump-
tion that the IZMP is located in the ground surface plane.
Therefore, the z-coordinate of the IZMP is set equal to that
of the reference point in relation to the ground surface plane.

4.4.1 Required inputs

By analyzing Eq.13 and regarding the underlying floating-
basemodel, the required input signals can be identified. From
Eq.13 it follows the evaluation of the dynamics requires the
position, angular velocity, linear and angular acceleration
vector. For all segments of the multi-body system except the
root segment, these vectors can be calculated through sensor
measurements of the actuators and the total angular velocities
ω(i−1)0 and ω̇(i−1)0 of the previous segment known from the
recursive loop. As shown, these vectors are functions of the
joint angle qi , joint velocity q̇i , and joint acceleration q̈i . The
commonly used actuator encoder in robotics delivers signals
forqi .Wecalculate q̇i and q̈i with numerical derivatives using
the actuator controller. Therefore, we can use the increment
�t corresponding to the frequency of the actuator controller.
Common frequencies of actuator controllers used in robotics
are in the range of kilohertz. Therefore, we name this pro-
cedure actuator coordinate differentiation (ACD). Due to the
option of choosing an arbitrary moving reference point in
a non-inertial frame and the analytical way of deriving the
EOMs, we name the proposed method MR-AD.

Considering the root segment, these vectors must be pro-
vided from sensor data or estimations. Since our chosen
reference point coincides with a material point of the root
segment, we can use a relative body-fixed position vector.
The angular velocity is measured by a gyroscope and the
linear acceleration vector by an accelerometer.

In perspective of the authors, direct angular accelera-
tion measurements are not commonly used in robotics. One
approach is to calculate the angular acceleration with a
numerical derivative ofω10. In general, numerical derivatives
are noise-amplifying. So the accuracy depends on the noise

Fig. 3 Location of the IMU and the accelerometers on a rigid body to
calculate the angular acceleration. r0 describes the position vector of
the IMU. ri are feasible relative position vectors of the accelerometers
with respect to the IMU. ri are linearly independent to each other

behavior of the angular velocity signal and on the increment
�t used.

For our approach, we propose an algebraic method to cal-
culate the angular acceleration vector, similar to the proposed
methods, e.g., from Padgaonkar et al. (1975). Therefore, we
place three additional accelerometers on the root segment and
use the rigid body assumption. Figure3 shows the schematic
setup. With this setup, we measure the linear acceleration
vector of specific spatial points and the angular velocity vec-
tor of the rigid body.

In general, the locations of the sensors on the rigid body
must satisfy the condition that the connection vectors from
the IMU to the accelerometers are linearly independent. This
prevents the sensors from lying in a spatial plane. If the sen-
sors are placed with orthogonal connection vectors to each
other, then uniaxial accelerometers can be used.

For the acceleration of an arbitrary fixed point on a rigid
body applies in general,

ai = a0 + ω̇ × ri + ω × (ω × ri ). (23)

Eq.23 can be rearranged as follows,

ω̇ × ri = ai − a0 − ω × (ω × ri ). (24)

To separate the term ω̇, the cyclic permutation of the vector
triple product is used. For this purpose, the scalar product of
Eq.24 and the connection vector r j is formed, as follows

(ω̇ × ri ) · r j = (ai − a0 − ω × (ω × ri )) · r j . (25)

Applying the cyclic permutation Eq.25 gives

(ri × r j ) · ω̇ = (ai − a0 − ω × (ω × ri )) · r j . (26)

Eq.26 leads to three scalar equations. Each equation contains
one coefficient from the angular acceleration vector ω̇. For
i = 2, j = 3; i = 3, j = 1 and i = 1, j = 2 the following
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applies,

ω̇x = ((a2 − a0 − ω × (ω × r2)) · r3) 1

r2r3
(27)

= a2z
r2

− a0z
r2

− ωyωz

ω̇y = ((a3 − a0 − ω × (ω × r3)) · r1) 1

r3r1
(28)

= a3x
r3

− a0x
r3

− ωzωx

ω̇z = ((a1 − a0 − ω × (ω × r1)) · r2) 1

r1r2
(29)

= a1y
r1

− a0y
r1

− ωxωy .

4.4.2 Momentum based dynamics calculation

To put the generated results in perspective, the momentum-
based differentiation method (IR-MD) for calculating the
linear and angular momentum balance proposed by Kajita et
al. is also implemented. The implementation strictly follows
the procedure given inKajita et al. (2014). Due to the numeri-
cal derivative calculation, only the equations for momentum
and angular momentum are used. To determine the rate of
change of these quantities in time, a numerical time derivative
based on the differential quotient is used. Since the calculated
momentum and angular momentum vectors are subtracted
from each other in two different instants in time, they must
be referenced in the time-constant WF. The purpose of IR-
MD is to reduce the complexity of the required equations.
Also, any dependencies on the acceleration states of the seg-
ments and actuators are omitted. Kajita et al. use the floating
base model for the mentioned algorithm. Consequently, the
MD method requires qi and q̇i and for the root segment the
absolute position, the absolute linear and the angular veloc-
ity vector must also be specified. The increment �t of the
numerical differentiation is linked to the frequency of the
field bus in physical robot systems.

