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Abstract: Predictive control has great potential in the home energy management domain. However,
such controls need reliable predictions of the system dynamics as well as energy consumption and
generation, and the actual implementation in the real system is associated with many challenges.
This paper presents the implementation of predictive controls for a heat pump with thermal storage
in a real single-family house with a photovoltaic rooftop system. The predictive controls make use of
a novel cloud camera-based short-term solar energy prediction and an intraday prediction system
that includes additional data sources. In addition, machine learning methods were used to model the
dynamics of the heating system and predict loads using extensive measured data. The results of the
real and simulated operation will be presented.

Keywords: predictive control; PV power forecast; short-term solar forecast, heat pump; model
predictive control; neural networks

1. Introduction

In 2021, almost half of the global energy demand for buildings was used for space
and water heating. More than 60% of the heating energy demand is met by fossil fuels and
accounts for 7% of the world-wide energy-related CO2 emissions [1]. Heat pumps (HPs),
especially in combination with rooftop photovoltaic (PV) systems, will play an essential
role in decarbonizing this sector. According to a scenario by the International Energy
Agency, the number of heat pumps worldwide will reach 600 million in 2030, more than
triple compared with that in 2020 [2].

Heat pumps offer electric demand-side flexibility, especially in combination with
thermal storage and other heating options. Therefore, classic consumers are increasingly
becoming prosumers with complex energy systems that offer many opportunities for
optimization. Accordingly, efficient home energy management systems (HEMSs) grow in
importance since they help prosumers balance local renewable generation and consumption,
increase self-consumption, reduce energy costs, and increase the security of the supply.
As an interface to the smart grid, HEMSs can support the operation of a higher-level power
grid and help it use its resources efficiently [3].

In the literature, a variety of different system architectures and control methods
are proposed to achieve the different energy management goals, ranging from simple
rule-based controls to generic algorithms, swarm optimization, and model predictive
controls [4,5]. HEMSs with basic rule-based controllers might, for example, attempt to
maximize the self-consumption of photovoltaic power by feeding excess photovoltaic
power into the battery during the day until it is full or drawing power from the battery
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at night until it is empty. Such approaches are robust and work well for simple settings,
but are less suitable for more complex optimization tasks. Predictive controls, which
may use predictions of local consumption, generation, and other influencing parameters,
as well as models of system dynamics, can significantly improve the performance of such
energy management systems compared with conventional controls, as was shown for
model predictive control (MPC) in [6]. However, the actual implementation in a real
system presents several challenges, including providing real-time predictions of loads and
generating and modeling the system components, so case studies in the literature are still
quite limited [7].

This paper presents such a case study on the development and demonstration of an
advanced predictive HEMS for a real two-family house with a PV system and a complex
heating system including a heat pump and thermal storage. Two predictive control methods
will be presented, a simple heuristic control and a more sophisticated MPC approach
employing machine learning tools. In both methods, the control objective is the increase in
the self-consumption of PV power. The particular novelty is that the HEMS makes use of a
cloud camera-based short-term forecast for the PV power, which is described in detail in [8].

PV power can fluctuate on very small timescales due to passing clouds which shade
the PV system. Forecasting these fluctuations for the next minutes or hours is not trivial
and always contains a certain degree of uncertainty, which has to be considered in energy
management systems. Forecasts of solar irradiance and PV power can be retrieved from
different data sources, depending which time horizon and resolution is required [9]. Only
few studies use real PV power forecasts with uncertainties for HEMS applications. Mostly,
these use PV power forecasts based on recent measurements or Numerical Weather Predic-
tions (NWPs) provided by weather services [10,11]. However, these forecasts are not suited
to predict the timing of irradiance ramps on a minute time scale. For controlling a heat
pump, it is beneficial to have accurate forecasts of these fluctuations, since the heat pump
has a minimum run time of several minutes. We use, therefore, an innovative forecasting
approach based on all-sky imagers (ASI), taking pictures from the sky every 10 s. They can
provide forecasts with a very high resolution for a time horizon of up to 15 min, resolving
the movement of single clouds. To cover longer forecast horizons of up to 24 h, we calculate
a second forecast based on a combination of satellite-based forecasts, the persistence of
recent measurements, and NWPs with a resolution of 15 min. This forecast has a resolution
of 15 min. Satellite-based forecasts have a higher spatial and temporal resolution than
NWP-based forecasts and a better forecasting performance for horizons of several hours
into the future [12].

Increasing PV self-consumption in power-to-heat systems is a worthwhile goal, as it
helps both the system operator and the grid operator through saved electricity costs and
reduced load on the power grid. One can find numerous approaches in the literature.
The use of storage for electrical and thermal load management is discussed in [13], demand
side management strategies can be found in [14], and the appropriate sizing of PV sys-
tems and storage is explored in [15]. Energy management strategies based on predictive
algorithms are discussed in [16]. Predictive algorithms have been shown to improve the
self-consumption of PV-controlled systems and reduce operating costs [17].

