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Abstract: With the function RooTri(), we present a simple and robust calculation method for the
approximation of the intersection points of a scalar field given as an unstructured point cloud with
a plane oriented arbitrarily in space. The point cloud is approximated to a surface consisting of
triangles whose edges are used for computing the intersection points. The function contourc()
of MATLAB is taken as a reference. Our experiments show that the function contourc() produces
outliers that deviate significantly from the defined nominal value, while the quality of the results
produced by the function RooTri() increases with finer resolution of the examined grid.

Keywords: scalar fields; zeros; triangulation; isocontour lines; MATLAB

MSC: 32B25; 26C10; 33F05

1. Introduction and Related Work

In the field of science and especially in engineering, the formulation of mathematical
models for the treatment of concrete problems plays a key role. Often, however, the models
are characterized by a high degree of complexity, which is why an analytical solution is
only possible in rare cases. For this reason, one often has to rely on numerical methods
to approximate the solution. A common application is the determination of roots, since
these often represent characteristic points in the course of the function. For the numerical
approximation of the roots of one-dimensional functions, the bisection method ([1], p. 250),
Newton’s method ([2], p. 243) or the method by R. P. Brent, who combines the secant
method ([1], p. 254) with the bisection method in [3], are prominent representatives.

On the other hand, the determination of roots of two-dimensional functions is much
more complex. Here, the roots form a level set, which is represented as a contour line. In
the context of our work, we focus on two-dimensional functions (scalar fields) of the form
f : R2 → R and assume that these are given as a point cloud P ∈ Rn×3, n ≥ 3. This
has the advantage that even unstructured point clouds, which arise, for example, during
the recording of measuring points, can be handled. In the following, we develop a simple
and robust function for approximating the zeros of a point cloud with a plane oriented
arbitrarily in space in MATLAB©.

The literature reveals that different methods are used to determine isolines or isosur-
faces, such as the Marching Squares (2D) or Marching Cubes (3D) algorithm developed
by W. E. Lorensen and H. E. Cline [4]. It is mainly used in computer graphics and image
processing. The core of the method is a divide-and-conquer approach, in which the data
set at hand is divided into square grid cells and each cell is assigned a defined isovalue.
The next step is to check whether the vertices are above or below the isovalue. By assign-
ing a binary value, it is possible to determine which combination of corners of the cell
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corresponds to the isovalue, whereupon the polyline or polygon can be created. This is
performed for all cells, from which the isoline or isosurface can be constructed. The method
has been widely studied in research. Thus, C. Maple presents, in [5], an extension of the
method for approximating the enclosed area or volume for use in room planning. Z. P. T.
Sin and P. H. F. Hg use the Marching Cubes algorithm in [6] to generate planetary terrain in
a spherical environment. In [7], L. Custodio et. al extend the Marching Cubes algorithm to
ensure topological correctness. Another application can be found in [8]. Here, X. Wang et al.
develop an approach to implement the Marching Cubes algorithm based on edge growth.
Closely related to the Marching Cubes algorithm is the Asymptotic Decider algorithm
developed by G. M Nielson and B. Hamann, which generates isosurfaces from a given
scalar field and provides topologically correct contours [9]. A modified approach to robust
and topologically correct triangulation is developed by R. Grosso in [10]. In this context, A.
M. Tushar and C. R. Johnson provide a framework based on the Asymptotic Decider algo-
rithm for analyzing uncertainties related to isocontour generation [11]. Other approaches
regarding the determination of contour lines include the Octree-based algorithm [12] and
the Span Space algorithm [13].

We note that the described algorithms basically aim to divide the considered scalar
field into cells or cubes, to which a specific indicator is assigned in order to reconstruct
the contour lines based on this information. These algorithms are primarily used in image
processing, computer visualization, or medical imaging. In our research, we want to deviate
from this approach and instead take an unstructured point cloud into account, using the
information provided by the individual points directly.

With regard to commercially available software, MATLAB© offers contourc(), which
can be used as a function to determine the contour lines of a two-dimensional function ([14],
p. 225). However, it is limited to a structured grid. For instance, O. Demirkaya et al. use it in
terms of medical image processing ([15], p. 86). In the further course of our investigations,
we also use this function as a reference, since practice shows that it is often applied.

2. Modeling and Implementation

The following section covers, in its first part, the description and mathematical model-
ing of the underlying problem. Based on this, we then develop the function and implement
it in MATLAB©.

2.1. Mathematical Modeling

In the first step, we wish to generate a surface from a given point cloud P ∈ Rn×3

containing elements pi ∈ P , i ∈ I, with I ⊂ N being the associated index set. An element
pi further consists of its specific components and is defined as pi = [xi, yi, zi]. From the
definition of the scalar field described in Section 1, it follows that each pair of values
[xi, yi] is assigned exactly one real number zi. This means that we are able to remove the zi
component first and project the remaining component pairs [xi, yi] onto the xy-plane, which
is qualitatively illustrated in Figure 1. From this procedure, we obtain a subset P ′ ∈ Rn×2

containing the two-dimensional points denoted by p′i = [xi, yi], i ∈ I. These can then be
utilized to perform DELAUNAY triangulation to produce triangles that do not intersect.
Moreover, the indices of points that form a triangle are known, and this information will be
of importance in the further course of the work. Note that DELAUNAY triangulation is a
common method for generating meshes in finite element analysis ([16], p. 394). A detailed
description of the method can be found in ([17], p. 199). The vertices of the triangles are then
reassigned to the corresponding zi components, and we obtain the surface approximated
using triangulation. This approach offers the advantage that the basic structure of the
triangles is preserved, and we additionally obtain a set K ∈ Rm×3 containing all triangles
k defined by the indices of the points. In the second step, the intersection points of the
surface with an arbitrarily oriented plane are to be calculated. For this purpose, we first
consider a random triangle k ∈ K of the approximated surface. The idea now is to use
vertices vk