4.5 Physical robot Sweaty and simulationmodel

Sweaty, shown in Fig. 4 (left), is 1.65m tall and weighs 27.6
kg. The humanoid robot has 39 degrees of freedom (DOF).
Spindlemotors actuate theDOFs of the lower body and torso.

Rod-and-lever systems translate the linear motion of the
spindle nut into rotational motion. The mechanical structure
of the rod-and-lever system leads to a variable gear ratio,
which results in variable torque and angular velocity char-
acteristics depending on the joint angle. This design also
minimizes the joint backlash due to the high gear ratio of
the spindles. The Xsens MTi-20 VRU IMU is mounted on
the hip of Sweaty. Two CAN-BUS lines provide communi-
cation between actuator controllers and the control unit. The

Fig. 4 The real humanoid robot Sweaty (left) and the simulation model
(right), which was designed to interact autonomously with the human-
made habitat

CAN-BUS is clocked with 125Hz. Sweaty was designed to
interact autonomously with the human-made habitat. Each
sensor usedhas an equivalent to the human senses.Sweaty has
no sensors likeGPS or linear velocitymeasurement installed.
The global position and linear velocity must be estimated.

Figure4 (right) shows the simulation model of Sweaty.
This model has 31 DOF. The DOFs of both hands are not
implemented.Webots 2021b from the company Cyberbotics
Ltd. is used as the simulation tool. In the simulation, however,
all DOFs are simulated as rotational motors. This modifi-
cation is made due to the closed kinematic chains of the
rod-and-lever systems leading to a decrease in simulation
performance.

Sweaty’s software architecture is based on ROS2, where
information is exchanged in a network according to the pub-
lisher and subscriber principle. Figure5 shows the ROS2
nodes and their structural connections used to generate the
results for this work.

The interface between ROS2 and the simulator is the node
Webots-Controller-Client. Via this interface, the nodeMotion
sends the desired motion pattern to the simulator. In the
simulator, these data are processed and the physics engine
simulates the dynamics for a fixed time step. The simula-
tion results for joint angles, sensor data, and the current time
are made available by the simulator to the ROS2 network
via the node Webots-Controller-Client. Webots 2021b does
not provide information about the angular velocity q̇i of the
actuators. Therefore, the required input signals, e.g., angular
velocities q̇i or the angular accelerations q̈i of the actuators
are calculated through a differential quotient with the simu-
lation time step �t . The TF-Framework of ROS2 makes it
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Fig. 5 Nodegraph of the setup to generate the simulation results

possible to request arbitrary coordinate transformations by
using the joint angle information and other sensor data.

Especially for this work, a GPS and an IMU are located
in the root segment. The IMU combines a gyroscope and an
accelerometer. It delivers the signals for angular velocity, lin-
ear acceleration, and the orientation of the root segment. The
GPS signal is subscribed by the nodeLocalizer and published
as the transformation fromWF to the root segment in the TF-
Framework. Furthermore, this node takes a time derivative of
the GPS signal by using the differential quotient to provide
the linear velocity vector. Both mentioned calculation meth-
ods are integrated parallel as separate nodes. This ensures
compatibility, as the calculations access the same input sig-
nals in each time step. Both calculationmethods publish their
results, which are subscribed by the node IZMP Calculation.
The calculated coordinates of the IZMP are transformed into
a common evaluation frame via the TF-Framework and are
recorded in ROS2 bag files.

4.6 Evaluationmethods

We verify our MR-AD approach, compare it to IR-MD and
show its general scopes using simulation results. Further,
we test our approach on the physical robot Sweaty. Table 1
reviews all of the necessary main abbreviations for the fol-
lowing sections.

Due to Sweaty having no GPS or sensors for measuring
the linear velocity installed, the global position and the linear
velocity vector are not available during the execution of the
experiment. An estimation by our localization and odome-
try does not provide usable results. Therefore, we focus on
MR-AD for the evaluation of the EOMs on the real robot.
For the comparison in simulation, the mentioned approaches
perform different test cases and the obtained results will be
compared quantitatively through the IZMP coordinates. We

Table 1 List of the main abbreviation

Abbreviation Meaning

ACD Actuator controller differentiationa

BFF Body-fixed frame

IR-MD Inertial reference—momentum derivativeb

MR-AD Moving reference—analytically derivedc

NIF Non-inertial frame

WF Inertial frame

aMethod to calculate the time derivatives of the actuator position signal
qi obtaining q̇i and q̈i
bDynamics evaluated by numerical differentiation of momentum based
equations for a fixed reference point in inertial frame
cDynamics evaluated by analytically derived EOMs for an arbitrary
moving reference point in non-inertial frame

choose the BFF of the root segment as the common evalua-
tion frame, which corresponds to the introduced NIF (see
Sect. 4.2). A further quantitative evaluation is the relative

error�. It is defined as� = ∑n
k=0

| fproc(tk )− fref (tk)|
| fref (tk )| ·100%· 1n .

