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A B S T R A C T

Seismic data processing involves techniques to deal with undesired effects that occur during acquisition and
pre-processing. These effects mainly comprise coherent artefacts such as multiples, non-coherent signals such
as electrical noise, and loss of signal information at the receivers that leads to incomplete traces. In the
past years, there has been a remarkable increase of machine-learning-based solutions that have addressed
the aforementioned issues. In particular, deep-learning practitioners have usually relied on heavily fine-tuned,
customized discriminative algorithms. Although, these methods can provide solid results, they seem to lack
semantic understanding of the provided data. Motivated by this limitation, in this work, we employ a generative
solution, as it can explicitly model complex data distributions and hence, yield to a better decision-making
process. In particular, we introduce diffusion models for three seismic applications: demultiple, denoising and
interpolation. To that end, we run experiments on synthetic and on real data, and we compare the diffusion
performance with standardized algorithms. We believe that our pioneer study not only demonstrates the
capability of diffusion models, but also opens the door to future research to integrate generative models in
seismic workflows.
1. Introduction

Deep generative learning has become an important research area
in the machine learning community, being more relevant in many
applications. Namely, they are widely used for image synthesis and
various image-processing tasks such as editing, interpolation, coloriza-
tion, denoising, and super-resolution. Recently, diffusion probabilistic
models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have emerged
as a novel, powerful class of generative learning methods. In a short
period of time, these models have achieved surprisingly high perfor-
mance (Dhariwal and Nichol, 2021; Saharia et al., 2021a; Ramesh
et al., 2022; Ruiz et al., 2022), and have even surpassed state-of-the-
art algorithms like generative adversarial networks (Goodfellow et al.,
2014) (GANs) and variational autoencoders (Kingma and Welling,
2013) (VAEs).

At the same time, the geophysics community has been actively
adopting deep-learning techniques to boost and automate numerous
seismic interpretation tasks including fault picking (An et al., 2021;
Wu et al., 2019), salt delineation (Oh et al., 2018; Shi et al., 2019),
well-to-seismic tie (Nivlet et al., 2020; Tschannen et al., 2022), horizon
tracking (Yang and Sun, 2020; Tschannen et al., 2020), multiple re-
moval (Bugge et al., 2021; Durall et al., 2022), etc. Nonetheless, to the
best of our knowledge, there has not been yet any work exploring the
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application of diffusion models to seismic data and thus, studying their
potential advantages to already established deep-learning approaches
in this domain. Driven by this motivation, in this work, we study the
applicability of diffusion models for seismic processing.

Seismic imaging is essential to discover and characterize economi-
cally worthwhile geological reservoirs, such as hydrocarbons accumu-
lations, and to manage the extraction of the resources stored in them.
Unfortunately, recorded seismic signals at the surface are inevitably
contaminated by coherent and incoherent noise of various nature. The
process of removing the noise, while retaining the primary signal, is
called seismic processing. In this paper, we focus on three relevant,
well-known seismic processing tasks: demultiple, denoising and in-
terpolation. Demultiple and denoising are both removing unwanted
signals from the seismic section; the first gets rid of coherent noise
caused by reverberations of waves between strong reflectors, whereas
the latter removes incoherent noise of miscellaneous causes. The goal
of interpolation is to fill-in gaps in the image caused by limitations
during acquisition. Although at the first glance the nature of these
problems might look different or unrelated, it is possible to formulate a
common framework, in which they can be solved. This is feasible, due
to the fact that the diffusion models, like most of generative models,
learn the density distribution of the input data. In other words, unlike
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098-3004/© 2023 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.cageo.2023.105377
Received 19 August 2022; Received in revised form 5 February 2023; Accepted 6 M
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ay 2023

https://www.elsevier.com/locate/cageo
http://www.elsevier.com/locate/cageo
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
https://wiki.seg.org/wiki/Open_data
mailto:ricard.durall.lopez@itwm.fraunhofer.de
https://doi.org/10.1016/j.cageo.2023.105377
https://doi.org/10.1016/j.cageo.2023.105377
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2023.105377&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers and Geosciences 177 (2023) 105377R. Durall et al.
discriminative approaches which draw boundaries in the data space,
the generative approaches model how data is placed throughout the
space (Tomczak, 2022). As a result, they are powerful algorithms that
can be independently applied to a large diversity of problems.

