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ABSTRACT

Seismic processing often involves suppressing multiples that
are an inherent component of collected seismic data. Elaborate
multiple prediction and subtraction schemes such as surface-re-
lated multiple removal have become standard in industry work-
flows. In cases of limited spatial sampling, low signal-to-noise
ratio, or conservative subtraction of the predicted multiples,
the processed data frequently suffer from residual multiples.
To tackle these artifacts in the postmigration domain, practitioners
often rely on Radon transform-based algorithms. However,
such traditional approaches are both time-consuming and param-
eter dependent, making them relatively complex. In this work,
we present a deep learning-based alternative that provides

competitive results, while reducing the complexity of its usage,
and, hence simplifying its applicability. Our proposed model
demonstrates excellent performance when applied to complex
field data, despite it being exclusively trained on synthetic data.
Furthermore, extensive experiments show that our method can
preserve the inherent characteristics of the data, avoiding unde-
sired oversmoothed results, while removing the multiples from
seismic offset or angle gathers. Finally, we conduct an in-depth
analysis of the model, where we pinpoint the effects of the main
hyperparameters on real data inference, and we probabilistically
assess its performance from a Bayesian perspective. In this study,
we put particular emphasis on helping the user reveal the
inner workings of the neural network and attempt to unbox
the model.

INTRODUCTION

In seismic exploration, geophysicists interpret reflections of acous-
tic waves to extract information from the subsurface. These reflections
can be classified as primaries or multiples. Primary reflections are
those seismic events whose energy has been reflected once, and they
are used to describe the subsurface interfaces. In contrast, multiples
are events whose energy has been reflected more than once and appear
when the signal has not taken a direct path from the source to the
receiver. The presence of multiples in the recorded data set can trigger
erroneous interpretations because they interfere not only with the
analysis in the poststack domain, (e.g., stratigraphic interpretation)
but alsowith the prestack analysis, (e.g., amplitude-variation-with-off-
set (AVO) inversion). For this reason, the demultiple process plays a

crucial role in any seismic processing workflow. Multiple-attenuation
methods can be classified as predictability- and separation-based. Pre-
dictability-based approaches exploit the repetitive nature of multiples
and their inherent connection to primaries. In general, they consist of
two steps: a multiple prediction step, in which a model of multiples is
created, followed by adaptive subtraction (Verschuur et al., 1992;
Abma et al., 2005) where the predicted multiples are adaptively
matched and removed from the recorded wavefield. Some of the most
widely used methods are wavefield extrapolation (Berryhill and Kim,
1986; Wiggins, 1988; Wang et al., 2011), surface-related multiple
elimination (SRME) (Berkhout, 1985; Verschuur, 1991; Ma et al.,
2019) and the inverse scattering series free-surface multiple elimina-
tion (Carvalho et al., 1991; Weglein et al., 1997, 2003; Ma et al.,
2019). All of these approaches are recognized for their effectiveness
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in mitigating free-surface multiples. Nevertheless, they involve
numerous steps, and their efficacy is highly influenced by factors such
as acquisition setting and geometry, as well as signal-to-noise ratio
(S/N) (Gisolf and Verschuur, 2010; Kostov et al., 2015; Ma et al.,
2019). In addition, to not risk damaging weak primaries, the adaptive
subtraction step is often applied conservatively, resulting in residual
multiple energy in the final image (Wang et al., 2011; Zhang et al.,
2021). Recently, closed-loop SRME (CL-SRME) (Lopez and
Verschuur, 2015; Zhang and Verschuur, 2021) has been proposed
to tackle the shortcomings of SRME in shallow-water settings, none-
theless, the high computational demand still poses a challenge.
However, separation-based methods translate seismic data into