Here, fproc(tk) represents the value at the time point tk of the
investigated procedure’s signal. Similarly, fref(tk) represents
the reference signal for the comparison at the time point tk .

To analyze the applicability to physical robots in real-
world applications, we add white noise behavior to the ideal
sensor signals to simulate typical noisy signals ŝ(t) from
physical sensors. White noise behavior is added to linear
velocity, angular velocity, and linear acceleration signals. It
generally applies ŝ(t) = s(t)+n(t). Here, s(t) is the original
ideal signal and n(t) is the noise. n(t) is generated normally
distributed depending on the standard deviation σ and the
meanμ of the physical sensor.Weuseσ = ν ·√ f to calculate
the standard deviation for the gyroscope and accelerometer
as mentioned in the data sheet of Xsens MTi-20 VRU. ν is the
noise density and f is the sample rate. The mean μ is set to
zero.
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Sweaty does not have a sensor to measure linear veloc-
ity. Therefore, we use the same standard deviation σ for
the noise term of the linear velocity signal that applies to
the accelerometer. The following equation applies to cal-
culate the noise for each coordinate direction, ŝβ(tk) =
sβ(tk) + nβ(tk) = sβ(tk) + g (σ, μ). Here, tk indicates the
discrete point in time.

For this work, we add noise for our approach to ai for i
in range i = 1, 2, 3, 4 and ω of the root segment. It applies
aiβ = ŝaβ and ωβ = ŝωβ . Here, β indicates the coordi-
nate axis in rage β = x, y, z. For IR-MD, we add noise
just to the velocity v of the root segment, in the same way,
it applies to ai . Thus for IR-MD, we expect the influence
of noise as underestimated since velocity measurements are
usually indirect measurements based on filtered acceleration
and camera position data.

In general, real robot systems offer the possibility to pro-
vide higher update frequencies of sensor and actuator signals
compared to the field bus frequency. To analyze the impacts
of this characteristic in calculating the dynamics, the sim-
ulation runs with a time step of 0.002s (500Hz). However,
the dynamics calculation runs with 0.008s (125Hz). Thus all
sensor and actuator signals are available in 500Hz frequency
for processing.Consequently, the frequency of the simulation
set to 500Hz can be interpreted as the actuator controller fre-
quency, and the dynamics calculation frequency set to 125Hz
as the field bus frequency of a physical robot.

5 Results

In the following sections, we show the results of the EOM
evaluation by the IZMP. Each line diagram listed in Table 2
contains curve developments for the MR-AD and IR-MD
method. The adjustable parameters are the ACD and field
bus frequencies and the signal noise that can be switched on
or off. If signal noise is present, it is applied, as explained in
Sect. 4.6. On the one hand, the column ACD/Bus of Table 2
contains the chosen ACD and field bus frequencies for the
simulated or real robot. On the other hand in the column
Noise specifies the present signal noise for each test case.

Likewise, the adjustable parameters for all bar diagrams
are the ACD and field bus frequencies and the angular accel-
eration vector determination approach. Table 3 contains the
chosen parameters and properties of each bar diagram. It
displays in the column ACD/Bus the ACD and field bus fre-
quencies used. In the column Ang. acc. calc. it specifies the
underlying method of angular acceleration vector estimation
for each setup. Further, the signal noise is turned on for each
setup (see Sect. 4.6).

If the column ACD/Field bus of Tables 2 and 3 contain
only one value, this value represents the frequency of both
ACD and field bus.

Table 2 Parameters and properties of the line diagrams

Figure ACD/bus (Hz) Noise

Fig. 6 125 None

Fig. 7 62.5, 125, 200, 250 None

Fig. 8 125 IMUa, GPSb

Fig. 12 1000/125 Real sensors

Fig. 11 125 None

If the column ACD/Bus contains one value, it belongs to both ACD and
field bus frequency
a Noisy accelerometer and gyroscope signals
b Noisy velocity signal from Webots

Table 3 Parameters and properties of the bar diagrams

Setup Method ACD/bus (Hz) Ang. acc. calc

A IR-MD 125 Diff. quotientb

B MR-AD 125 Algebraica

C IR-MD 500/125 Diff. quotientb

D MR-AD 500/125 Algebraica

E MR-AD 500/125 Diff. quotientb

If the column ACD/Bus contains only one value, it belongs to both ACD
and field bus frequency
a One IMU and three accelerometers are mounted on the root segment
to measure ω̇
b Differential quotient is used

5.1 Initial conditions for the simulation

At first, we compare the results ofMR-AD and IR-MD under
ideal conditions. For this purpose, the robot walks in an arbi-
trary direction starting from the origin of the WF at a gait
speed of 0.3m/s. Optimal signal qualities from the simula-
tion are provided for each calculationmethod. Figure6 shows
exemplary curves of the x- and y-coordinate from the IZMP.