j , j ∈ {1, 2, 3} of the triangle for generating vectors tk
j , j ∈ {1, 2, 3}, which are
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examined to determine whether they intersect the plane. With λ ∈ [0, 1], these are to be
computed as follows:

tk
1 = vk

1 + λ(vk
2 − vk

1) = vk
1 + λqk

1

tk
2 = vk

2 + λ(vk
3 − vk

2) = vk
2 + λqk

2

tk
3 = vk

3 + λ(vk
1 − vk

3) = vk
3 + λqk

3.

Consider the plane given in its coordinate form

P : ax + by + cz = d. (1)

On this basis, intersection point sk
j of a vector tk

j with this plane is to be determined
first. For this purpose, its components are inserted into the plane equation defined by
Equation (1) and solving for λ yields

λ =
d− (a vk

j,x + b vk
j,y + c vk

j,z)

a qk
j,x + b qk

j,y + c qk
j,z

. (2)

Then, the λ given by Equation (2) is inserted back into the equation for tk
j to compute

intersection point sk
j , and it is subsequently to be verified whether the latter is an element

of the interval defined by the respective vector. Therefore, we set the system of equations

sk
j = tk

j (λ
∗) (3)

and solve it for the new λ∗. In case sk
j is an element of the specific interval and is thus a

relevant intersection point, λ∗ must be in turn an element of the interval [0, 1]. From this
follows the sufficient condition

λ∗ ∈ [0, 1]→ sk
j ∈ tk

j (λ
∗). (4)

It is easy to see that the number of possible intersection points depends on the number
of triangles and thus on the resolution of the approximated surface. Therefore, to make
the evaluation more efficient, we propose to exploit the information provided by the
triangle and define additional auxiliary points ak

j , j ∈ {1, 2, 3} on the midpoints of the
edges. Since the vectors are already defined, these points can be easily computed by setting
λ = 0.5. With the help of the auxiliary points, new vectors can now be generated and are
used to determine further intersection points according to the same scheme. Hence, the
number of intersection points increases since for each triangle; in total, nine vectors are
evaluated, while the resolution of the surface remains unchanged. In this context, Figure 2
qualitatively shows our approach for a random triangle k ∈ K intersecting a plane. In
addition, Figure 3 illustrates common types of offset planes with the corresponding values
for the plane parameters.
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Figure 1. DELAUNAY triangulation and surface approximation; À given point cloud P and predefined
plane, Á projection of points to origin plane to obtain P ′, Â triangulation to obtain set of triangles K,
Ã adding z component to vertices of each triangle k ∈ K.

Figure 2. Determination of intersection points for a given triangle k ∈ K.
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Figure 3. Origin planes with constant offset and corresponding plane parameters.

2.2. Note on the Determination of Plane Parameters

We present a brief tutorial on how to determine the plane parameters and consider
three appropriate points xi ∈ R3, i ∈ {1, 2, 3} that can be used to construct the plane. First,
we define the parameter form with x1 as the support vector and obtain

P : x = x1 + λ(x2 − x1) + µ(x3 − x1).

In this context, we further require that the direction vectors are not collinear, which
means that the condition

β(x2 − x1) 6= x3 − x1, β ∈ R

must be satisfied to ensure that they are not multiples of each other and thus do not point
in the same direction. Otherwise, it would not be possible to span a plane. Then, we
determine normal vector n using the cross product, i.e.,

n = (x2 − x1)× (x3 − x1)

and insert it into the coordinate form in Equation (1). The remaining parameter, d, is
obtained by inserting support vector x1. Finally, the parameters result in

a = n1 c = n3

b = n2 d = n1x11 + n2x21 + n3x31.

This approach can be used to determine the parameters of an inclined plane.

2.3. Numerical Implementation and Code Description

The method described in the previous section is now to be implemented as a function
called RooTri(arg1, arg2, arg3, arg4, arg5) in the MATLAB© software environment.
A total of five arguments are provided as input variables to the function and are listed
in Table 1. In the first step, the input variables are read to define the plane and extract
the x and y components of the elements of P . After that, DELAUNAY triangulation is
performed using the function delaunay() provided in MATLAB©. This produces a matrix
K ∈ Rm×3 containing the indices of those points from P that form a triangle. Subsequently,
the vectors and intersection points are determined for all elements of the matrix, which are
also checked to verify whether they are elements of the interval defined by the vector in
question using Equation (4). If this is true, these intersection points are stored in an output
matrix P ∈ Rp×3, which contains the components of all valid intersection points. This
process is repeated until all triangles of matrix K have been checked. In case no intersection
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point is found, the matrix contains no element, i.e., P = ∅. Here, Figure 4 summarizes
the general procedure of the algorithm. In the course of increasing the performance of
the algorithm, we refrain from using for loops in the implementation but instead build
the code vectorized. This has the advantage that the code can be executed faster, which
is especially important if the function has to be called frequently. However, the general
principle of operation based on Figure 4 remains the same. The entire code can be found in
Appendix A.

Table 1. Input variables to function RooTri().

Argument Description

arg1 Point cloud P ∈ Rn×3

arg2 Plane parameter a ∈ R
arg3 Plane parameter b ∈ R
arg4 Plane parameter c ∈ R
arg5 Plane parameter d ∈ R

Figure 4. Basic algorithm steps.