intermediate domains, where one can eliminate multiples based
on different characteristics of multiples and primaries (Weglein
et al., 2011). The concept here is to exploit the fact that, on average,
multiples have encountered a lower velocity than the primaries, and
thus multiples are expected to exhibit an increasing residual move-
out (RMO) along the offset dimension. Although suffering from
their own set of limitations, separation-based methods are of a com-
putationally simpler nature and can be applied at various stages of
the processing workflow. One of the most widespread approaches to
making use of this feature is the parabolic Radon transform (PRT)
(Hampson, 1986). It translates prestack gathers from a time-offset to
a tau-p space, by mapping them by a set of parabolic events. By
design, PRTworks best in the case of multiples perfectly following
parabolic paths and for unlimited offset axis, both of these aspects
are, nevertheless, not realizable in practice (Hampson, 1986). As a
consequence, PRT can potentially degrade parts of the primary sig-
nal. Another limitation appears when dealing with gathers that are
coarsely sampled. In such cases, data sparsity can lead to false en-
ergy mapping to the tau-p space, which in turn leads to insufficient
separation of primaries and multiples. This either creates residual
multiple energy or removes primary energy. To address some of
the aforementioned weaknesses, the high-resolution Radon multiple
removal method has been introduced (Sacchi and Ulrych, 1995;
Sacchi and Porsani, 1999; Trad et al., 2003). It is, however, an ap-
proach of higher complexity, requiring the interpreter to manually
fine-tune numerous parameters. Moreover, another disadvantage
arises from the necessary time-consuming step of picking an appro-
priate mute function in the tau-p space to separate primaries from
potential multiples. Oftentimes, the nature of the data set requires a
laterally varying mute function design, adding yet another level of
complexity. When it comes to industry workflows, the usage of pre-
dictability-based methods in the premigration domain, e.g., SRME,
and separation-based methods in the postmigration gather condi-
tioning, e.g., PRT demultiple, are typically combined. In this fash-
ion, interpreters can leverage the best from both methodologies and
achieve more reliable outcomes.
With the introduction of deep learning, a new vein of methods has

emerged (Breuer et al., 2020; Bugge et al., 2021; Qu et al., 2021;
Wang et al., 2022). These approaches are based on artificial neural
network architectures, which are universal approximators, i.e., they
can, in theory, model any continuous function. Breuer et al. (2020)
present a deep learning-based method to trim statics and remove mul-
tiples on postmigration common-depth point (CDP) gathers using a
moveout discriminator approach trained on synthetic data. Sub-
sequently, Bugge et al. (2021) propose a similar approach that simul-
taneously tackled both demultiple and denoising on prestack gathers.
Qu et al. (2021) present a hybrid workflow combining a deep neural

network trained on synthetic data for shallow reflection reconstruction
and PRT for deeper event reconstruction followed by CL-SRME.
Finally, Wang et al. (2022) introduce a solution that exploits noise
and data augmentation applied to training data generated using SRME
or PRT for the free-surface multiple removal. Unfortunately, although
the aforementioned methods have contributed to improving state-of-
the-art results on multiple removal, they still suffer from generaliza-
tion problems. To deal with this issue, Qu et al. (2021) require
the generation of synthetic training data for each field of interest.
Similarly, the approach by Wang et al. (2022) necessitates the synthe-
tization of labeled data per survey using conventional multiple
elimination methods for real data applications. Note, however, that
these are proxy solutions, as they do not attempt to solve the
survey-data set dependency of the model, but rather bypass it.
In this paper, we introduce and perform a detailed analysis of a

separation-based automated end-to-end deep-learning approach,
which can be applied on moveout-corrected post-migration CDP
gathers to remove events that follow parabolic-like patterns while
preserving the primary energy at cross-points. As already pointed
out by Qu et al. (2021), training the model on data sets preprocessed
using traditional methods introduces the limitations of such meth-
ods into the model as a side effect. To decouple the model from such
limitations, we follow the workflow introduced in Breuer et al.
(2020) and train a convolutional neural network (CNN) with syn-
thetic pairs of multiple-contaminated and multiple-free gathers. The
network is trained on feature-rich synthetic CDP gathers designed
to enable the trained network to identify multiples in the prestack
domain based on the reflection moveout paths rather than periodic-
ity, thus making the model highly generalizable and independent of
acquisition design. Furthermore, our approach works in a param-
eter-free manner, relieving the user from any manual task. In addi-
tion, we conduct an in-depth hyperparameter search, where we
study the role played by the different components and their impact
on the outcome. To that end, we visualize the inner workings of our
neural network, to pinpoint the effect of the main hyperparameters
on physical events. Finally, extensive in-field evaluations show that
our model is able to preserve the inherent characteristics of the data
in different scenarios, and thus, to generalize well. As a result, our
approach can be seen as an alternative to traditional moveout sep-
aration-based approaches in the postmigration stage, such as PRT,
in existing processing workflows.