Thegait phase of the robot canbedivided into two sub-step
phases as shown in Fig. 6. The jump in both curves describes
the switch of the support foot and thus the transition from
sub-step one into two. From the data, it follows that a sub-
step takes 0.448 s, and the entire step takes 0.896s. In the
development of the x-coordinate, the two sub-steps can be
identified via the consecutively similar curve sections. The
sub-step phase begins with the heel strike and ends with the
toe-off. The x-coordinate starts after the peaks of the heel
strike at approx. −0.08m and increases in the development
to approx. 0.1m until the toe-off event. The x-coordinate,
related to the foot, moves from the rear area to the front area
during the duration of a sub-step.

The y-coordinate starts with negative values. The develop-
ment of the curve shows a relatively constant range between
the time frame 0.1 s and 0.25 s. In the further development
of the sub-step, the value of the y-coordinate moves towards
the zero line. Here, the robot tilts towards the swing leg.
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Fig. 6 Comparison of the
calculated IZMP x- (left) and
y-coordinate (right) of MR-AD
and IR-MD under ideal
conditions in simulation. The
calculations are executed in
parallel for the same step phase.
The gait speed is0.3m/s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.1

0

0.1

Time t [s]
x -

co
or

di
na

te
[m

]

MR-AD
IR-MD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.2

−0.1

0

0.1

0.2

Time t [s]

y-
co

or
di

na
te

[m
]

MR-AD
IR-MD

4 5 8 16
0

5

10

15

Simulation time step Δt [ms]

R
el

.
er

ro
r
y-

co
or

d.
[%

]

Rel. error MR-AD
Rel. error IR-MD

Fig. 7 Convergence behavior for the IZMP y-coordinates of MR-AD
and IR-MD for decreasing simulation time steps and ideal signals. The
reference curve for the corresponding method is generated with a time
step of 0.002s. The gait speed of 0.3m/s are the same for each case

The development of the y-coordinate curve indicates that the
analyzed step starts with the right leg as the support leg.

In Fig. 7 the convergence behavior of the IR-MD andMR-
AD methods for the y-coordinate of IZMP are compared at
different simulation time steps. The tested frequencies are
250Hz, 200Hz, 125Hz and 62.5Hz. All curves were gen-
erated with ideal signals. The reference curves have been
determined with the corresponding method at a frequency
of 500Hz. Figure7 shows a linear convergence behavior for
both methods with respect to the simulation time step �t .

5.2 Simulated robot applications

The output signals of physical sensors are generally noisy. To
simulate the qualitative impact of this noise, noise behavior
is added as explained in 4.6. Figure8 shows the white noise
effects of linear velocity, angular velocity, and linear accel-
eration signals on the x- and y-coordinates of the IZMP. For
comparison, the coordinate curves calculated byMR-ADand
IR-MD with ideal input signals are also shown in Fig8. All
displayed curves are generated with a simulation and dynam-
ics calculation frequency of 125Hz. Figure8 shows MR-AD
and IR-MD do not provide similar curves compared to Fig. 6.
The noise behavior of the sensors has a marginal impact on
theMR-ADmethod compared to the curves with ideal sensor
signals. In contrast, noise behavior has a significant impact
on the IR-MD method.

In contrast to Fig. 8, Fig. 9 shows the relative errors of
the IZMP y-coordinate compared between MR-AD and IR-
MD. Setup B and D use MR-AD and Setup A and C use
IR-MD. Further, Setup A and B use a frequency of 125Hz
for ACD and field bus. In contrast, Setup C and D use sensor
and actuator controller frequencies of 500Hz and a modeled
field bus frequency of 125Hz. For IR-MD increased sensor
and actuator controller frequencies impact the accuracy neg-
atively. The relative error increases from 65.2Hz to 112.4%.
For MR-AD the contrary is observed. Here, increased sen-
sor and actuator controller frequencies increase the accuracy.
The relative error decreases from 16.1 to 4.4%.