Several research projects have already been carried out in the field of predictive energy
management of heat pumps in buildings. These often focus on reducing the operational cost
of house heating and electricity consumption to achieve economical savings [18,19] or on
improving energy efficiency and optimizing the performance of the heating systems [20,21].
Weeratunge et al. implemented a mixed integer linear programming-based model pre-
dictive controller on a solar assisted ground source heat pump and compared the us-
age of thermal storage in the system, achieving 7.8% of savings and peak shaving [22].
Kajgaard et al. estimated the savings with a linear-programming-based model predictive
control for a domestic heat pump by shifting the loads based on the electricity spot price,
achieving savings between 7% and 12% [23].



Energies 2023, 16, 6980 3 of 19

Whereas many works in this field are based on classical strategies of predictive control
with physical models, recent publications use machine-learning (ML)-based models for the
optimization of these systems [24–26]. The usage of artificial neural networks (ANNs) with
Long Short-Term Memory (LSTM) architectures [27] can be useful for the modeling and
prediction of dynamical nonlinear systems [28,29]. Also, the use of ML techniques for the
forecasting of loads has been intensively studied [30–32].

The rest of the paper is structured as follows. In Section 2, we present the real inhabited
Projekthaus Ulm, including its technical equipment, which in this paper serves as a test
environment for the implementation of the new control strategies and prediction algorithms.
Then, we describe the methodology on which the short-time forecast used is based, namely
the use of sky images for the shortest time scales and the combination with satellite data
and numerical weather forecasts for longer time scales. In addition, we describe how
these forecasts can be used for simple heuristic control to achieve an increase in PV self-
consumption. Then, we present a more complex model-based optimizing control that uses
machine learning methods to predict the system dynamics. In Section 3, the results of the
PV short-term prediction, the heuristic control, and the model-based control from the real
case study are presented and discussed, before a summary follows in Section 4.

2. Materials and Methods
2.1. Residential Building ‘Projekthaus Ulm’ as Real Demonstration Environment

The Projekthaus Ulm (PHU) is a low-energy house inhabited by a family of four.
The house is equipped with a 9 kWp and a 4 kWp PV system and a 4 kWh battery storage.
The core of the heating system consists of a 14 kW air-to-water heat pump and an 800 L
thermal stratified storage tank with a max. 6 kW heating rod. Bivalent operation is made
possible by a supplementary pellet burner, which is used primarily during periods of low
outdoor temperatures when the efficiency of the heat pump drops [33]. The system allows
for heating via underfloor heating and conventional radiators, as well as hot water delivery
via a freshwater station. Due to the fact that the heat storage reaches a temperature of
over 60 °C during operation, the requirements according to DVGW worksheet W 551 in
combination with the German Drinking Water Ordinance are fulfilled, and as the usable
hot water is not delivered directly from the thermal storage, further disinfection is not
included in the modeling and analysis. A schematic of the installed heating and electric
system is shown in Figure 1.

Air - water  heat  
pump with  direct  

condensa�on

Underfloor hea�ng

Convec�on   
heaters

Fresh   water   sta�on

Hea�ng  rod

Stra�fied 
storage  

tank

Pellet stove

Photovoltaic  
generator

Project 
house   Ulm

Distribu�on    
grid

Energy 
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Energy   
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Figure 1. Schematic representation of the installed components in the Projekthaus Ulm [34]. Black
lines represent the connections of the energy system, heat as full lines, and electricity as dashed lines.
Green lines represent key communication lines.
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The installed heat pump uses the technology of direct condensation, where an im-
mersed heat exchanger coil in the storage tank acts as the condenser and realizes the heat
transfer, increasing the water temperature. The heat transfer efficiency increases with this
configuration, as no additional pump is required between the condenser and the storage
tank, decreasing energy losses [35]. However, since the energy transfer is via the refrigerant
and the energy transfer from the coil to the fluid has to be considered, the physical modeling
is more complex than that for conventional heat pumps [36,37].

The PHU is equipped with extensive measurement technology that measures numer-
ous thermal and electrical generators and consumers with high temporal resolution. State
variables such as room temperatures and outdoor temperatures are also recorded and
collected in a database [34].

One goal that is being investigated and pursued in the PHU and also in this work is to
increase the PV self-consumption share (SCS). This is defined as

SCS =
EPV,c

EPV,g
, (1)

where EPV,g is the PV energy generated over the study period and EPV,c is the PV energy
consumed from it directly or after intermediate storage in a battery in the house [38]. Since
this work is about using the flexibility of the heat pump and thermal storage, the battery
was intentionally not used.

A special feature of the PHU is an already installed rule-based or heuristic control
of the heat pump, which aims to increase the PV self-consumption. For this purpose,
a controller observes the current measured values of the PV power and the thermal tank
temperatures. If certain conditions are satisfied (average tank temperature below 40 °C, PV
power values above the threshold of 1.5 kW during the last 10 min, current PV power at
least 3.5 kW), the heat pump is started to charge the thermal storage tank to the maximum.
This behavior is called single charging in the following. This is based on the assumption
that PV generation will continue to be above the threshold value during the subsequent
period of storage charging. Thus, ultimately, a persistence prediction of the PV power is
already used.

In this work, we aim to further improve the existing heuristic control of heat pump
with persistence prediction. For this purpose, we investigated two different predictive
control approaches. The first approach extends the existing heuristic control. The second
approach uses the more complex model predictive control, using dynamic models of the
heating system. Both approaches notably use innovative local predictions of PV generation,
which are described below.