2. Motivation

In this work, we have decided to implement a solution based on
diffusion models to try to exploit the intrinsic properties that these
generative models bring along. Among these properties, it should be
noted the powerful capacity of learning any kind of data distribution.
As a result, these models are able to synthesize new samples with
high diversity, quality and accuracy, independently of the application
domain, for example medical domain Kazerouni et al. (2022a) and
art domain Ramesh et al. (2022), among others. For this reason, such
a technology can have a beneficial impact in all sorts of computer
vision tasks that require image manipulation. In comparison with pre-
vious generation techniques such as GANs, which suffer from mode
collapse (Metz et al., 2016; Arjovsky et al., 2017; Durall et al., 2020a),
diffusion models do not have this struggle, i.e., can easily learn mul-
timodal distributions; they have also more stable training since no
adversarial formulation is involved, i.e., the model directly optimizes
the likelihood function (see Section 3). Recent seminal work (Lugmayr
et al., 2022; Rombach et al., 2022) has shown state-of-the-art results
on image translation tasks, including domain transfer and image in-
painting. Inspired by the improvement that these implementations have
brought to the computer vision domain, we propose to bring a deep
diffusion-based approach to the geophysics community. To the extent
of our knowledge, this is the first study that applies diffusion models
to seismic processing tasks. In particular, we focus on demultiple,
denoising and interpolation tasks, as they can be naturally formulated
as image-to-image translation problems, where the input images lay in
one domain, for example with multiples, and the outputs in another, for
example without multiples. Furthermore, since deep diffusion models’
optimization is fairly robust and stable, no need for dull fine-tuning is
required, and hence resulting in universal models capable of training
for different tasks without significant changes. In practice, this means
redefinition of the seismic processing task at hand only involves substi-
tution of the training and testing data. All in all, diffusion models have
the potential to be a game-changer, helping to boost the performance
of currently utilized deep-learning approaches for seismic processing in
a user-friendly manner.

3. Background

Generative models for modeling estimate the marginal distribution,
denoted as 𝑝(𝑥), over observable variables 𝑥, e.g., images. In the liter-
ature, we can find different formulations that tackle this problem such
as autoregressive generative models, latent variable models, flow-based
models, and energy-based models.

3.1. Latent variable models

The main idea of this type of models is to utilize latent variables 𝑧
to formulate the joint distribution 𝑝(𝑥, 𝑧), which describes the marginal
distribution as a function of learnable parameters 𝜃 (likelihood). Math-
ematically, it can be written as:

𝑧 ∼ 𝑝𝜃(𝑧) (1)

𝑥 ∼ 𝑝𝜃(𝑥|𝑧) (2)

𝑝𝜃(𝑥) = ∫𝑧
𝑝𝜃(𝑥, 𝑧)𝑑𝑧 = ∫𝑧

𝑝𝜃(𝑥|𝑧)𝑝𝜃(𝑧)𝑑𝑧. (3)

Unfortunately, for most of the problems we do not have access
to the true distribution 𝑝(𝑥) and hence, we need to fit our model to
2

Fig. 1. Scheme of the different latent variable models. (Top) Single latent variable
model. (Center) Hierarchical latent variable model. (Bottom) Diffusion model.

some empirically observed subset. One solution is to use Monte Carlo
sampling to approximate the integral over 𝑧 to try to estimate the
model parameters 𝜃. Nonetheless, this approach does not scale to high
dimensions of 𝑧 and consequently, we will suffer from issues associated
with the curse of dimensionality. Another solution is to use variational
inference, e.g., VAE (Kingma and Welling, 2013). In particular, the
lower bound of the log-likelihood function, called the Evidence Lower
BOund (ELBO). The ELBO provides a joint optimization objective,
which simultaneously updates the variational posterior 𝑞𝜙(𝑧|𝑥) and
likelihood model 𝑝𝜃(𝑥|𝑧). The objective is written as:

log 𝑝(𝑥) ≥ E𝑧∼𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − KL[𝑞𝜙(𝑧|𝑥) ∥ 𝑝(𝑧)], (4)

where KL stands for the Kullback–Leibler divergence (see Fig. 1).