Fig. 8 Comparison between the
results of the IZMP x- and
y-coordinate of MR-AD and
IR-MD with noised linear
velocity, angular velocity and
linear acceleration signals at a
simulation time step of 0.008s
(corresponds to the field bus
frequency of the real robot
Sweaty). The gait speed is
0.3m/s

0 0.2 0.4 0.6 0.8
−0.2

−0.1

0

0.1

0.2

0.3

Time t [s]

x -
co

or
di

na
te

[m
]

ideal MR-AD
noised MR-AD
ideal IR-MD

noised IR-MD

0 0.2 0.4 0.6 0.8

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time t [s]

y-
co

or
di

na
te

[m
]

ideal MR-AD
noised MR-AD
ideal IR-MD

noised IR-MD

123



476 Autonomous Robots (2023) 47:465–481

Setup A Setup B Setup C Setup D
0

20

40

60

80

100

120

65.22

16.05

112.42

4.44R
el

.
er

ro
r

fo
r
y-

co
or

d.
[%

]

Fig. 9 Relative error comparison between MR-AD (Setup B and D)
and IR-MD (Setup A and C). Setup A and B use a frequency of 125Hz
for ACD and field bus. Setup C and D use 500Hz for ACD and 125Hz
for field bus. Setup B and D use the method for measuring of angular
acceleration vector of the root segment. The relative error is calculated
compared to the corresponding method with ideal signals and a fre-
quency of 500Hz for ACD and field bus
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Fig. 10 Comparison between the different calculation methods. Setup
B,DandEuseMR-AD.SetupBuses a frequencyof 125Hz forACDand
field bus. Setup D and E use 500Hz for ACD and 125Hz for field bus.
Setup E uses a differential quotient to calculate the angular acceleration
vector of the root segment. Setup B and D use the method for measuring
of angular acceleration vector of the root segment. The relative error
is calculated compared to the corresponding method with ideal signals
and a frequency of 500Hz for ACD and field bus

Figure10 compares the impact of the estimation of the
angular acceleration on the IZMP y-coordinate. To analyze
just the impact of the method providing the angular acceler-
ation vector of the root segment, Setup B, D and E use the
MR-AD. Setup E and B use 500Hz for ACD and 125Hz
for the field bus frequency. Setup E uses a differential quo-
tient of the measured angular velocity and Setup B and D
use the angular acceleration measurement method to deter-
mine this vector of the root segment. The relative error is
calculated compared to the corresponding method with the
same angular acceleration calculation method, ideal input
signals and a frequency of 500Hz for ACD and field bus.
The numerical differentiation leads to a higher relative error
(18.9%) compared to the method using angular acceleration
measurement (4.4%) under equal test case settings. Setup E
has also a higher relative error compared to Setup B using
the ACD frequency of 125Hz and the angular acceleration
measurement (16.1%), shown in Fig. 9.
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Fig. 11 The IZMP x- and y-coordinate calculated by MR-AD for the
xy-plane and referenced in the evaluation framewhilewalking on a level
surface and slope. The gait speed is 0.15m/s. The slope angle is set to
10◦. The support polygon for each foot is represented with the shown
polygons

Next, we analyze the impact of walking onto a slope, espe-
cially for the IZMP calculation. The robot starts on level
ground (slope angle 0◦) and walks up an inclined plane with
a fixed slope angle of 10◦ without stopping. For this purpose,
the gait speed is 0.15m/s.

Figure11 shows the IZMP coordinates referenced in the
evaluation frame and displayed in the xy-plane of the ground
surface for one exemplary gait cycle. Here we use the time
t as the parameter for the xy-plot. In Fig. 11 the solid curve
indicates a gait cycle on the level surface, the dotted curve
indicates a gait cycle walking on a slope (slope angle 10◦).
The polygons in Fig. 11 represent the support polygon of
each foot referenced in the evaluation frame. Both support
polygons are calculated with the kinematics in the respective
stance phase. Due to the support polygons being repre-
sented in the NIF, both support polygons have the same
x-coordinates. For the gait cycle on the level surface as well
as for the gait cycle on the slope, it can be seen that IZMP
curves are located inside the support polygon.

5.3 Real robot application

Figure12 shows the development of the x- and y-coordinates
of the IZMP calculate on the physical robot Sweaty. The actu-
ator controllers return the actuator positions with a frequency
of 1 kHz and the CAN-BUS frequency is set to 125Hz. A
differential quotient calculates the angular acceleration of
the root segment. The robot walks on flat ground with a gait
speed of 0.15m/s. In comparison to the developments of the
x- and y-coordinates ofMR-AD shown in Fig. 8, these curves
have a smoother transition in the change of the stance foot.
The x-coordinate curve shows a larger slope followed by
a relatively constant profile at about 0.1m, compared with
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Fig. 12 IZMP x- and
y-coordinate of MR-AD
calculated on the physical robot
Sweaty. The gait speed is
0.15m/s
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Fig. 8. Overall, the y-coordinate curve shows a similar but
more inconstant development as seen in Fig. 8.