2.2. Short-Term PV Power Forecasting

Within the project, two forecasting approaches were used as inputs to the energy
management systems. The first is an ASI-based nowcasting system that uses data from
a sky camera and real-time irradiance measurements. It has a maximal forecast horizon
of 15 min, depending on the cloud situation, and a resolution of 10 s. The second is an
intraday forecasting system that combines satellite data with data from numerical weather
prediction (NWP) models and real-time irradiance measurements. It has a maximum
forecast horizon of 24 h and a resolution of 15 min.

The output of both forecasting systems is a forecast of global horizontal irradi-
ance (GHI), which is used as input to a PV simulation to generate a PV power forecast for
the two rooftop PV systems at the Projekthaus Ulm using the model described in [39].

2.2.1. ASI-Based Nowcasting System

In the ASI-based nowcasting system, irradiance forecasts are calculated in a step-by-
step physically based approach. A detailed description of the nowcasting system can be
found in [8,34]. A fisheye camera takes pictures of the whole sky every 10 s. The first step of
the forecasting algorithm is calculating a cloud mask using the image pixel values as inputs.
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Every pixel is classified as cloud or clear sky. The cloud movement is then calculated using
an optical flow algorithm. The resulting motion field is applied in the next step to the cloud
mask using inverse mapping to retrieve a forecasted cloud mask. From the forecasted
cloud mask, a binary time series of shadow is extracted for the pixel of the sun position in
the image, which is the position that shades the camera. This time series of shadow and
recent irradiance measurements are used as input for a statistical model that calculates
an irradiance forecast. Figure 2 illustrates the main steps from images of the sky to an
irradiance forecast.

Figure 2. (Left): sky image from the camera at the Projekthaus, (middle): computed cloud mask with
cloud motion vectors, (right): resulting irradiance forecast for the location of the Projekthaus.

To fill gaps and to provide forecasts for all times of the day, additionally, a persistence
forecast based on real-time irradiance measurements is calculated. Gaps in the ASI forecasts
occur since they can only be calculated for zenith angles smaller than 80°. Also, if the clouds
move fast or cloud height is low, it can happen that a forecast run ends before the 15 min
horizon because the visible clouds were shifted out of the image. We use the persistence of
the clear sky index (k∗), which is defined as k∗ = GHI/GHIclear, to account for the diurnal
cycle. GHIclear is the clear sky irradiance, which we calculate using the method described
in [40]. The persistence forecast is then calculated from Equation (2), where t is the forecast
valid time and t0 is the start time of the forecast,

GHIpers(t) = GHIclear(t) · k∗(t0). (2)

For the implementation of the ASI-based nowcasting system at the Projekthaus, a cam-
era (FE9381 from Vivotek, Taipei, Taiwan) and a pyranometer (MS-80 from EKO, Lagos,
Nigeria) were installed on the roof. The data are transferred in real time to a computer in
the Projekthaus that processes the data.

2.2.2. Intraday Forecasting System

The ASI-based nowcasting system forecast alone does not have a large enough pre-
diction horizon that aligns optimally with the requirements of the model predictive
control approach. Recognizing this, a solution that merges different forecast sources
was implemented.

The intraday forecasting system combines irradiance forecasts from several different
sources via a machine learning model to generate an optimized forecast for each intraday
forecast horizon, ranging from 15 min up to 24 h. Three different irradiance forecasts are
used as input for the combination model: a persistence forecast generated from irradiance
measurements as described in Equation (2), an NWP model forecast from the ECMWF (Eu-
ropean Centre for Medium-Range Weather Forecasts) Integrated Forecasting System, and a
forecast generated from cloud motion vectors on satellite images [41]. The input forecasts
are combined through a linear regression model, which essentially conducts a weighting
of the different input forecast types depending on the forecast horizon. The model was
trained on a historic data set with a time span of 5 months (May–September 2019).

2.3. Predictive Heuristic Control Approach

The first control approach presented here aims to improve the already implemented
heuristic control for single charging of the storage (cf. Section 2.1). The persistence pre-
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diction used so far has the disadvantage that it cannot predict imminent PV power dips
due to clouds. If a drop in PV power actually occurs, power must be drawn from the grid
or the single charge must be aborted. Neither of these is desirable. In particular, a certain
minimum runtime of the heat pump should not be undercut.

Therefore, persistence prediction is replaced by cloud camera-based PV prediction,
as presented in Section 2.2.1. The existing heuristic controller was adapted to trigger a
one-time charge when the current power is above a threshold of 3.5 kW and the ASI-
based prediction predicts that this power will be maintained over the following 10 min,
see Figure 3.
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Figure 3. Flow diagram of predictive heuristic control; a detailed description of the variables is
defined in Section 2.4.1.

Data exchange with the different systems in the Projekthaus Ulm was realized via
different protocols like KNX and Modbus. An InfluxDB database was used for storing the
data. Controllers and data exchange were implemented based on several Python scripts
running as cron jobs on a LINUX system on an industrial PC.