3.2. Hierarchical latent variable models

Once defined a single stochastic layer, it is straightforward to derive
hierarchical extensions. For example, let us consider a latent variable
model with two latent variables 𝑧1 and 𝑧2. We can define the joint
distribution 𝑝(𝑥, 𝑧1, 𝑧2) and marginalizing out the latent variables:

𝑝𝜃(𝑥) = ∫𝑧1
∫𝑧2

𝑝𝜃(𝑥, 𝑧1, 𝑧2)𝑑𝑧2𝑑𝑧1 = ∫𝑧1
∫𝑧2

𝑝𝜃(𝑥|𝑧1)𝑝𝜃(𝑧1|𝑧2)𝑝𝜃(𝑧2)𝑑𝑧2𝑑𝑧1. (5)

Similar to the single latent model, we can derive the variational
approximation (ELBO) to the true posterior as:

log 𝑝(𝑥) ≥ E𝑧1∼𝑞𝜙(𝑧1|𝑧2)[log 𝑝𝜃(𝑥|𝑧1)]

− KL[𝑞𝜙(𝑧1|𝑥) ∥ 𝑝𝜃(𝑧1|𝑥)] − KL[𝑞𝜙(𝑧2|𝑧1) ∥ 𝑝(𝑧2)]. (6)

3.3. Diffusion models

Diffusion models belong to the latent variable family as well. In fact,
we can think of them as a specific realization of a hierarchical latent
variable model, where the inference model1 does not have learnable
parameters. Instead, it is constructed so that the final latent distribution

1 Remember that the inference model relates a set of observable variables
to a set of latent variables, e.g., 𝑞(𝑧|𝑥).



Computers and Geosciences 177 (2023) 105377R. Durall et al.
Fig. 2. Denoising diffusion process. While the Markov chain of the forward diffusion
gradually adds noise to the input (dash arrows), the reverse process removes it stepwise
(solid arrows).

𝑞(𝑥𝑇 ) converges to a standard Gaussian (where 𝑇 is the number of latent
variables). The objective function of diffusion models is written as:

log 𝑝(𝑥) ≥ E𝑥1∶𝑇 ∼𝑞(𝑥1∶𝑇 |𝑥0)[KL(𝑞(𝑥𝑇 |𝑥0) ∥ 𝑝𝜃(𝑥𝑇 ))

+
𝑇
∑

𝑡=2
KL(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0) ∥ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡)) − log 𝑝𝜃(𝑥0|𝑥1)]. (7)

Under certain assumptions, this objective can be further simplified,
leading to the following approximation:

log 𝑝(𝑥) ≳
𝑇
∑

𝑡=2
KL(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0) ∥ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡))

=
𝑇
∑

𝑡=2
‖𝜖 − 𝑓𝜃(

√

�̄�𝑡𝑥0 +
√

1 − �̄�𝑡𝜖, 𝑡)‖2. (8)

Note that we drop the expectation for clarity.

4. Methodology

In this section, we provide a brief overview of diffusion models
framework. Note that we do not aim at covering the entire derivations.
For a more in-depth, detailed mathematical description, we refer the
reader to Ho et al. (2020).

4.1. Framework

On a high level, diffusion models consist of two parts: forward
diffusion and parametrized reverse. The forward diffusion part can be
described as a process, where Gaussian noise 𝜖 is gradually applied to
the input image 𝑥0 until the image becomes entirely unrecognizable
from a normal distribution 𝑥𝑇 ∼  (0, I) (𝑇 is the number of transfor-
mation steps). That is to say, at each step of this process, the noise
is incrementally added to the data, 𝑥0

+𝜖
←←←←←←←←←←←→ 𝑥1

+𝜖
←←←←←←←←←←←→ ...

+𝜖
←←←←←←←←←←←→ 𝑥𝑇 . This

procedure together with the Markov assumption2 leads to a simple
parameterization forward process expressed as:

𝑞(𝑥1∶𝑇 |𝑥0) =
𝑇
∏

𝑡=1
𝑞(𝑥𝑡|𝑥𝑡−1) =

𝑇
∏

𝑡=1
 (𝑥𝑡;

√

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡I), (9)

where the variable 𝛽 defines a fixed variance schedule, chosen such that
𝑞(𝑥𝑇 |𝑥0) ≈  (0, I) (see Fig. 2).

The second part, the parametrized reverse process, represents the
data synthesis. Thus, it undoes the forward diffusion process and per-
forms iterative denoising. To that end, the reverse process is trained to
generate data by converting random noise into realistic data. Formally,
this generative process is defined as a stochastic process, which itera-
tively removes noise from the input images using deep neural networks

2 Markov assumption is used to describe a model that holds the memoryless
property of a stochastic process.
3

Fig. 3. In each reverse step 𝑡, the model 𝑓𝜃 is fed with the semi-denoised multiple-free
image 𝑥𝑡 and the multiple-infested input. As an output, the network generates the image
𝑥𝑡−1, which should have less noise and no multiples.