3. Experiments and Validation

Subsequent to the implementation, the function RooTri() shall be compared with the
function contourc() provided in MATLAB©, which is usually employed for computation
of low-level contour matrices and can be used to determine the roots of a two-dimensional
function. Due to the abundance of comparison possibilities, it is obvious that the deter-
mination of statistical parameters requires a methodologically well-founded procedure.
Furthermore, our experiments were performed under the system specifications listed in
Table 2 below.
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Table 2. System specifications.

Lenovo T480s
MATLAB© R2022b
Microsoft Windows 10 Enterprise LTSC
Intel(R) Core (TM) i7-8550U CPU @ 1.80 GHz, 1992 MHz, 4 cores, 8 logical processors
Installed physical memory 16.0 GB

3.1. Design of Experiments

We choose the method of the so-called Latin Hypercube Design (LHD), a well-
established procedure in the field of Design of Experiments (DoE). Using the Latin Hyper-
cube Design, a test field can be created in such a way that the variance of the global mean
of the variables under consideration is minimized. Compared with other methods, such as
the Monte Carlo method, it provides better results in terms of minimizing variance with the
same number of test points. Thereby, a q× r matrix called Lq×r, whose columns consist of
an arbitrary permutation of the numbers {1, 2, 3, . . . , q}, is formed. In the framework of the
so-called Latin Hypercube Sampling (LHS), a random number from [0, 1) is subtracted from
each value of the LHD and then divided by q, thus normalizing the entire test field ([18],
p. 155). In our investigation, we use the function lhsdesign() from MATLAB©. Further-
more, it is necessary to limit the number of possible combinations and thus the dimensions
of the test space to a feasible level. In this connection, J. Loeppky et al. propose, in [19], to
estimate the number of experiments (nt) considering a given number of dimensions nD
using the following formula:

nt ≈ 10 · nD. (5)

Usually, the variables considered in the LHD are continuously distributed. Neverthe-
less, we also want to consider different types of signals and thus include several functions
as variables that are added randomly. Hence, to define the parameters to be varied, we first
specify four functions in total that intersect a plane with offset d parallel to the xy-plane;
see Table 3. Here, PARABOLA is a common two-dimensional function and is depicted in
Figure 5. On the other hand, the PEAKS function depicted in Figure 6 is a standard function
of MATLAB© that is characterized by prominent minima and maxima. Furthermore, we
investigate the ROSENBROCK function [20] as well as HIMMELBLAU’s function [21] (see
Figures 7 and 8). Note that these functions are generally applied as test functions for
evaluating algorithms for solving nonlinear optimization problems. As the next parameter
to be varied, we choose variable d, which determines the offset of the plane. We want to un-
derline at this point that the RooTri() function is also able to consider arbitrarily oriented
planes; however, we limit the analysis to parameter d, since the contourc() function can
only determine intersections with parallel planes. Thus, we are able to compare the two
functions with each other. The last parameter refers to length 2l of the interval on which the
functions are to be examined. We define this in such a way that it is divided into a certain
number of equidistant increments and extends over a range from −l to l in both the x- and
y-directions using the function linspace(). This gives us a total of three parameters that
are used to generate the test field while we vary (half) length l of the interval in a range
from 1 to 10 and offset parameter d in a range from −5 to 5. According to Equation (5),
30 experiments must, therefore, be carried out and are summarized in Table 4. In this
context, we additionally introduce another quantity, denoted by α, that relates the length of
the interval (2l) to the number of increments (nα).
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α =
2l
nα

nα =

⌈
2l
α

⌉
(6)

Taking α and 2l as known, Equation (6) can be used to compute the required increment
number (nα), which ensures that the experiments are performed under the same conditions
with respect to the resolution of the interval. From this, we initially obtain a regular grid
on which the functions are to be evaluated. However, it is known from practice that, for
instance, when recording measuring points, these values to obtain a regular grid cannot be
set exactly. Instead, an error is produced, which leads to a distortion of the regular grid and
results in unstructured data points. We additionally consider such an effect and assume
a percentage deviation ε from the ideal value (ε = 0 just corresponds to the regular grid).
This describes a type of tolerance band in which the values can deviate. With the increase
in ε, the grid is distorted, which is qualitatively shown in Figure 9.

Table 3. Mathematical formulation of the considered test functions.

Name Equation

PARABOLA function f1(x, y) = x2 + y2 − 10
PEAKS function f2(x, y) = 3(1− x)2e−x2−(y+1)2 − 10( x

5 − x3 − y5)e−x2−y2 − 1
3 e−(x+1)2−y2

ROSENBROCK function f3(x, y) = (1− x)2 + 100(y− x2)2 − 50
HIMMELBLAU’s function f4(x, y) = (x2 + y− 11)2 + (x + y2 − 7)2 − 50

In the course of numerical experiments, we mainly want to focus on the following
aspects for both the contourc() and RooTri() functions:

• Quality of the results;
• Number of computed intersection points;
• Time consumption;
• Required memory.

The quality ∆ fi(α, ε), i ∈ {1, . . . , 4} refers to the function value that is obtained by
reinserting the calculated roots into the respective test function. The smaller the deviation
from d is, the more accurately the algorithm solves the problem. Considering a computed
intersection point s, the above is to be calculated as follows:

∆ fi(α, ε) =

∣∣∣∣ fi(s)
d
− 1
∣∣∣∣ · 100%. (7)

Furthermore, we want to evaluate the number of intersection points, nr, computed
by the RooTri() function and nc of the contourc() function. As a rule, the contour lines
can be constructed more effectively with a greater number of intersection points. This
is especially the situation as soon as the isolines are close together. In case of large data
volumes, both required computing time tr, tc and required memory qr, qc are of significant
importance. For this reason, these parameters are also to be evaluated.
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Figure 5. PARABOLA function.