6 Discussion

Before we discuss our main findings, we start with the inter-
pretation of the simulation characteristics. The convergence
analysis (Fig. 7) shows for AD and MD methods linear con-
vergence with respect to the simulation time step �t . The
simulatorWebots 2021b uses a fixed time step for the physics
engine. This time step is specified in milliseconds and can
be set to an integer. Therefore, simulations are limited at
�t = 0.001s (1000Hz). With this time step, the simulation
delivers no usable results simulating the robot Sweaty due
to impaired communication between theWebots-Controller-
Client and the other ROS2 nodes. Regarding this, we set
simulation results generated with a time step of 0.002s as
the reference. However, due to the linear convergence, we
consider it appropriate to define these curves as reference
curves. Further, for the theoretical comparisons of all simu-
lation results, we omitmeasurement inaccuracies of encoders
and joint backlash as signal noise forqi to exclusively analyze
the influence of white noise of inertial sensors and velocity
estimations.

Our first main findings are about the characteristics of the
MDmethod.Generally, this approach reduces the complexity
of the EOMs since only total linear and angular momentum
have to be calculated. Consequently, IR-MD gets rid of joint
acceleration q̈i , linear and angular acceleration vectors of
the root segment. However, it requires the linear velocity
vector of the root segment. Likewise, taking numerical time
derivatives, the calculation requires quantities of at least two
discrete points in time. For MR-AD, the calculation requires
quantities of one instant in time andno linear velocity vectors.
Instead, the complexity of the calculation increases. These

differences in calculating time derivatives cause the devia-
tions in the development of IZMP coordinate curves shown
in Fig. 6).

As far as we consider realistic noise behavior of physical
sensor signals, e.g., for the linear velocity or the position vec-
tor, the results of the MD method are no longer usable (see
Figs. 8, 9). This is caused by the dependency on the quantities
from different instances in time. Due to this characteristic,
the white noise behavior of real sensors has a direct impact
on the results. By using discrete sensor signal values, the
dynamics calculation inevitably includes at least two differ-
ent noise terms. Due to the randomness of the underlying
normal distribution of the noise, the numerical time deriva-
tives could determine physically unrealistic gradients of the
momentum. Figures8 and 9 exactly show this behavior.

Further, measuring linear velocity is impractical since a
direct measurement method is not feasible. Thus, the analyt-
ically obtained derivatives have an obvious advantage as far
as noisy signals are concerned. Consequently, they are signif-
icantly better suited for calculating the dynamics of physical
robotic systems.

Second, for physical robots, it is commonly feasible to
operate sensors and actuator controllers with significantly
higher sample rates than the field bus. A numerical deriva-
tive can calculate the joint velocity q̇i and joint acceleration
q̈i using the joint position qi provided by the encoder. Fig-
ure9 shows the impact of higher sample rates. Due to the
smaller time step, both methods benefit theoretically by the
increased accuracy of the calculated q̇i and q̈i (see. Figure 7).
Additionally, themeasurement error of incremental encoders
does not scale proportionally with the square root of the sam-
pling frequency compared to, e.g., inertial sensors used (see
Sect. 4.6).

However, the numerical time derivative of IR-MD cal-
culates even larger gradients for the momentum in terms
of magnitude caused by the combination of the noise-
amplifying numerical differentiation and the white noise in
the sensor signals. Figure9 shows finally that the influence
of the larger inaccuracies due to the white noise in the sensor
signals in combination with the numerical time derivatives
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dominates. The relative error increases significantly com-
pared to the ideal reference. In contrast, MR-AD benefits
through higher sample rates for sensors and actuator con-
trollers due to increased accuracy of q̇i and q̈i . It is further
significantly less impacted through white noise than the MD
method, as seen in Fig. 8.

Based on the results shown in Fig. 9,we propose to execute
this calculation directly in the actuator controllers. In general,
the frequency of the field bus from robots depends mostly
on the total number of motors and sensors connected to the
field bus. Typically frequencies of field buses (e.g., CAN or
EtherCAT ) for robots with more than 30 degrees of freedom
are in the range of 100–1000Hz.

For physical robots, the higher frequency of the actuator
controllers is an advantage regarding the accuracy of q̇i and
q̈i . The errors of the numerical derivative approximation of
q̇i and q̈i decrease due to smaller �t . However, numerical
differentiation with �t tending to zero generally amplifies
signal noise. Therefore, e.g., implemented filtering methods
in the actuator controller have to compensate for the noise-
amplifying effects. Through the significantly higher actuator
controller frequency, we can design filtering methods with
adapted delays so that they have no effects on the dynamics
calculations executed in field bus frequency. Consequently,
in this case we do not use the �t of the field bus frequency
in any calculation step. Therefore, it has no impact on the
accuracy of the dynamics calculation.

Third, in contrast to the MD method, analytical deriva-
tive EOMs generally require the angular acceleration vector
of the root segment. In this work, we compare two different
approaches to assess angular acceleration. On the one hand, a
numerical derivative of the angular velocity signal, measured
by IMU, is used. On the other hand, we present a measure-
ment through three additional uniaxial accelerometers.