𝑓𝜃 . Starting with the pure Gaussian noise 𝑝(𝑥𝑇 ) =  (𝑥𝑇 , 0, I), the model
learns the joint distribution 𝑝𝜃(𝑥0∶𝑇 ) as:

𝑝𝜃(𝑥0∶𝑇 ) = 𝑝(𝑥𝑇 )
𝑇
∏

𝑡=1
𝑝𝜃(𝑥𝑡−1|𝑥𝑡) = 𝑝(𝑥𝑇 )

𝑇
∏

𝑡=1
 (𝑥𝑡−1;𝜇𝜃(𝑥𝑡, 𝑡), 𝛴𝜃(𝑥𝑡, 𝑡)),

(10)

where the time-dependent parameters of the Gaussian transformations
𝜃 are learned. Note in particular that the Markov formulation asserts
that a given reverse diffusion transformation distribution depends only
on the previous timestep.

4.2. Training and inference

A diffusion model is trained by finding the reverse Markov transi-
tions that maximize the likelihood of the training data. In practice, this
process consists of optimizing the variational lower bound on the log
likelihood. Hereunder the simplified expression derived by Ho et al.
(2020):

log 𝑝(𝑥) ≳
𝑇
∑

𝑡=2
‖𝜖 − 𝑓𝜃(

√

�̄�𝑡𝑥0 +
√

1 − �̄�𝑡𝜖, 𝑡)‖2, (11)

where

𝛼𝑡 = 1 − 𝛽𝑡 and �̄�𝑡 =
𝑇
∏

𝑖=1
𝛼𝑖. (12)

Notice that, ultimately, the deep neural network learns to predict
the noise component 𝜖 at any given timestep and therefore, at inference
time (sampling) the algorithm will remove the noise in a step-wise
fashion. Algorithm 1 describes the training procedure, and Algorithm
2 the inference.

Algorithm 1 Training the diffusion model 𝑓𝜃 .
1: Input: 𝑇 , number of latent variables; m, training iterations.

𝑥0 ∼ 𝑝𝜃(𝑥0)
𝑡 ∼ Uniform({1, ..., 𝑇 })

2: 𝜖 ∼  (0, I)
3: for t = 1,...,m do
4: ∇𝜃||𝜖 − 𝑓𝜃(

√

�̄�𝑡𝑥0 +
√

1 − �̄�𝑡𝜖, 𝑡)||2

5: end for

Algorithm 2 Inference of the diffusion model 𝑓𝜃 .
1: Input: T: number of latent variables.

𝑥𝑇 ∼  (0, I)
2: for t = T,...,1 do
3: 𝑧 ∼  (0, I) if 𝑡 > 1, else 𝑧 = 0

4: 𝑥𝑡−1 =
1

√

𝛼𝑡
(𝑥𝑡 −

1 − 𝛼𝑡
√

1 − �̄�𝑡
𝑓𝜃(𝑥𝑡, 𝑡)) +

√

1 − 𝛼𝑡𝑧

5: end for
6: return 𝑥0
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Fig. 4. This figure displays two cropped gathers that contain multiples (input), and the results after applying the demultiple algorithms. Moreover, we plot the difference between
the input and the output to check the content that has been removed. Note that we apply a scaling factor of 3 in the differences to stress the changes.
Fig. 5. Visualization (violin plot overlaid a box plot) of the SSIM and SNR metrics calculated on 500 random denoised images. Results from diffusion and FX-Decon on two
datasets.
4.3. Conditional diffusion models

Generative models can be conditioned so that they also take ad-
vantage of labels during the training process. As a result, the outputs
can be better controlled and can be steered to follow predetermined
conditions, e.g., Mirza and Osindero (2014), Sohn et al. (2015), Saharia
et al. (2021b). To achieve that, given a dataset of source–target image
pairs that represent samples drawn from an unknown conditional dis-
tribution 𝑝(𝑥|𝑦), we will learn a parametric approximation to 𝑝(𝑥|𝑦) that
maps between both domains. In practice, this means that our network
will take an extra input 𝑦 (label), that will condition the outcomes,
i.e., 𝑓𝜃(𝑥𝑡|𝑦, 𝑡).