Figure 6. PEAKS function.

Figure 7. ROSENBROCK function.

Figure 8. HIMMELBLAU’s function.
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Table 4. Test field for numerical experiments.

Experiment Function d [−] l [−] Experiment Function d [−] l [−]

1 1 2.0 4.3 16 3 −3.0 8.2
2 1 3.5 4.9 17 3 1.3 8.1
3 1 −2.1 2.9 18 3 −1.6 4.8
4 1 4.9 9.6 19 3 1.4 3.5
5 1 −4.1 6.7 20 3 2.7 3.1
6 2 2.6 4.4 21 3 4.6 6.0
7 2 3.3 7.1 22 4 3.8 8.6
8 2 0.6 6.9 23 4 −2.7 3.0
9 2 −3.6 3.8 24 4 0.7 1.7
10 2 −0.2 9.8 25 4 −4.6 7.4
11 2 −3.7 1.6 26 4 0.1 9.3
12 2 −2.9 2.0 27 4 −4.8 6.3
13 3 −0.6 2.6 28 4 −1.3 5.6
14 3 4.2 7.7 29 4 −2.0 5.5
15 3 −1.0 4.3 30 4 1.9 8.8

Figure 9. Regular grid (a) and distorted grid (b) due to incorrect settings.

3.2. Evaluation of Computed Results

As part of the evaluation, all experiments from Table 4 are performed for a given
combination (α, ε). Here, α is varied on an interval between 0.025 and 0.250, and ε, on an
interval between 0.000 and 0.250, each divided into 25 equidistant increments, resulting in
a total of 30× 625 tests. In turn, the results are used to determine the arithmetic mean and
the empirical standard deviation of the corresponding variables under consideration.

3.3. Quality of Computed Intersection Points

The evaluation of the quality of the calculated results for both functions is shown in
Figure 10 in logarithmic scale. In this connection, the arithmetic mean, µ, as well as the
empirical standard deviation, σ, were calculated by applying the equations

µ(|∆ f (α, ε)|) = 1
nt

nt

∑
j=1
|∆ f j(α, ε)| (8)

σ(|∆ f (α, ε)|) =

√√√√ 1
nt − 1

nt

∑
j=1

(|∆ f j(α, ε)| − µ(|∆ f (α, ε)|)). (9)
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Based on Figure 10, we note that with finer resolution of the grid (i.e., with smaller α),
the arithmetic mean of the percentage deviation from the nominal value decreases when
using the RooTri() function. The same applies to the evolution of the standard deviation.
For example, taking into account a regular grid (ε = 0) with α = 0.025, we obtain an
average percent deviation from the nominal value of 2.49%± 3.46%. It can be seen that the
percentage deviation converges to zero with smaller α. This basic tendency remains the
same with the increase in ε.

In contrast, we observe an opposite course when applying the contourc() function.
Paradoxically, the percentage deviation from the nominal value increases with finer resolu-
tion of the grid. Investigations show that the function produces outliers that deviate from
the nominal value to a high degree. Thus, the standard deviation also increases with the
decrease in α. Again, the tendency remains the same with the variation in ε. To illustrate
this fact, we demonstrate the performance of the contourc() function by first defining a
further test function:

f5(x, y) = sin
(π

8
x
)
+ cos

(π

8
y
)
+ 0.1. (10)

We evaluate f5(x, y) on the interval [−25, 25]× [−25, 25] for different α and determine
the intersection points at which f5(x, y) = 0 applies; see Figure 11. It can be clearly seen
that here, the contouc() function also produces outliers that deviate significantly from
the nominal value. For example, the plotted outlier for α = 2/3 at [0.0, 83.0] leads to a
function value of approximately f5(0.0, 83.0) ≈ 0.48, while the observed effect increases
with smaller α. An exemplary application can be found in Appendix B. At this point, it
should be emphasized that although these outliers can be made visible in the course of a
graphical representation, they can only be identified with great effort when simply looking
at the generated results in the form of an output matrix. This leads to the necessity of an
additional processing of the data.

Figure 10. Arithmetic mean and according standard deviation of the quality.
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Figure 11. Performance of the contourc() function evaluated at f5(x, y) = 0 with decreasing α.

3.4. Number of Computed Roots

Figure 12 shows the arithmetic mean of the ratio of the calculated intersection points,
nr/nc. From the diagram, it can be concluded that for a regular grid, the ratio is almost
constant, and on average, six times more intersection points are calculated using the
RooTri() function. However, with the increase in error ε, the ratio decreases. From this, we
deduce that the number of calculated intersection points depends on the quality of the grid.

Figure 12. Arithmetic mean of the ratio of computed roots, nr/nc.
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3.5. Time Consumption

The time for computation is determined by setting a timestamp before and after the
function call is completed in each case. Thereby, we evaluate all performed experiments and
obtain a ratio of tc/tr = 1.1285± 0.087. From this, we find that the contourc() function
takes 12.85% more time on average. This is mainly due to the fact that when considering a
distorted grid, the griddata() function must also be used to interpolate the distorted grid
back to a regular grid.