A special challenge in the implementation of the original and also the here-presented
improved heuristic controller is that the heat pump has a controller that controls the internal
components, like compressor, valves, pumps, etc. This internal controller does not initially
allow the desired single charge. Therefore, the control implemented in the heat pump,
which is based on a predetermined heating curve and dead zone controls (hysteresis), must
be “tricked” by the predictive controller by appropriately faking appropriate temperature
input data, which results in the heat pump turning on and off and allows for a single charge.

2.4. Predictive Model-Based Control Approach
2.4.1. Model Predictive Control with Hybrid System Model

The second control method based on MPC presented here differs fundamentally from
the rule-based heuristic approaches discussed previously.

In MPC, mathematical optimization algorithms are used to calculate optimal sched-
ules for certain manipulated variables—in our case, the activation of the heat pump—over
a certain time horizon [42]. This is performed by solving a mathematical optimization
problem in which an objective function is minimized or maximized. In doing so, the al-
gorithm is able to ensure compliance with defined state and control limits, such as limit
temperatures of the thermal storage or minimum runtimes of the heat pump. The opti-
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mization also includes predictions of the controlled system’s behavior. This is performed,
on the one hand, on the basis of a dynamic model of the system behavior, and, on the
other hand, on the basis of predictions of relevant external influencing parameters, like
PV power or thermal loads in our case. The MPC approach can reach its potential in the
home energy management sector if the forecast horizon covers at least one daily cycle.
Accordingly, the intraday forecast described in Section 2.2.2 is needed here instead of
the short-term forecast from Section 2.2.1. In addition, the MPC can handle disturbances
and model errors by updating the optimization calculations in regular time steps, taking
into account current measurements of the initial states as well as updated predictions of
external time-varying parameters. Only the first steps of the control schedule are actually
realized until an updated timetable is available again. Thus, one works with a receding
prediction horizon [17,43,44].

In the following, we will introduce the optimization problem in a little more detail.
The optimization objective is to maximize the self-consumption of PV power. This can also
be interpreted as minimizing the grid power consumption Pgc,k. We therefore choose the
cost function J to be minimized as

J(uHP, uPO) =
N

∑
k=0

P2
gc,k. (3)

Here, k denotes the index of the time step tk within an equidistant discretization
[t0, t1, . . . , tN ] of the prediction time horizon. For each new optimization, t0 then corre-
sponds to the current real time and, thus, to the starting point of the new optimized
schedule. The heat pump in our specific case continued to operate automatically with
the standard operation and the scheduling and control were performed with the single
charge mode. To include this into the optimization, the different modes were formulated
as two separate heat pumps. The vector uHP = (uHP,0, uHP,1, · · · , uHP,N)

T is a vector of
binary control variables uHP,k ∈ {0, 1} that denote the switching state of the heat pump
in the standard operation. The vector uHPSC was defined similarly to represent the heat
pump in the single charge operation. The vector of binary variables uPO for the pellet oven
switching state is defined accordingly. uHP, uHPSC , and uPO, together, thus represent the
control schedule.

The quadratic cost function penalizes high Pgc,k values particularly strongly, and thus
avoids load peaks, which is desirable from the grid operator’s point of view on the one
hand and can also bring economic advantages for plant operators with certain electricity
contracts. The minimization of the cost function (3) is now performed by means of special
mathematical optimization algorithms, taking into account a number of constraints, which
are presented below in the form of equations and inequalities (4) to (11).

In particular, the consumed grid power Pgc = (Pgc,1, . . . , Pgc,N)
T over the prediction

horizon is related to the control schedules uHP and uPO by the the electrical power balance,

Pgc,k + PPV,k = PHP,k + PHPSC ,k + PPO,k + Pload,k + Pgf,k, for every k ∈ {1, . . . , N}. (4)

Next to Pgc,k, we have PPV,k as the generated PV power on the generation side, whereas
on the load side, PHP,k, PHPSC ,k, PPO,k, and Pload,k denote the power consumed by the heat
pump in the standard operation, the heat pump in the single charge operation, the pellet
oven, and the other electrical loads in the house, respectively, and Pgf,k is the power fed
into the grid. We recall that the battery is not considered here.

Here, the generated PV power PPV,k and the power consumed by other electrical
loads Pload,k are external time-varying parameters and have to be provided via forecasts.
The power consumption of each of the formulated heat pumps PHP,k and PHPSC ,k are
related to their control variables, i.e., the switching states uHP,k and uHPSC ,k, respectively,
by means of a regression model that has Tamb,k, the switching states uHP,k and uHPSC ,k,
and the temperature T8,k at the bottom layer of the stratified tank as inputs. The power
consumption of the pellet oven PPO,k is related to the control variable, i.e., the switching
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state uPO,k, by means of the simple relation PPO,k = uPO,k · PPO,nom with a constant nominal
pellet oven power PPO,nom. Note that the values of Pgc,k ≥ 0 and Pgf,k ≥ 0 then follow from
the other values due to (4).