5. Experiments

In this section, we validate the flexibility of diffusion models for
different seismic tasks. In particular, we analyze three case studies:
demultiple, denoising and interpolation. To do that, we present an end-
to-end deep-learning approach that can deal (separately) with these
scenarios. Furthermore, we benchmark the results with alternative
paradigms that are currently employed in both academia and industry
domains.

The implementation details are as following: In our main experi-
ments, we train the diffusion model for 200,000 iterations with a batch
4

size of 32; we set 𝛽 to follow a linear schedule, and we use a depth 𝑇
of 2000 timesteps for both the forward process (see Eq. (9)) and the
reverse denoising process (see Eq. (10)).

5.1. Architecture

Image diffusion models commonly employ a time-conditional U-
net (Ronneberger et al., 2015), parametrized as 𝑓𝜃(◦, 𝑡), as a neural
backbone. This architecture was initially introduced in Ho et al. (2020),
where the main motivation for this topology choice was the require-
ment for the model to have identical input and output dimensionality.
The architecture consists of a stack of residual layers and downsampling
convolutions, followed by a stack of residual layers with upsampling
convolutions; skip connections connect the layers with the same spatial
size. Furthermore, it uses a global attention layer with a single head to
add a projection of the timestep embedding into each residual block.

5.2. Demultiple

Primary seismic reflections are events which have reflected only
once, and they are employed to describe the subsurface interfaces.
Multiples, on the contrary, are events which appear when the signal has
not taken a direct path from the source to the receiver after reflecting
on a subsurface boundary. The presence of multiples in a recorded
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dataset can trigger erroneous interpretations, since they do not only
interfere with the analysis in the post-stack domain, e.g., stratigraphic
interpretation, but also with the analysis in the pre-stack domain,
e.g., amplitude variation with offset inversion. Thereby, the demultiple
process plays a crucial role in any seismic processing workflow.

In this first experiment, we follow the approach from Breuer et al.
(2020), Durall et al. (2022), and generate synthetic pairs of multiple-
infested and multiple-free gathers. This data setup allows us to train
the model in a supervised manner and therefore, we can frame the
demultiple problem as an image-to-image transformation task, where
the network learns to remove the multiples without removing primary
energy. As in Durall et al. (2022), the training dataset is designed to
include a rich amount of features present in real datasets, to maximize
transferability to real case uses. To that end, we employ as a baseline
a conditional diffusion model proposed by Saharia et al. (2021b).
More specifically, we condition our model by concatenating the semi-
denoised multiple-free image 𝑥𝑡 with the multiple-infested input (𝑦)
(see Fig. 3). Ideally, the network should return an improved semi-
denoised multiple-free gather 𝑥𝑡−1 that after 𝑇 reverse steps should
converge into a noise- and multiple-free gather 𝑥0.

Once the model is trained, it is crucial to assess the inference capa-
bilities of the network when working on real data, i.e., generalizability.
Nonetheless, this is not a granted property in deep-learning models due
to the distribution gap between different datasets, e.g., the gap between
synthetic and real datasets (Durall et al., 2020b). In our experiments,
we test the diffusion approach on the dataset from the Volve field made
available under Equinor Open Data Licence. Furthermore, we compare
the outcomes with two other multiple-attenuation methodologies: one
based on Radon-transform (Hampson, 1986) and one based on deep
learning (Durall et al., 2022). Fig. 4 shows an example of such a
comparison, where we can observe how the diffusion solution offers
competitive results, despite minimal hyperparameter tuning involved.
For additional results, see Fig. 10 in Appendix.

5.3. Denoising

Incoherent noise can be caused by superposition of numerous un-
wanted signals from various sources such as ocean waves, wind and
electrical instrument noise among others. Removing such incoherent
noise can improve the overall signal-to-noise ratio and, consequently,
increase the certainty of interpretation. Traditional approaches can be
subdivided into two main categories: the prediction filtering methods
and domain transform methods. The first type assumes linearity and
predictability of the signal, and constructs a predictive filter to suppress
the noise (Gulunay, 1986; Galbraith, 1991). These methods have been
widely adopted by the industry due to their efficiency, although they
tend to under-suppress noise and occasionally suffer from signal leak-
age (Gülünay, 2017). The second type of methods uses mathematical
transformations, e.g., Fourier transform (Naghizadeh, 2012), wavelet
transform (Mousavi et al., 2016), curvelet transform (Neelamani et al.,
2008; Herrmann et al., 2008), to steer the seismic data into domains,
where seismic signals and noise can be easier separated and then lever-
age the sparse characteristics of seismic data. This approach, however,
often requires a time-consuming transform coefficient tuning. To cope
with this drawback, a new trend based on deep-learning algorithms has
emerged, resulting in optimized solutions that remove incoherent noise
from seismic data as well as speed up the inference time (Yu et al.,
2019; Saad and Chen, 2020).