3.6. Estimation of Required Memory

The exact determination of the memory requirement is complicated; for this reason, it
is to be estimated over the elements to be processed. Here, we again assume that a point
cloud P ∈ Rn×3 is given. For the application of RooTri(), therefore, 3n elements must
be processed. In the case of contourc(), in addition to the 3n elements, 3

√
n
√

n elements
must be considered due to the matrices required for the griddata() function. Thus, we
obtain the ratio

qc

qr
=

3n + 3
√

n
√

n
3n

= 2 (11)

to estimate the required memory. On this basis, we can formulate the statement that the
contourc() function takes up twice the memory used by the Rootri() function for the
same task.

3.7. Limits of Application

The quality of the results depends, in particular, on the degree of nonlinearity of the
underlying function. In Figure 13, this circumstance is qualitatively illustrated for a true
function with two points p1 and p2 from a given point cloud. In case of a moderate change
rate of the true function (Figure 13a), the approximation error to the true intersection
remains small, but if the behavior of the function between these support points is strongly
nonlinear, the deviations may also increase; see Figure 13b. In such a situation, it is
recommended to increase the resolution of the considered grid.

(a) (b)

Figure 13. Influence of nonlinearities; (a) moderate nonlinear course of the true function, (b) strongly
nonlinear course of the true function.

Due to numerical inaccuracies, it may be further advisable in case of parallel plane
sections to check the results again afterwards to see whether a pair of values exist twice in
the section plane. For example, for planes parallel to the xy-plane with offset d, two pairs
[x∗, y∗, d] and [x∗, y∗, d± η] with η � 1 can occur. One option is to only print the first two
values, i.e., x and y components, since the corresponding value for d is known, and use the
unique() command to remove duplicate pairs to avoid ambiguities.

Based on the evaluation, we can draw the conclusion that the RooTri() function
is significantly more robust than the contourc() function in terms of the quality of the
computed results. Furthermore, the calculation is performed faster, and less memory is
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required, since fewer elements have to be processed. At this point, it should be further
emphasized that the quality of the roots could only be determined because the test functions
were known in advance. If these are not known, there is no possibility to detect outliers,
since the control possibility is omitted. Rather, one is then dependent on the manual
preparation of the data to identify the outliers.

4. Practical Application

Following the evaluation, the application of our function will be demonstrated with
practical examples to highlight the wide range of possible fields of usage.

4.1. Exemplary Function Operation

As a generic example for the application of the function RooTri(), we consider a point
cloud P that is generated from the function

f6(x, y) = 4x2 + 6y2 − 1 (12)

and is available as a file called RooTriExample.txt. It is first defined as P and loaded
using the readmatrix() function. In the following step, the parameters describing the
plane are defined and passed to our function alongside point cloud P, i.e., we execute
RooTri(P,a,b,c,d). Here, Figure 14 shows, on the one hand, point cloud P and, on the
other hand, the resulting intersection points at different parameters for the description of
the respective intersection plane that we arbitrarily selected for our example (regarding a
certain definition of the intersection plane, see Section 2). It is clearly visible that the function
RooTri() can also be used for arbitrarily oriented planes to determine the intersection
points. The corresponding example script can be found in Appendix C.

Figure 14. Exemplary application of the RooTri() function.

4.2. Measuring Electrical Machines

In our next example, we consider the measurement of a permanently excited syn-
chronous machine for which real measured values were recorded and appropriately nor-
malized. A qualitative illustration of the machine is depicted in Figure 15. Torque M of the
machine depends on current i, which is composed of components id and iq, so the relation

M = M(id, iq) (13)
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applies. Component id of the current generates a magnetic field in the direction of the flux
linkage of the permanent magnet, and the iq component generates a magnetic field that is
rotated by 90◦ with respect to the flux linkage [22]. Within the scope of the investigation,
a characteristic diagram of the machine that contains the equipotential lines of constant
torques is to be created on the basis of the measured values.

Figure 15. Qualitative illustration of a permanently excited synchronous machine.

A total of 93,853 measured values p in the form

p = [id/ max{|id|}, iq/ max{|iq|}, M/ max{|M|}] (14)

are available as unstructured data in a point cloud P and are passed to the RooTri()
function. Parameter d of the plane equation given in Equation (1) describes, in this case,
the value of the respective torque M, which is varied in a range from −0.9 max{|M|} to
0.9 max{|M|}. The function is thus executed by calling RooTri(P,0,0,1,d) for each ratio
M/ max{|M|} as offset parameter d. In Table 5, the results with respect to the number
of calculated zeros (n) and the required computation time (t) are summarized. Using the
calculated combinations [id/ max{|id|}, iq/ max{|iq|}] to obtain the respective torque ratio,
the characteristic diagram can then be generated; see Figure 16. Note that due to the number
of data, not all results were plotted; however, the qualitative course of the equipotential
lines is clearly recognizable. The function offers the further advantage that the points of the
isolines are explicitly available. These working points can then be approached directly for
later operation.

Table 5. Measurement results.

M/ max{M} [−] −0.90 −0.70 −0.50 −0.30 −0.10 0.10 0.30 0.50 0.70 0.90

n [−] 2029 2496 2565 2581 2595 2850 2875 2940 2970 1479
t [s] 0.377 0.375 0.366 0.366 0.367 0.370 0.371 0.369 0.374 0.374
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Figure 16. Determination of equipotential lines of constant torques.