Another constraint that has to be taken into account during optimization is the dy-
namics of the heating system, consisting of heat pump, pellet oven, thermal storage, and
thermal loads, which are modeled by

xk+1 = f (xk, ck, uHP,k, uPO,k), (5)

x0 = xic. (6)

Here, the dynamic state vector xk = (T1,k, . . . , T8,k)
T contains the temperature levels of

different positions in the thermal stratified storage. xic is the vector of initial temperatures at
time t0, coming from current measurements. The vector ck = (Troom,k, Tamb,k, Q̇UF,k, Q̇Rad,k,
PFW,k)

T contains the external parameters that influence the heating system. Here, Troom,k is
the temperature of the room where the heat pump is installed. Tamb,k is the outside ambient
temperature, which is especially important for the efficiency of the heat pump. Q̇UF,k and
Q̇UF,k denote the heat flows of the underfloor heating and the radiators to the heated rooms,
respectively. PFW,k is the electrical power of the fresh water pump, which influences the
temperatures in the thermal storage by extracting heat for hot water.

In modeling the heating system, no physical equations were used or the parameters of
classical system models identified, so no explicit expressions for the function f are available.
Instead, a hybrid model was used here that combines a neural network for the dynamics of
the stratified storage tank and direct condensation with a regression model for the heat flow
of the heat pump. The reason for this data-based approach was that the authors could not
achieve sufficient model quality with the classical modeling approaches, probably due to
the particular complexity of the combination of direct condensation and stratified storage.

Neural networks of the type Long Short-Term memory (LSTM) were used for modeling
the stratified storage, see Figure 4. The LSTM approach is especially suited for the modeling
of system dynamics [45]. The network was trained on the basis of measurement data from
the Projekthaus Ulm in such a way that the new system states xk+1 can be predicted with the
aid of the input data, consisting of the system states xk, the external parameters ck, and the
controls uHP,k, uHPSC ,k, and uPO,k from the old time step k. Note that the model uses internal
auxiliary variables, namely Q̇HP,k, Q̇HPSC ,k, and Q̇PO,k, which are the heat flows of the heat
pump and the pellet oven and which depend in particular on the control parameters uHP,k,
uHPSC ,k, and uPO,k as well as on external parameters. For additional details, we refer to [7].

Heat Pump 
(Standard Op.)

Neural Network
(LSTM = Long-

short-term 
memory)

x

Heat Pump 
(Single Charge)

Figure 4. Hybrid model structure with LSTM neural network for the stratified thermal storage and
linear regression model for the heat pump, showing input and output parameters.



Energies 2023, 16, 6980 9 of 19

The regression model of the heat pump was first fitted to the data provided by man-
ufacturer’s capacity tables, and then fine-tuned and validated with measured data from
the Projekthaus Ulm. The inputs for this regression model were the outside ambient tem-
perature Tamb,k, the switching state of any mode of operation of the heat pump, uHP,k or
uHPSC ,k, and the temperature T8,k at the bottom layer of the stratified tank. This creates a
feedback within the hybrid model that takes into account the thermal stratification of the
tank and the environment conditions and uses this information to describe the heat flow of
the system. This approach is based on the work of Sawant [46].

In addition to (4) and (5), an optimal solution must satisfy further constraints, such as

xmin ≤ xk ≤ xmax (7)

uHP,k · T7,k ≤ RLmax (8)

uHPSC ,k · T7,k ≤ RLmax (9)

HC(Tamb,k) + βlower ≤ uHP,k · T4,k ≤ HC(Tamb,k) + βupper (10)

0 ≤ uHP,k + uHPSC ,k + uPO,k+ ≤ 1 (11)

All relationships above should apply to all k ∈ {0, . . . , N}, respectively. The authors
of (7) describe lower and upper limits for the temperatures in the different thermal storage
layers. The authors of (8) and (9) allow the operation of the heat pump in any mode only if
the maximum return line temperature is below RLmax (in the experiments, equal to 43 °C).
The authors of (10) include the behavior of the heat pump for the standard operation into
the optimization problem, where it should start automatically if a certain temperature in
the middle of the heat tank leaves a certain temperature range that is defined on the basis
of a heating curve HC and lower and upper offset values βlower and βupper. The authors
of (11) prohibit the heat pump to operate in both modes simultaneously and also prohibit
the pellet oven and heat pump running in any operation mode at the same time; this last
condition was a wish of the home owners.

2.4.2. Practical Implementation of the Controls

The practical implementation of an MPC is associated with some challenges. For ex-
ample, the repeated solution of the optimization problem at each time step requires short
computation times, which can lead to high hardware requirements for complex optimiza-
tion problems. In power system optimization, it is often challenging to provide predictions
of the influencing factors, which depend on weather or human factors and often have some
stochastic components.

Therefore, in our case study, an innovative cloud camera-based combined forecast
was used for PV forecasting. Machine-learning-based solutions were used to forecast the
electrical and thermal loads. A challenge was often also the clean acquisition of data during
operation. In the case study, for example, we had to work with electrical signals from
the fresh water pump contaminated by electric couplings, which first had to be cleaned
up using machine learning methods before they could be used. For details, refer to [7].
Figure 5 shows the architecture of the practical implementation of the control system in the
Projekthaus Ulm.