Similar to the demultiple scenario, we create pairs of images to
train our diffusion model. Nonetheless, this time, the objective is to
eliminate undesired uncorrelated noise, while preserving the inherent
characteristics of the data. To that end, the pairs of training data consist
of a real image and their noisy version. To create the noisy images,
we synthetically add Gaussian noise to the original real images with a
variability of the 50% of their energy. For this second case of study,
5

we train on 1994 BP (Gray and Marfurt, 1995) dataset, from which
Fig. 6. This figure shows an example of denoising. The first row contains the original
image and the input image (original with noise). The second row presents the diffusion
and the FX-Decon results. Finally, the third and four rows display the difference
between the results and the original and the input data, respectively.

we extract random patches (from different shot gathers) that neither
overlap among each other, nor have more than 40% of their content
equal to 0. In this fashion, we try to guarantee certain level of variety
in the training data.

For the testing set, we apply the same conditions as for training.
Additionally, we employ a second dataset (Model94 (Gray and Mar-
furt, 1995)) to evaluate the generalization capacity of our system. As
for comparison, we use a spectral filtering technique based on the
Fourier transform, namely a complex Wiener prediction filter called
FX-Decon (Gulunay, 1986; Galbraith, 1991), which is dedicated for
signal extraction and non-coherent noise suppression in the frequency
domain. To assess the results, we use structural similarity index (SSIM)
and signal-to-noise ratio (SNR) as quantitative metrics. Fig. 5 displays
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Fig. 7. This figure shows an example of interpolation. From left to right: the original image, the mask, the input image (original with mask), the diffusion result and its difference
with respect to the original image. Note that we rescale the differences to stress the changes.
Fig. 8. Visualization (violin plot overlaid a box plot) of the SSIM and SNR metrics calculated on 500 random interpolated images. Results from diffusion and U-net on two datasets.
them for each configuration, i.e., different datasets and methods, and
we can observe how the diffusion model provides the best scores when
we test on data coming from the same dataset as the one used for
training. However, as expected, it has a drastic drop when we test on
a new dataset, e.g., Model94. This phenomenon is mainly caused by
the distribution gap between different datasets. On the other hand, FX-
Decon achieves similar performance on both datasets, as this method
does not involve any learning, i.e., data fitting. Finally, Fig. 6 illustrates
a denoising example for both algorithms. The difference between the
outputs and the original data (third row in Fig. 6) allows us to see that
diffusion model removes some coherent signal, while FX-Decon does
not. Ideally, this should be corrected, but we leave this improvement
for future work. Nevertheless, overall, the diffusion approach leads to
less noisy outputs, as can be noticed in the output image. For additional
results, see Fig. 11 in Appendix.

5.4. Interpolation

Seismic data processing algorithms greatly benefit from regularly
sampled and reliable data. However, it is rarely the case where the
acquired data is presented flawless, i.e., complete shot gathers with-
out missing traces. Frequently, the reason for that are acquisition
constraints such as geophones issues, topography, and economical lim-
itations. As a consequence, interpolation techniques are a fundamental
key for most seismic processing systems.

In this last case of study, we evaluate the capacity of our diffusion
model to interpolate missing traces. To that end, we follow the evalu-
ation methodology introduced by Fernandez et al. (2022), namely, we
consider the scenario with irregular missing traces and with a level
of decimation set to 50% (see Fig. 7). Regarding the data for this
experiment, we repeat the setup presented in the denoising section,
using 1994 BP dataset for training and testing, and Model94 for testing
on a new dataset. Finally, to have a baseline to compare with, we
implement the so-called ‘‘standard’’ topology from Fernandez et al.
(2022), which is essentially a discriminative U-net-like network.
6

Fig. 8 shows the qualitative evaluation of the diffusion approach
and of the U-net baseline. Although results from the latter are superior,
the improvement could be considered marginal given the small metric
differences. Moreover, specially in big gap scenarios, generative models
can provide a wider range of alternatives. This ill-posed problem can
be well handled by models that have learnt the inherent characteristics
of the training data (i.e. data distribution), such as diffusion models,
which can infill the gaps with more plausible solutions. Furthermore,
both algorithms seem to struggle when inferring on unseen datasets.
On the other hand, besides the quantitative results, the potential that
diffusion models might bring is objectively higher than discriminative
models. This is due to the fact that the former are generative models
and, therefore, can capture more advanced data properties (Tomczak,
2022). For additional results, see Fig. 12 in Appendix.