4.3. Structural Optimization

As a further use case of the RooTri() function, we consider a typical problem from the
area of so-called topology optimization, a subarea of structural optimization. The focus is on
the search for a suitable material distribution in a given design domain with defined boundary
conditions and external loads in order to fulfill a certain objective criterion. As a benchmark
problem, compliance is often minimized. Figure 17a shows such a problem. Here, a linear
elastic body that has corresponding Young’s modulus E, density ρ and POISSON’s ratio ν is
considered. On the left side, the body is clamped, and on the right side, a force F acts. The
extensions in the x- and y-directions are marked with 2L and 2H, respectively.

Figure 17. Benchmark problem in topology optimization; (a) problem definition, (b) numerically
determined values of the higher-dimensional φ-function in a certain iteration step.
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To determine the material distribution, different approaches are investigated in re-
search, and a famous representative is the so-called level set method. Here, it is assumed
that the component boundaries of the structure can be interpreted as the zeros of a higher-
dimensional function, the φ-function. At the component boundary, then, the condition
φ(x, y) = 0 holds. For example, Z. Zhuang et al. apply the level set method in [23] and
also develop a so-called adaptive mesh. This method can be used to discretize the com-
ponent boundaries more finely. However, the complexity of the optimization problem
requires to develop the φ-function iteratively to the local optimum in the framework. Due
to the numerics, the φ-function is then available as a point cloud; in Figure 17b, this is
shown for a certain iteration step. The task, now, is to intersect the point cloud with the
xy-plane in order to determine the optimized contour. We, therefore, pass point cloud
P depicted in Figure 17b to the RooTri() function and set parameter d to 0, i.e., we call
RooTri(P,0,0,1,0). As a result, we finally obtain the associated component contour in the
respective iteration step; see Figure 18. At this point, it should be noted that it is particularly
useful, in the case of topology optimization, to obtain as many zeros as possible. Thus, the
component contour can be described more precisely, which in turn is important for the
discretization of the component in the context of finite element analysis.

Figure 18. Resulting structure in a certain iteration step; component boundary represented by
intersection points.

4.4. Further Impact

The practical examples shown above illustrate two application options from the engi-
neering field; however, the use of the RooTri() function is not limited to these examples,
as it can also be used in many different ways. A classic field of application for determining
isolines can be found in geography. Here, land surfaces are surveyed in order to extract
elevation levels from geographical information. Scalar fields are also the subject of research
in meteorology. Atmospheric variables such as pressure and temperature distributions
or humidity are examined as parameters that can be used to create weather maps. Other
areas of application can be found in biology or chemistry when examining substance
concentrations, for instance.

5. Conclusions and Outlook

In this paper, we present a simple and robust function named RooTri() for determin-
ing the roots of a two-dimensional scalar field with a plane arbitrarily oriented in space. One
major advantage is that our function is able to handle even unstructured data in comparison
to the contourc() function provided in MATLAB©, which is used as reference in this work.
To evaluate the function, a test field is generated based on proven statistical methods, and a
total of four different test functions are examined. Our experiments show that with finer
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resolution of the interval to be investigated, the percentage deviation from the nominal
value decreases and converges to zero. On the other hand, the percentage deviation due to
outliers produced by the function contourc() even increases with finer resolution of the
grid. Based on our results, we further find that compared with the contourc() function,
our function uses half as much memory and works 12.85% faster on average. In addition,
for an ideal grid, approximately six times more intersection points are calculated. Finally,
the application of our function is demonstrated using practical examples from the field of
electrical machines and structural optimization. As a result of the findings presented, we
will use the RooTri() function for our further research work and have already been able to
implement it successfully in more complex algorithms (for example, for automated mea-
surement data evaluation or topology optimization) as a function module. In particular, the
robust handling of unstructured data and the speed of the evaluation are decisive factors.

Concluding, we would like to highlight that the RooTri() function can be used
for a variety of problems in which scalar fields in the form of point clouds play a role.
Accordingly, it is also a cross-domain tool and is not exclusively limited to engineering
problems. Therefore, we hope that researchers from a wide range of fields will use our
function for their work. For future activities, the code should still be transferred to other
programming languages (such as PYTHON) and made available to the community.
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Appendix A. MATLAB Code Containing the RooTri Function

% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
% RooTri
% v1 . 0
%
% by Jan O e l l e r i c h & Keno Jann Buescher & Jan Phi l ipp Degel
% 2023
% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

func t ion [ ipmat ] = RooTri ( arg1 , arg2 , arg3 , arg4 , arg5 )
% INSTRUCTIONS
% add RooTri to your current working f o l d e r
% determine inputs as fo l lows
% ouput m x 2 matrix c a l l e d ’ ipmat ’

% INPUTS
% arg1 point cloud as n x 3 matrix
% arg2 a of parameter plane equation , d e f a u l t = 0
% arg3 b of parameter plane equation , d e f a u l t = 0
% arg4 c of parameter plane equation , d e f a u l t = 1
% arg5 d of parameter plane equation , d e f a u l t = 0

https://github.com/janoellerich/RooTri
https://github.com/janoellerich/RooTri
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% perform delaunay t r i a n g u l a t i o n
T = delaunay ( arg1 ( : , 1 ) , arg1 ( : , 2 ) ) ;

a_vec = arg2 * ones ( length ( T ( : , 1 ) ) , 1 ) ;
b_vec = arg3 * ones ( length ( T ( : , 1 ) ) , 1 ) ;
c_vec = arg4 * ones ( length ( T ( : , 1 ) ) , 1 ) ;
d_vec = arg5 * ones ( length ( T ( : , 1 ) ) , 1 ) ;