U-NET VISUALIZATION

U-net (Ronneberger et al., 2015) is a CNN topology, which was
initially designed for semantic segmentation tasks in the medical
domain. However, due to its generalization capacity, it has been
widely adapted to various other domains. The architecture of U-
net is divided into two paths: the contraction path, known as the
encoder, designed to capture the image’s context, and the expanding
path, referred to as the decoder, responsible for facilitating accurate
localization. Both paths are symmetric and made of blocks of con-
volutional layers followed either by a down-sampling operation
(encoder) or by an up-sampling operation (decoder). In addition
to the encoder-decoder scheme, U-net has long skip connections
that bypass some layers and connect different blocks from the
encoder to their counterparts from the decoder. These shortcuts pro-
vide alternative paths for the gradient during back-propagation that
help the model to incorporate fine-grained details in the predictions.
Figure 1 shows the architecture of U-net for the demultiple scenario.
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CNN architectures are successfully used in a large variety of
applications, ranging from computer vision to natural language
processing. They are made up of neurons that have learnable param-
eters arranged in filter-shape structures. Each of these neurons re-
ceives some inputs, performs a dot product, and finally, applies a
nonlinear activation function (e.g., sigmoid or rectified linear unit
[ReLU]) (Nair and Hinton, 2010). The output of the activation for
a given filter is called a feature map or an activation map. Although
the learning mechanism (back-propagation) is well understood, the
intrinsic details, such as the reason why a specific decision or predic-
tion is made, are not. As a result, neural networks are typically treated
as black box models. To better understand the internal workings, we
visualize different components of the network. In particular, we in-
vestigate the filters and the feature maps to try to conceptually unravel
the learning of the model when dealing with demultiple problems.
On the left side of Figure 2, we can see some filters that the network

has learned. Seemingly, they do not display any human-recognizable
pattern from which one can draw conclusions. The statistics are, how-
ever, more informative. The filters’ weights appear to always follow a
Gaussian distribution, independent of the layer. Similar observations
by Gavrikov and Keuper (2022) suggest that convolution filters do not
have distribution shifts along different axes of meta-parameters, such
as data type, task, architecture, or layer depth. Nonetheless, we notice
that the first block might break these empirical deductions, meaning
that depth could indeed play a certain role in shallow layers. On the
right side of Figure 2, we can observe some feature
maps from different blocks. These intermediate
representations display how the network modifies
the input image and help us understand howmulti-
ples are identified and suppressed. On the one
hand, as expected, we can visually assess a gradual
loss of resolution (high-frequency components) in
the first blocks, due to their down-sampling oper-
ations from the contraction path. The opposite ef-
fect is seen in the last blocks, caused by the up-
sampling operations from the expanding path.
However, contrary to what might be intuitive,
the network is not learning to suppress multiples
directly from the beginning. In fact, they are
present in all the blocks, and almost in all feature
maps. What the network seems to learn, instead, is
to identify the multiples in each block to have a
full understanding of the event. In this manner,
in the very last layer, the model combines the fea-
ture maps in such a way that the undesirable events
(multiples) are canceled out.

TRAINING DATA SET

When interpreting real seismic data, we do
not have the ground truth (GT) (annotated data).
Unfortunately, these labeled data are some of
the cornerstones of any supervised deep-learning
model. Manual interpretation is an effective way
to acquire GT, but it is an expensive and time-con-
suming process. Furthermore, its outcomes rarely
contain all the events that would define the char-
acteristics of the subsurface. To address this issue,
in the demultiple scenario, one could create real
labeled data, by using a traditional approach,

for example, the PRT (Wang et al., 2022). Nevertheless, the network
would be biased and limited by the performance of the traditional
approach (Qu et al., 2021).
In this work, we introduce a network that is able to suppress multi-

ples regardless of the domain and nature of the seismic gathers,
i.e., offset or angle domain and time or depth domain. To achieve
this, we systematically generate a substantial data set comprising
40,000 synthetic pairs of multiple-contaminated and multiple-free

Figure 1. U-net architecture for multiple attenuation. The task of
this model is to learn to remove multiples while keeping the rest
of the image unmodified, i.e., primaries and data characteristics.

Figure 2. Visualization of the U-net inner structure after each block. Left: From top to
bottom, each row shows three randomly selected filters and the histogram of the first
moment (mean) of all the filters from each block, where the x-axis is the weight values
and the y-axis is the frequency of appearance. Right: From upper left to bottom right,
following a “Z” shape, the transformations that the input image undergoes before the
multiples are removed. Each group shows four random feature maps and belongs to one
block of the U-net structure (see Figure 1).