5.5. Hyperparameter search

Hyperparameters are parameters that are set before the learning
process begins. They are tunable and can directly affect how a model
trains. In general, neural networks are notorious for being very sensitive
to the choice of hyperparameters, such as optimizer configuration and
loss function, resulting in fairly different outcomes when the param-
eters are slightly modified. In the case of diffusion models there are
mainly two additional hyperparameters: the depth of the diffusion pro-
cess 𝑇 and the schedules 𝛽. While the depth 𝑇 has a direct impact on the
inference time, the schedules 𝛽 can help to boost performance (Nichol
and Dhariwal, 2021). Therefore, in this subsection, we investigate the
empirical effects that these hyperparameters have on the diffusion
model, testing different 𝑇 (2000, 1000 and 100)3 and 𝛽 (linear and
quadratic).

Fig. 9 displays the results for denoising (left) and for interpolation
(right). We can observe how the schedules play a secondary role,
as the metrics do not excessively fluctuate when moving from linear

3 We also tested 𝑇 = 10 but the model did not converge.
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Fig. 9. Visualization (violin plot overlaid a box plot) of the SSIM and SNR metrics calculated on 500 random interpolated images. Results from different amount of timesteps 𝑇
and schedules (linear and quadratic) on Model94. (Left): Denoising scenario. (Right): Interpolation scenario.
to quadratic schedules. On the other hand, the depth of timestep
does have a major impact. As expected, the shallower the diffusion
procedure is, the less accurate the reverse process becomes, and the
less reliable results we can achieve, i.e., the performances gradually
drop. However, depending on the nature of the problem, the number
of timesteps might vary and thus, having more steps may not lead to
significant improvements, i.e., the interpolation case. We hypothesize
the main reason for that it is the complexity of the problem. While the
interpolation task only needs to fit the missing gaps, the denoising has
to deal with the whole input. For this reason, it is important to profile
our task and system, to understand which needs they might have, and
to choose the hyperparameters accordingly.

6. Discussion

In this work, we propose a generative framework based on diffusion
models to address several seismic tasks. In particular, our case studies
include demultiple, denoising and interpolation. To solve them, we de-
fine the problem as an image-to-image transformation, where we have
an input image that requires certain modifications so that, the output
result belongs to the target domain. For example, in the demultiple
scenario, given a multiple-infested gather (input domain), our diffusion
approach has to identify the multiples and cancel them out, leading to
a multiple-free output gather (target domain).

The results of our experimental evaluations are fairly encouraging,
as they show competitive performance, when comparing with standard-
ized, customized algorithms. As we pointed out before, diffusion models
for seismic data is an unexplored field to date and hence, the ultimate
goal of this project is not to outperform these current algorithms in their
respective areas, but to provide a solid analysis of the applicability and
flexibility of this novel framework. Therefore, the main success of our
implementation can be regarded as proof of concept that can be used
to adopt generative models, namely diffusion models, in the geoscience
community. We believe that our work can help to lay the foundation
for future research that can benefit both academia and industry.

Code availability
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Program language: Python 3.9
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listed in the project.
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Appendix

We provide additional results, where we can visualize the evolution
of the reverse process for all the aforementioned case studies (see
Fig. 10, Figs. 11 and 12). Note that the subindexes of the 𝑥 indicate
the output of an intermediate step during the inference process, being
𝑥1999 random noise and 𝑥0 the final output of the model.
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Fig. 10. This figure displays demultiple results at different intermediate steps for the reverse process. Note that the first two rows show synthetic data examples, while the last
two from the Volve dataset.
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Fig. 11. This figure displays denoising results at different intermediate steps for the reverse process. Note that the examples belong to the Model94 dataset.
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Fig. 12. This figure displays interpolation results at different intermediate steps for the reverse process. Note that the examples belong to the Model94 dataset.
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