For calculating the angular acceleration of the root seg-
ment, a noise-amplifying numerical differentiation has the
same disadvantages as mentioned before. The increment �t
used depends on the sampling rate of the sensor. Noise in
the estimated angular velocity signal combined with high
sampling rates could result in unrealistic angular accelera-
tion approximations. Figure10 confirms this. Low sampling
rates would lead to inaccuracy for angular acceleration due
to the increasing �t between two measured quantities. A
decreasing �t through higher sampling rates increases the
noise-amplifying effects of the differential quotient used.

Since the calculation method from three additional
accelerometers does not involve numerical differentiation,
the accuracy gets independent of �t or the physical sensor
update frequency. The disadvantages previously described do
not apply. However, this includes four additional noisy sig-
nals in the calculation, which affects the measurement of the
angular acceleration. Equations27, 28, and 29 show that the
components of angular acceleration depend on the distance

between the accelerometers. For example, if the distance r2
tends to zero, the measured values a2z and a0z converge. The
noise behavior is then the dominant difference between these
measurements. Thus ω̇x would be mostly influenced by the
noise.

Here, we want to discuss the use of three additional
accelerometers to determine all joint velocities q̇i and accel-
eration q̈i of the robot. The above mentioned arguments
against numerical differentiation apply analogously. One
consequence would be to omit numerical differentiation
entirely when calculating joint kinematics. Further, it is thus
independent of the actuator controller and field bus frequen-
cies. A disadvantage is the increasing number of installed
sensors and the transmitted data.

Fourth, MR-AD and all analytical derivative methods are
based on the same basic physical laws. Provided that consis-
tent inputs are given for the calculation, the results must be
identical. Compared to our MR-AD, the mentioned analyt-
ical derivative methods require the absolute position vector
of the root segment from a spatially fixed reference point as
an input.

Henze et al. (2016) estimate the absolute position vector
of the root segment by sensor fusion. Therefore, this kind
of estimation requires the kinematics as well as the absolute
position vector andorientation of each end effector in contact.
One assumption required for the proposed sensor fusion is a
rigid contact of at least one body segment.

Despite the redundant calculation and the introduced
averaging method in the approach of Henze et al. (2016),
this sensor fusion always contains inaccuracies due to non-
present rigid contact and white noise of the IMU sensor
signals. Also, the continuous determination of the absolute
position vectors of all end effectors contains inaccuracies,
especially onunknown, uneven terrain and throughundefined
contacts. This kind of estimation for the absolute position
vector of the root segment is, in our view, error-prone.

The approach of Buschmann (2011) avoids numerical
inaccuracies through largedistances from the initial reference
point to the robot by shifting the reference frame depending
on the gait cycle. In general, this reference frame does not
coincide with the BFF of the stance foot and the origin is
fixed. This means the position vector of the COM cannot
be calculated only through kinematics on physical robots.
Buschmann does not propose an estimation of the global
position vector of the COM, since the work aims to simulate
robots.

In contrast, our approach leads to high flexibility in choos-
ing the reference point and the reference frame for dynamics
calculations. The reference point can be any material point,
e.g., the origin of the root segment or any immaterial point.
The state of motion of this point compared to the other mate-
rial points of the robot is irrelevant. This leads to the omission
of estimating absolute position vectors. We made this effort
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to avoid all estimations since they can cause inaccuracies
in the results and for saving computational capacity. E.g.,
if we choose the origin of the root segments BFF as the
moving reference point, we can calculate relative position
vectors of arbitrary material points through kinematics with-
out inaccuracies due to uneven ground or undefined contact.
Consequently, conditions with no rigid body contact of at
least one segment or in flight phases do not disturb our used
EOM evaluation approach.

Furthermore, the spatial distance between the evaluation
frame and all BFFs stays always in a similar order of magni-
tude. Similarly, the recommendation of Featherstone (2008)
for the distance of one to two radii of gyration is con-
tinuously satisfied. This reduces numerical inaccuracy. We
further use an algorithm for calculating the relative derivative
from numerically available values, which allows us to derive
physical quantities in moving frames. Specifically, we use it
to calculate the relative time derivative of the angular velocity
for all body segments. With this, we evaluate the dynamics
for each body segment in its BFF. This is an efficient way to
evaluate the EOMs according to Featherstone (2008).

Fifth, a further advantage of using our approach is seen for
the IZMP calculationwalking, e.g., on slopes. In general, one
axis of the evaluation frame must point parallel to the normal
vector of the ground surface for calculating the IZMP. This
is required to resolve the under-determination of the system
of coordinate equations from Eq.22 through determining the
z-coordinate. This demand cannot be fulfilled by the com-
pared approaches. Consequently, they do not provide usable
results without further adjustments in calculating the IZMP
on slopes. For valid results, the compared approaches would
require a transition of the inertial frame. Likewise, the equa-
tion to calculate the IZMP, as, e.g., shown by Kajita et al.
(2014), also has to be adapted to the rotated gravity vector.