p1_mat = [ arg1 ( T ( : , 1 ) , 1 ) arg1 ( T ( : , 1 ) , 2 ) arg1 ( T ( : , 1 ) , 3 ) ] ;
p2_mat = [ arg1 ( T ( : , 2 ) , 1 ) arg1 ( T ( : , 2 ) , 2 ) arg1 ( T ( : , 2 ) , 3 ) ] ;
p3_mat = [ arg1 ( T ( : , 3 ) , 1 ) arg1 ( T ( : , 3 ) , 2 ) arg1 ( T ( : , 3 ) , 3 ) ] ;

vec_1 = p2_mat − p1_mat ; % main vec tor 1 : p1 −> p2
vec_2 = p3_mat − p2_mat ; % main vec tor 2 : p2 −> p3
vec_3 = p1_mat − p3_mat ; % main vec tor 3 : p3 −> p1

aux_p12 = p1_mat + 0 . 5 * vec_1 ; % aux . point on vec tor 1
aux_p23 = p2_mat + 0 . 5 * vec_2 ; % aux . point on vec tor 2
aux_p31 = p3_mat + 0 . 5 * vec_3 ; % aux . point on vec tor 3

aux_vec_12_3 = p3_mat − aux_p12 ;
aux_vec_23_1 = p1_mat − aux_p23 ;
aux_vec_31_2 = p2_mat − aux_p31 ;

aux_vec_12_23 = aux_p23 − aux_p12 ;
aux_vec_23_31 = aux_p31 − aux_p23 ;
aux_vec_31_12 = aux_p12 − aux_p31 ;

lambda_mat ( : , 1 ) = ( d_vec − ( p1_mat ( : , 1 ) . * a_vec + . . .
p1_mat ( : , 2 ) . * b_vec + p1_mat ( : , 3 ) . * c_vec ) ) ./ . . .
( vec_1 ( : , 1 ) . * a_vec + vec_1 ( : , 2 ) . * b_vec + . . .
vec_1 ( : , 3 ) . * c_vec ) ;

lambda_mat ( : , 2 ) = ( d_vec − ( p2_mat ( : , 1 ) . * a_vec + . . .
p2_mat ( : , 2 ) . * b_vec + p2_mat ( : , 3 ) . * c_vec ) ) ./ . . .
( vec_2 ( : , 1 ) . * a_vec + vec_2 ( : , 2 ) . * b_vec + . . .
vec_2 ( : , 3 ) . * c_vec ) ;

lambda_mat ( : , 3 ) = ( d_vec − ( p3_mat ( : , 1 ) . * a_vec + . . .
p3_mat ( : , 2 ) . * b_vec + p3_mat ( : , 3 ) . * c_vec ) ) ./ . . .
( vec_3 ( : , 1 ) . * a_vec + vec_3 ( : , 2 ) . * b_vec + . . .
vec_3 ( : , 3 ) . * c_vec ) ;

lambda_mat ( : , 4 ) = ( d_vec − ( aux_p12 ( : , 1 ) . * a_vec + . . .
aux_p12 ( : , 2 ) . * b_vec + aux_p12 ( : , 3 ) . * c_vec ) ) ./ . . .
( aux_vec_12_3 ( : , 1 ) . * a_vec + aux_vec_12_3 ( : , 2 ) . * . . .
b_vec + aux_vec_12_3 ( : , 3 ) . * c_vec ) ;

lambda_mat ( : , 5 ) = ( d_vec − ( aux_p23 ( : , 1 ) . * a_vec + . . .
aux_p23 ( : , 2 ) . * b_vec + aux_p23 ( : , 3 ) . * c_vec ) ) ./ . . .
( aux_vec_23_1 ( : , 1 ) . * a_vec + aux_vec_23_1 ( : , 2 ) . * . . .
b_vec + aux_vec_23_1 ( : , 3 ) . * c_vec ) ;

lambda_mat ( : , 6 ) = ( d_vec − ( aux_p31 ( : , 1 ) . * a_vec + . . .
aux_p31 ( : , 2 ) . * b_vec + aux_p31 ( : , 3 ) . * c_vec ) ) ./ . . .
( aux_vec_31_2 ( : , 1 ) . * a_vec + aux_vec_31_2 ( : , 2 ) . * . . .
b_vec + aux_vec_31_2 ( : , 3 ) . * c_vec ) ;
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lambda_mat ( : , 7 ) = ( d_vec − ( aux_p12 ( : , 1 ) . * a_vec + . . .
aux_p12 ( : , 2 ) . * b_vec + aux_p12 ( : , 3 ) . * c_vec ) ) ./ . . .
( aux_vec_12_23 ( : , 1 ) . * a_vec + aux_vec_12_23 ( : , 2 ) . * . . .
b_vec + aux_vec_12_23 ( : , 3 ) . * c_vec ) ;

lambda_mat ( : , 8 ) = ( d_vec − ( aux_p23 ( : , 1 ) . * a_vec + . . .
aux_p23 ( : , 2 ) . * b_vec + aux_p23 ( : , 3 ) . * c_vec ) ) ./ . . .
( aux_vec_23_31 ( : , 1 ) . * a_vec + aux_vec_23_31 ( : , 2 ) . * . . .
b_vec + aux_vec_23_31 ( : , 3 ) . * c_vec ) ;

lambda_mat ( : , 9 ) = ( d_vec − ( aux_p31 ( : , 1 ) . * a_vec + . . .
aux_p31 ( : , 2 ) . * b_vec + aux_p31 ( : , 3 ) . * c_vec ) ) ./ . . .
( aux_vec_31_12 ( : , 1 ) . * a_vec + aux_vec_31_12 ( : , 2 ) . * . . .
b_vec + aux_vec_31_12 ( : , 3 ) . * c_vec ) ;