U-net-based multiple removal WA235
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gathers. Exercising precise control over the features of the syntheti-
cally generated data set via an extensive parameter space empowers
us to create a training data set that significantly enhances the model’s
capacity to perform well on a wide range of real-world scenarios.
Crucially, it is worth noting that our network’s proficiency does
not stem from its ability to identify multiples based on their periodic
relationships to specific primary signals. Instead, our goal is to exploit
geometric differences in the RMO and cross-points between multi-
ples and even barely visible primaries in the prestack gather. This
parameter space consists of (1) variations of the density of multiples
and primaries, and their position along the vertical axis; (2) variations
of the strength of the RMO effect controlling minimum multiple
moveout; (3) variations of the spectral components of the source
wavelet together with a central frequency decay along the vertical
axis; and (4) variations of amplitude change with offset/angle.
The synthetic gathers for training are created by generating a pre-

stack reflectivity series rpðt0Þ ¼ rpðt; h ¼ 0Þ at zero offset h ¼ 0,
first, for the primary reflections p. For the expansion to nonzero-off-
set rpðt; h > 0Þ, linear interval velocity functions are defined, con-
verted to RMS vp velocity, and applied in the hyperbolic normal
moveout (NMO) formula to calculate the event time tpðt0; h; vpðt0ÞÞ.
For the amplitude part, the Shuey approximation (Shuey, 1985) is
used with rpðt0Þ as the intercept of the amplitude variation with angle
equation, to which we add a gradient term. A preliminary version of
the primary-only gather is generated by convolving rpðt; hÞ with a
synthetic source wavelet of Ricker-type whose degrees of freedom
are central frequency, bandwidth, and phase shift. Furthermore, we
generate custom wavelets through the superposition of two individual
wavelets, which are weighted and mutually shifted. Analogously,
we also generate a nonzero-offset reflectivity series rmðt; hÞ for the
multiples, followed by convolution with the same wavelets as used
for the primaries. The main difference from the primary reflectiv-
ity is the lower velocity vm used to calculate tmðt0; h; vmðt0ÞÞ. This
gather of the multiples is added to the primary-only gather to gen-
erate a gather that contains both, the primaries and the multiples.
Subsequent NMO correction of the gathers with perturbed RMS
velocity, obtained by time-dependent perturbations of the interval
primary velocity model, approximates gathers after prestack mi-
gration. The primaries appear almost flat (not necessarily perfectly
flat) and multiples show stronger positive moveout than the pri-
maries, thus they are seen in the gathers as events that intersect
primaries and have a larger vertical extent. The NMO-corrected
primary-only gathers are the GT in the process of training the net-
work; the NMO-corrected gathers of primaries and multiples are
the input gathers. The values of all parameters are obtained by
Monte Carlo sampling of the parameter space within the bounds
defined by the user of the modeling routine. Setting such bounds
follows the guidelines of the variability of the corresponding
parameters in field data acquisition and data preprocessing. It
seems reasonable to let, e.g., the central frequency of the wavelet
vary between 10 and 150 Hz to account (for deep seismic data) for
the range of frequency content of various typical sources and the
decay of frequency toward large depth. For the case of synthetic
training data for shallow applications with typically much higher
frequency content, one could stay within the same frequency lim-
its and the same vertical resolution, because the network does not
acknowledge physical units and, thus, makes no difference
between realizations of N times higher frequency data on an
N times higher resolved vertical grid. Some parameter bounds,

however, have a steering effect on the functionality of the trained
network. For example, defining a minimum-allowed moveout for
the removed multiples teaches the network not to suppress poten-
tially nonflattened primaries.

ANALYSIS OF U-NET PARAMETERIZATION

Hyperparameters are values that control the learning process
of neural networks. They define different aspects of the model, such
as the learning rate, optimizer, depth, activation function, and
loss function, just to mention a few. In general, neural networks
are notorious for being very sensitive to the choice of hyperpara-
meters, resulting in relatively different outcomes when the param-
eters are slightly modified.
In this section, we identify and describe the empirical effects that

some hyperparameters have on our multiple-attenuation network. In
particular, we focus on the impact of the optimizer, sampling tech-
nique, kernel size, loss function, and depth. To that end, we average
validation results of 25 independent runs to guarantee reproducibil-
ity. We evaluate these results on four different metrics: mean-square
error (MSE), S/N, structural similarity, and peak correlation. Fur-
thermore, we validate the outcome on synthetic and real data sets.
In this manner, we ensure certain generalizability and neutrality in
our observations.