Python Keras was chosen as the framework for LSTM development because it has
an extensible and modular focus that can be used for rapid deep neural network experi-
ments [47]. The optimizer was also implemented in Python. Due to the binary variables and
the underlying non-linearity of the LSTM model trained with a nonlinear activation func-
tion, the underlying optimization problem belongs to the class of Mixed Integer Nonlinear
Problems (MINLP). For its solution, we used in a first step the algorithmic differentiation
framework CasADi [48] together with the nonlinear solver IPopt [49] to obtain a relaxed
continuous solution. Afterwards, we used a combinatorial approximation approach for the
calculation of the integer states with the binary approximation library pycombina [50].
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Figure 5. Model predictive control implementation in Projekthaus Ulm.

3. Results from Projekhaus Ulm
3.1. Results for PV Power Forecasting
3.1.1. ASI-Based Nowcasting System

We present the results of the ASI-based forecasts of GHI and PV power from the
Projekthaus for a data set containing May and June 2019. Figure 6 shows the relative Root
Mean Square Error (RMSE) of the GHI and the PV power forecast. The RMSE is calculated
from the forecasts pi and the corresponding measurement mi,

RMSE =

√
∑N

i=0(pi −mi)2

N
. (12)

The relative RMSE is calculated by dividing the RMSE by the average irradiance or
power. With the increasing forecast horizon, the relative RMSE increases for all forecasts as
expected. The PV power forecast (red) has a slightly higher relative RMSE than the GHI
forecast (blue) due to the uncertainty added with the additional computation step. The GHI
and PV persistence forecasts are shown in light blue/light red for comparison. They show
higher RMSE values than the ASI forecasts for all forecast horizons, with an increasing gap
as the forecast horizon increases. This confirms the value of the ASI forecast compared
with the persistence forecast currently used in the heuristic control in the PHU.

In addition to the standard error metrics, we developed a specific score adapted for
the application of controlling the heat pump. The aim was to control the heat pump in the
PHU in a way that the demand is covered by the PV production. The most problematic
forecast error that can occur for this application is when the forecast predicts PV production
to be higher than the heat pump demand during the heat pump’s minimum run time,
but the PV production is actually lower for part of the time. To quantify this error, we look
for predicted and measured events where the heat pump can operate with the power (p)
generated by the PV system for at least a time interval ∆t. For simplicity, ∆t always starts
at the beginning of the forecast,

Event f c : i f p f c(∆t f c) > pthresshold,
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Eventmeas : i f pmeas(∆tmeas) > pthresshold.

The minimum run time of the heat pump of 7 min is used as ∆t and the threshold for
power generation (pthresshold) is 3.5 kW.

In total, 9410 forecasts were validated using the data set May–June 2019. There were
2236 measured events detected and 2959 forecasted events. Of the measured events, 97.5%
were forecasted correctly (hitrate), and of the forecasted events, 73.7% were also measured
(precision). The precision is the most relevant score here, since it gives the probability of
a forecasted event to actually happen. For comparison, we again validate the persistence
forecast. Here, the hitrate is 97.7% and the precision is 69%.

To make the forecasts more reliable, we want to identify forecasted events that occur
with a higher probability. Therefore, we change ∆t f c to 15 min, since the timing of the
forecasted ramps can be wrong. Table 1 shows the result. The number of forecasted
events and the hitrate are slightly reduced for ∆t f c = 15 min. However, the precision
increases to 78.0%. This information could be used to improve the performance of the
energy management systems.

Figure 6. Validation of ASI-based GHI and PV power forecasts and corresponding persistence
forecasts for May and June 2019. Shown is the RMSE normalized with the average irradiance
or power.

Table 1. Validation of forecasted events for ∆t is 7 and 15 min for the forecast data set May–June 2019.

∆t f c ∆tmeas Events fc Hitrate Precision

7 min 7 min 2959 0.975 0.737
15 min 7 min 2655 0.926 0.780

3.1.2. Intraday Forecasting System

For evaluation of intraday forecasting, we show results for a period from May to
August 2019. The left panel of Figure 7 shows a comparison of the performance in terms of
RMSE for the different input irradiance forecasts and the optimized combination forecast
depending on the forecast horizon, up to 8 h. The persistence forecast (orange line) performs
well for small horizons up to about 15 min, the satellite forecast (red line) performs best for
intermediate horizons up to about 2.5 h, and the NWP (blue line) performs best for large
horizons of several hours. The performance of the optimized combination forecast obtained
from the linear regression model is given in gray. As expected, the combination forecast
always exhibits a lower RMSE than any of the individual input forecasts. The performance
(also in terms of RMSE) of the PV power forecast, which is obtained after applying a PV
simulation to the combination forecast, is shown in the right panel of Figure 7. As for the
ASI-based forecast, the intraday PV power forecast also has a slightly higher RMSE than
the intraday irradiance forecast due the additional modeling step.
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Figure 7. Validation of the intraday irradiance forecast (left) and PV power forecast (right) for May
until August 2019. Shown is the RMSE normalized with the average irradiance or power.

3.2. Results of Predictive Heuristic Control

The predictive heuristic controller was implemented in a series of tests in the cold
spring period to determine its performance compared with the actual heuristic controller
setup. The tests were conducted in the spring period, as during this time there is in-
creased cloud variability that shows variable PV power generation together with heat
demand requirement.