% compute i n t e r s e c t i o n matr ices
intersec_mat_1 = p1_mat + lambda_mat ( : , 1 ) . * vec_1 ;
in tersec_mat_2 = p2_mat + lambda_mat ( : , 2 ) . * vec_2 ;
in tersec_mat_3 = p3_mat + lambda_mat ( : , 3 ) . * vec_3 ;
in tersec_mat_4 = aux_p12 + lambda_mat ( : , 4 ) . * aux_vec_12_3 ;
in tersec_mat_5 = aux_p23 + lambda_mat ( : , 5 ) . * aux_vec_23_1 ;
in tersec_mat_6 = aux_p31 + lambda_mat ( : , 6 ) . * aux_vec_31_2 ;
in tersec_mat_7 = aux_p12 + lambda_mat ( : , 7 ) . * aux_vec_12_23 ;
in tersec_mat_8 = aux_p23 + lambda_mat ( : , 8 ) . * aux_vec_23_31 ;
in tersec_mat_9 = aux_p31 + lambda_mat ( : , 9 ) . * aux_vec_31_12 ;

ipmat = intersec_mat_1 ( . . .
lambda_mat ( : , 1 ) <=1 & lambda_mat ( : , 1 ) >= 0 , : , : ) ;

ipmat = [ ipmat ; . . .
in tersec_mat_2 ( . . .
lambda_mat ( : , 2 ) <=1 & lambda_mat ( : , 2 ) >= 0 , : , : ) ] ;

ipmat = [ ipmat ; . . .
in tersec_mat_3 ( . . .
lambda_mat ( : , 3 ) <=1 & lambda_mat ( : , 3 ) >= 0 , : , : ) ] ;

ipmat = [ ipmat ; . . .
in tersec_mat_4 ( . . .
lambda_mat ( : , 4 ) <=1 & lambda_mat ( : , 4 ) >= 0 , : , : ) ] ;

ipmat = [ ipmat ; . . .
in tersec_mat_5 ( . . .
lambda_mat ( : , 5 ) <=1 & lambda_mat ( : , 5 ) >= 0 , : , : ) ] ;

ipmat = [ ipmat ; . . .
in tersec_mat_6 ( . . .
lambda_mat ( : , 6 ) <=1 & lambda_mat ( : , 6 ) >= 0 , : , : ) ] ;

ipmat = [ ipmat ; . . .
in tersec_mat_7 ( . . .
lambda_mat ( : , 7 ) <=1 & lambda_mat ( : , 7 ) >= 0 , : , : ) ] ;

ipmat = [ ipmat ; . . .
in tersec_mat_8 ( . . .
lambda_mat ( : , 8 ) <=1 & lambda_mat ( : , 8 ) >= 0 , : , : ) ] ;

ipmat = [ ipmat ; . . .
in tersec_mat_9 ( . . .
lambda_mat ( : , 9 ) <=1 & lambda_mat ( : , 9 ) >= 0 , : , : ) ] ;

i f isempty ( ipmat )
ipmat = [ ] ;
disp ( ’ERROR: no i n t e r s e c t i o n points found ’ )

e l s e
% clean matrix
ipmat = unique ( ipmat , ’ rows ’ ) ;
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end

end

Appendix B. Exemplary Application of Contourc

% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
% Exemplary Appl icat ion of contourc
%
% by Jan O e l l e r i c h & Keno Jann Buescher & Jan Phi l ipp Degel
% 2023
% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% INSTRUCTIONS
% l as i n t e r v a l l i m i t s
% n as number of increments

c l c
c l e a r
c l o s e a l l

l = 2 5 ;
n = 5 0 ;

% def ine v e c t o r s x and y
x = l i n s p a c e ( − l , l , n ) ;
y = l i n s p a c e ( − l , l , n ) ;

% build mesh grid
[X , Y] = meshgrid ( l i n s p a c e ( − l , l , n ) ) ;

% generate matrix
Z = s i n ( pi * X / 8) + cos ( pi * Y / 8) + 0 . 1 ;

% perform contourc funct ion
P1 = contourc ( x , y , Z , [ 0 , 0 ] ) ;

p l o t ( P1 ( 1 , : ) , P1 ( 2 , : ) , ’ o ’ , ’ MarkerSize ’ , 2 )
a x i s equal ; x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ y ’ )

Appendix C. Exemplary Application of RooTri

% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
% Exemplary Appl icat ion of RooTri
%
% by Jan O e l l e r i c h & Keno Jann Buescher & Jan Phi l ipp Degel
% 2023
% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% INSTRUCTIONS
% add RooTri to your current working f o l d e r
% add RooTriExample . t x t to your current working f o l d e r

c l c
c l e a r
c l o s e a l l

% load RooTriExample . t x t f i l e as point cloud
P = readmatrix ( ’ RooTriExample . t x t ’ ) ;

% def ine plane parameters
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a = 0 . 5 0 ; b = 0 . 2 0 ;
c = 0 . 4 0 ; d = 0 . 3 0 ;

% run RooTri ( )
ipmat = RooTri ( P , a , b , c , d ) ;

% p l o t r e s u l t s
s c a t t e r 3 ( ipmat ( : , 1 ) , ipmat ( : , 2 ) , ipmat ( : , 3 ) , 1 , ’ k ’ )
a x i s equal
t i t l e ( ’ I n t e r s e c t i o n points ’ )
x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ y ’ ) ; z l a b e l ( ’ z ’ )
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