Optimization functions

Within a neural network, the optimizer is an algorithm that modi-
fies the weights of the network to minimize the loss function. They
are built upon the idea of gradient descent, i.e., the greedy approach
of iteratively decreasing the loss function by following the gradient.
There are two main groups of optimizers: adaptive and nonadaptive
methods. Hardt et al. (2016) argue that nonadaptive methods, such as
stochastic gradient descent (SGD), are conceptually more stable for
convex and continuous optimization, having smaller generalization
errors. They also prove that, under certain conditions, the results
can be carried over to nonconvex loss functions. Follow-up work
by Wilson et al. (2017) finds empirical evidence of the poor gener-
alization performance of adaptive optimization methods, such as
adaptive moment estimation (Adam) (Kingma and Ba, 2014). Even
when adaptive methods achieve a better training loss than nonadap-
tive methods, the test performance is worse. Finally, Choi et al.
(2019) claim that the hyperparameter of the optimizer could be
the reason that adaptive optimization algorithms failed to generalize.
In our experiments, we evaluate the impact of SGD with momen-

tum and Adam optimizers for the demultiple task. Figure 3a shows
the validation metrics in synthetic data for the two selected optimiz-
ers. In these plots, we can observe how the Adam optimization con-
verges faster than the nonadaptive one (SGD) and also ends up in
lower local minima, i.e., all the metrics reach better values. Nonethe-
less, although the gap between both optimizers seems to be signifi-
cant when inspecting synthetic results, the differences are negligible
(see Figure 3b). Furthermore, surprisingly, the demultiple outcomes
on the real data set suggest that the model trained with the Adam
optimizer tends to fail to generalize more often, and its results are
not always consistent, varying among different runs. In Figure 3c,
we display some results on real data, where we see how the Adam
approach occasionally suppresses the primary energy, as it does for
the reflection marked by the red rectangle from the second gather, and
leaves some residual multiples in the far stack, as it does for the
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reflection marked by the red rectangle from the
sixth and seventh gathers. Despite the fact that
our model is trained using synthetic data, the sys-
tem is meant to be applied to real data. Therefore,
we prefer to use the SGD optimizer.

Sampling technique and kernel size

The CNN-based models gradually down-sam-
ple their inputs so that the receptive fields of
the deeper filters can reach most of the image
at a certain depth. By doing that, the pixel depend-
encies, which lie far away from each other in an
image, can be captured. This is an important as-
pect for any neural network that needs to interact
with content that is spread on the input image,
such as in fault detection or multiple removal.
In our study, we conduct a twofold analysis re-
lated to the sampling, we evaluate the effect of
different sampling techniques, and we analyze
the impact of the kernel size.
Sampling techniques refer to those methods

that decrease or increase the size of an input. In
the contraction path of U-net, there are two
down-sampling approaches: the pooling operation
and the convolution operation. Although typically
the pooling operation does not have learnable
parameters (less computationally demanding),
the convolutional operation does have such
parameters. As a consequence, the latter can cap-
ture additional information, whereas the pooling
will always imply a loss of information. In the ex-
panding path, the decoder recombines the features
sequentially until it recovers the original input
size. To that end, this path requires up-sampling
operations. Similarly to the contraction path, there
are two main approaches: interpolation operation
and transposed convolution operation. The first
type of operation is parameter-free and lossy,
and the second is the opposite. To evaluate the im-
pact of the sampling methods, both down- and up-
sampling, we check the different combinations.
For the sake of simplicity, we restrict our analysis
to the default configurations, which are max-pooling as a nonlearn-
able down-sampling technique and bilinear as a nonlearnable up-
sampling technique.
Based on Figure 4a, experiments with transposed convolutions

have less stable runs, nonetheless, all the sampling techniques have
similar performance. Therefore, the extra computational cost of the
learnable operations is not justified. Furthermore, the combination
of max-pooling and bilinear, which are both nonlearnable sampling
methods, provides the most stable results. Testing with synthetic
and real data shows no difference among the configurations.
In addition to the sampling techniques, the kernel size might also

contribute to the final outcomes. This hyperparameter determines to
what degree the sampling operation down- and up-samples the cor-
responding input. Given that we work with elongated events, we
empirically analyze the impact of kernels with square and non-
square shapes and assess the impact of more aggressive sampling,
i.e., the down- and up-sampling factors. Table 1 and Figure 5

Table 1. Each case belongs to a particular arrangement of
the kernels.