An exemplary test using the predictive algorithm is showcased in Figure 8. The graph
shows the layer temperatures in the tank during the test. It also shows the PV power
generation during the day, as well as the the different PV short-term predictions at the
given time and the HP electrical energy consumption. Lastly, it shows the control actions
given by the predictive controller to the system.

The test started in the early morning, when PV power production was low. As the
heating curve lower limits of the tank were reached due to the heat requirement, the heat
pump controller started a standard heating operation, charging the tank. Later in the
morning, another standard charge was performed by the heat pump, as not enough energy
coming from the panels was generated. At around 9:40 h. in the morning, the PV power
reached the minimum threshold of 3.5 kW and the short-time prediction for that time
showed enough power to drive the machine for at least 10 min. The predictive controller
started the single charge at this point, allowing the tank to heat for a longer time and to
higher temperature limits. The heat pump was turned off after several minutes, as the
PV power dropped again under the minimum threshold value and as the last calculated
short-time prediction for that time showed a drop in the expected power. This is possibly
due to a cloud covering the sky. This single charge operation was followed by a second
shorter single charge that lasted for only 10 min, which corresponds to the minimum
run time. This short operation occurred as the PV prediction once again showed enough
PV power to be produced in the following 10 min, but in this case the real produced PV
power dropped again under the set threshold; this was possibly due to a mismatch in
the prediction. During the day, further single charge operations were conducted by the
predictive controller, allowing the tank to be heated completely through the generated
PV energy and the HP. Finally, around 17:00 h. a last single charge operation of the HP
was driven. At that time, there was high fluctuation in the PV generation, possibly due
to clouds, and as the evening was reached, less power was available. Although the PV
power was not enough to completely satisfy the HP electrical demand, the single charge
operation was driven during a peak in PV power where heating was also required. This
used as much of the remaining PV power as possible for heating.

The results for this test show a calculated self-consumption score of 27.14%. For com-
parison, a simulation was performed for the same day using the hybrid model and an
emulator of the actual heuristic controller based on the persistence prediction. The cal-
culated self-consumption score for the simulation resulted in 24.24%, showing an overall
improvement of 2.9% utilizing the predictive heuristic control for that day.
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Figure 8. PHC test real output on April 20.

A similar test was also conducted for April 19 with similar weather conditions. The re-
sults for the test show a self-consumption score of 39.04%. In comparison, the results of
the simulation show a self-consumption score of 37.64%. This results, in this case, in an
improvement of 1.4% for the self-consumption.

Using a simulation of the actual heuristic implementation as a baseline for comparison,
we can evaluate the effectiveness of the predictive heuristic control approach. The results
of the tests in this case show a slight improvement in the self-consumption scores against
the simulation, showing the viability of this implementation.

3.3. Results for Predictive Model-Based Control

Similar to the previous experiments, a test was conducted to evaluate the operation
of the MPC during variable weather conditions and with the required heat demand of
the house.

In this test, the model predictive control was driven with a 5 min time interval, and an
intraday forecasting system was used for the predictions. The intraday forecast combines
weather and solar predictions and provides data with a horizon of a day. The results are
shown in Figure 9.

The test started early in the morning, when the storage tank was still warm from a
previous charging. As the tank’s lower limits were reached due to high heating demand,
a standard heating operation was directed by the still-operating HP standard controller.
Later in the morning, as a continuous heating demand was expected, as shown in Figure 10,
and as the temperature in the tank was expected to decrease due to the demand, a second
standard charge was started, but as the predicted PV power showed that enough power
would be available, the MPC decided to start the HP in the single charge operation mode
and heat the tank with higher limits. The MPC calculated the optimal states between the
heat demand requirement and the PV produced. This can be seen in the following single
charge operations conducted by the controller. At around 10.40 h. in the morning, a heating
operation was required and the PV power had very high fluctuation. At this time, a single
charge was instructed to start charging the tank with as much PV power available, thus
delaying a required standard heating operation at around 12:15 h, when a steep drop in
the produced PV power can be noted. As the produced power at around 13:40 h was high
enough and predicted with a wide power window, the storage tank was heated as much as
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possible, allowing it to avoid further charging during lower PV power in the early midday
and starting a single charge operation during the highest peak of PV power produced
that evening.

Figure 9. MPC test results on 14 April.

At around 10:15 h, the single charge operation that was conducted previously by the
predictive controller was stopped early. Without this stop, the tank could have been heated
further, as no temperature limits were reached and enough PV power was still produced,
thus avoiding the operation afterwards (around 10:40 h) where intermittent PV power
was produced. This behavior can be attributed to three main factors, i.e., (i) the deviation
between the predicted PV power and the real produced power, where no intermittent
PV production was expected (as seen in the PV prediction); (ii) the error between the
hybrid model and the real behavior of the storage tank, causing a change in the optimizer’s
decision during the given control calculation; and (iii) the deviation in the load prediction
models, where the optimizer might have calculated a different result for the given schedule
with the calculated a expected heating load. However, these deviations show the ability of
the predictive controller to respond to changing conditions, where it was able to provide
the necessary heat to meet the given demand while maximizing the available PV power
even when conditions were not optimal.