For evaluating the EOMs in a MR, this condition for
the IZMP calculation remains fulfilled. Here, the evaluation
frame rotates in a suitable orientation to cover the slope to
ensure that the required axis parallelism remains fulfilled.
IMUs placed in the feet measure the orientation of the sur-
face during the stance phase in each gait cycle.

The comparison of the resulting IZMP coordinates for
the level ground and the slope shows that they are located
within the support polygons as seen in Fig. 11. Our approach
evaluates the locomotion on the slope as stable.

Consequently, with our approach, the reference point is
adjustable to the implemented control algorithm. E.g., if we
use an IZMP-based control algorithm, the moving reference
could coincide with the surface plane to be independent of
friction forces. Or, if we control the ground reaction forces,
it may be efficient to place the reference point into the mov-
ing root segment. The calculated quantities can thus directly
trigger a reaction without additional spatial transformation.

Sixth, if we compare the IZMP coordinates of the physical
robot shown in Fig. 12 with the simulation results shown in
Fig. 6, we recognize generally similar curve developments.
The main differing characteristics of the coordinate curves
from physical robot to simulation are, on the one hand, the
more inconstant development and the noticeably smoother
transition between the change of the stance foot. The joint
backlash present and measurement errors of the encoders
on physical robots, the elasticities, and manufacturing and
assembly inaccuracies mainly cause these two characteris-
tics. In conclusion, despite the mechanical inadequacies and
white noise of all sensor signals, MR-AD is suitable to calcu-
late the IZMPalso for physical robots. If the proposedmethod
for measuring angular acceleration vectors is applied to all
segments of the robot, we expect that the results of dynamics
calculation on real robots will be further improved.

Further, Fig. 12 shows the justification that omitting the
measurement errors of the encoders and the joint backlash is
sensible in the theoretical comparisons of the applied meth-
ods. The impact of the measurement errors of the encoders,
the joint backlash, and other mechanical inaccuracies on the
IZMP curves is much lower than the impact of the numerical
differentiation of the momentum equations with noisy linear
and angular velocity signals.

As we mentioned previously, there are disturbances in the
dynamics calculation in general. These include inaccuracies
in the mechanical model compared to the real robot, e.g., due
to deviating mounting positions of the joint axes, inertia data
or the underlying rigid body hypothesis, to name a few. To
reduce the impact of inaccuracies, we propose combining a
sensor fusion from our approach with a 6-axis force/torque
sensor and adding a Kalman filter. A limitation of the sensor
fusion is that it only provides valid data for a bipedal walking
without external perturbations applied to the robot.

7 Conclusion and future work

From the perspective of the authors, the combination of
evaluating the EOMs formulated through the Newton–Euler
equations with respect to a moving reference point in a NIF
and measuring the angular acceleration vector of the root
segment contributes to an efficient and robust evaluation
of the inverse dynamics in robotics. The entire proposed
approach produces comparably similar results as the previ-
ous approaches evaluating the EOMs with respect to a fixed
point in the inertial frameor the center ofmass for a humanoid
robot, with themain benefit that the proposed approach is less
prone to noise than the previous approaches.

We confirm that in theory and by comparing it with the
mentioned approaches using simulation results. In theory,
we show the conceptual advantages of our approach. E.g.,

123



480 Autonomous Robots (2023) 47:465–481

it gets rid on the dependency of any global position vector.
Further, we show the flexibility of choosing the reference
point and the evaluation frame concerning the preferences of
the control algorithm used.

The comparison of simulation results clearly shows fur-
ther advantages for the application to physical robots. On the
one hand, we reduce the quantity of noise-amplifying numer-
ical differentiation. On the other hand, with our approach,
we can calculate the IZMP for the gait from the level to the
inclined surface. We also show that our algorithm calculates
usable results applied to physical robots.

It is also worth mentioning that this approach is not lim-
ited to bipedal robots or humanoid robots in general. Due to
the generic structure, the EOMs can be calculated for multi-
legged robots or human beings. The adaption to KDL and the
integration inROS2of this algorithm support straightforward
usability.

Next, we will equip all segments of Sweaty with one sen-
sor unit combining an IMU and three additional uniaxial
accelerometers to eliminate all numerical differentiation and
use our approach to evaluate the stability of the robot Sweaty.
As a second step, we will setup up the sensor fusion with the
self-developed 6-axis force/torque sensor and we will try to
implement a Kalman filter. Further, we will try to use the
sensor unit also to evaluate the stability of human beings.

Finally, we will use this approach as the basis of a con-
trol algorithm to stabilize both static situations and dynamic
locomotion. We want to align this controller specifically to
the control paradigms of human beings, taking benefit of the
identified characteristics of our approach.
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