Figure 10. MPC test results.
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This combination of different models, forecast methods, and input sources proved to
work successfully in the test environment. Figure 11 shows the measured system states
versus predicted system states during MPC operation with a mean absolute percentage
error (MAPE) of 1.68% and 2.60%, respectively, showing, in this case, a good prediction for
the predictive controller. The predictions for the thermal loads during the day and the PV
power, showed an MAPE of 44.2% and 39.7%, respectively. The difference can be seen in
Figure 10. This difference is directly attributed to the models, and the sampling used.

The predictive controller showed promising improvements when compared with
a simulation performed with the same conditions but using a classical heuristic control
approach. The results show a decrease in the grid energy of 36.03% with a self-consumption
of 48.48%.

Figure 11. MPC prediction results. Each colored line represents the temperature of each of the
8 meassured layers in the storage tank. A full line depicts the real meassured value, a dashed line
depicts the predicted temperature in each step calculated each iteration by the MPC.

4. Conclusions

This paper presents the development, implementation, testing, and evaluation of two
new predictive control approaches to maximize PV self-consumption for a real occupied
residential house with a PV system, a heat pump, and thermal storage. A special feature
is the use of a newly developed short-term PV power prediction system based on all-sky
imager data and an intraday prediction system that includes additional data sources.

The first predictive control approach presented is rule-based and uses an ASI-based
nowcasting system that provides PV power predictions with a high temporal resolution of
10 s over a time horizon of 15 min and is particularly suitable for predicting ramp events.
The controller starts the heat pump when this nowcasting system predicts sufficient solar
radiation over the minimum run time of the heat pump and the thermal storage tank has
sufficient intake capacity to be filled accordingly. As a reference, a comparable controller
was considered that makes the decision based only on a persistence prediction, in which
past and current irradiance measurement data are assumed to remain constant into the
near future.

Test results show that the new ASI-based nowcasting system is superior to the persis-
tence prediction for PV power in terms of RMSE. Also, the new rule-based controller for
the heat pump using this improved prediction was able to show a slight improvement in
PV self-consumption compared with the reference system in simulation and real test runs.

The second predictive control approach presented is based on the model predictive
control method and optimizes a heat pump deployment schedule over the upcoming 24 h.
For this purpose, the controller uses a 24 h PV power prediction with 15 min resolution from
an intraday forecasting system combining current measured irradiance data, ASI images,
satellite images, as well as NWP irradiance forecasts. Test results show that this intraday
system also works well and is superior to the persistence forecast in terms of RMSE.
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For the design of the model predictive controller, the dynamics of the heating system
to be controlled must be modeled numerically. Since the heat pump used works with
direct condensation in the storage tank and is therefore difficult to model physically,
a neural network of the LSTM type was trained on the basis of extensive measurement
data. The corresponding model shows good agreement with validation measurement data,
which were not used for training. The MPC-based controller using this model was able to
demonstrate its functionality in simulation and test runs, and again a slight improvement
in self-consumption was achieved.

In conclusion, both the nowcasting system and the intraday prediction system work
in real applications and can be reasonably used for predictive control tasks in a residential
building. The 15 min forecast proved to be suitable and useful for the improved heuristic
control and the intraday forecast proved to be suitable for the MPC approach. The two
predictive control algorithms have also been shown to work in simulations and test runs
and can achieve slight improvements in PV self-consumption.

However, the tests and simulations have also shown that the potential for self-
consumption improvement in the configuration studied here is quite small. The main
causes include the restrictive operating limitations for the heat pump, such as temperature
limits and minimum run times, which must be met in addition to meeting the heat demand.
Incorporating an additional electric heater into the control system (both rule-based and
model predictive) would provide significant additional flexibility here and allow for PV
self-consumption to be significantly increased.

There is also further room for improvement with respect to the modeling of the system.
A particular challenge was that the existing internal control system of the heat pump
continued to be operational, and therefore had to be modeled along with the operational
behavior. Here, it would be of great benefit if the internal controllers of future heat
pumps had appropriate interoperable interfaces for integration into higher-level energy
management tasks.

Future work should focus on a more detailed study of the impact of different fore-
casting methods and accuracies on the control results, as in this work we focus primarily
on demonstrating the foundational capabilities of a predictive control system utilizing
local PV forecast methods. Also, further work should accordingly address the integration
of a heating rod into the energy management, further improvement of the models, as
well as predictions of PV generation and thermal and electrical loads and focus on the
interoperability of the different components within increasingly complex domestic energy
systems and energy management tasks.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence;
ANN Artificial Neural Network;
CAGR Compound Annual Growth Rate;
GHI Global Horizontal Irradiance;
HEMS Home Energy Management System;
HP Heat Pump;
LSTM Long Short-Term Memory;
MAPE Mean Average Percentage Error;
MILP Mixed Integer Linear Problem;
MINLP Mixed Integer Nonlinear Problem;
ML Machine Learning;
MPC Model Predictive Control;
NWP Numerical Weather Prediction;
PHU Projekthaus Ulm;
PO Pellet Oven;
PV Photovoltaic;
RMSE Root Mean Square Error;
SCS Self-Consumption Share.
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