Kernel shape Aggressiveness Configuration

Case A Square Low 1 × 1, 2 × 2, 2 × 2, 2 × 2

Case B Nonsquare High 1 × 2, 2 × 4, 2 × 4, 2 × 4

Case C Square Low 2 × 2, 2 × 2, 2 × 2, 2 × 2

Case D NonSquare High 2 × 4, 2 × 4, 2 × 4, 2 × 4

Note: For example, in Case B (1 × 2, 2 × 4, 2 × 4, 2 × 4): the kernel of block 1 is
defined as 1 × 2, and the following three blocks as 2 × 4. This means that the first block
will down-sample its input only along the y dimension by a factor of two, and the x
dimension will remain unmodified. Then, the second block will down-sample its input
along the x dimension (incidence angle or offsets) by a factor of two, and by a factor of
four in its y dimension (time or depth). Note that all of these operations will be reversed
in the expanding part.

Figure 3. The optimizers used in the neural network might converge to different local
minima. These figures show how these optimizers behave under synthetic and real sce-
narios. (a) Optimizer assessment based on different quality metrics. (b) Two random
gathers from our validation synthetic data set. We infer results on a pretrained model
with Adam and a pretrained model with SGD. Both outcomes are multiple-free, and
their differences with the GT are negligible. (c) A collection of eight gathers from real
data. From left to right, the input data (with multiples), the output from a pretrained
model with Adam, and the output from a pretrained model with SGD. The red rectangles
on the middle panel of (c) mark the undesirable effects of the pretrained model with
Adam.

U-net-based multiple removal WA237
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describe the scenarios of our examples. Although the validation
metrics seem to report the same behavior for all of the kernels,
we observe a consistent improvement after quality control when

using a 1 × 1, 2 × 2, 2 × 2, 2 × 2 kernel sequence (see Figure 4b).
Models trained with the larger max-pooling kernels appear to
remove multiples more aggressively, i.e., oversmoothing results

and suppressing far stack energy of events that
exhibit small moveout, marked by the rectangles
in Figure 4c. According to Araujo et al. (2019),
the effective maximum receptive field of the
model trained with the chosen kernel sequence
is 112 samples, meaning that a single pixel in the
output is influenced by a square of 112 × 112
pixels from the input, as shown in Figure 6. This
appears to be sufficient to observe multiples and
their localized interactions with primaries, and
hence we conclude that such a localized view
is more important than the global view of the
gather for this task. Moreover, the models trained
with larger kernels seem to be more sensitive to
the initial weights than their counterparts trained
with smaller max-pooling kernels, as confirmed
in the probabilistic study (see the following
section).

Loss function

The selection of a loss function is a challeng-
ing task that has a direct impact on the model’s
behavior. For this reason, it is important to
choose a function that captures the relevant infor-
mation that needs to be propagated through the
network. In this work, we advocate for the use of
MSE for its simplicity and capacity to deal with
outliers. This loss calculates the difference be-
tween the model’s predictions ŷ and the ground
truth y, squares and averages it, across the entire
data set (N samples). Mathematically, it can be
formulated as

MSE ¼ 1

2

XN

i¼1

ðyi − ŷiÞ2: (1)

Besides formulating the loss function, it is cru-
cial to define the primary objective. This entails
clearly outlining the specific task that the network
is designed to achieve. To elaborate further, we
propose two distinct objectives: direct and inverse.
Given an input image x, the direct proposal tackles
the demultiple problem by optimizing the predic-
tion ŷ, which is a multiple-free image. The inverse
approach, however, formulates the solution from
another perspective. It defines the objective task
as an optimization problem, where the prediction
ŷ should contain only the multiples of the input
image, i.e., x − y (see Figure 7a). In this way,
the network should focus exclusively on identify-
ing the multiples, omitting the rest. Once the
model is able to do that, we can subtract the pre-
diction from the input image to obtain a multiple-
free image. In Figure 7b, we plot the metrics using
different objective functions. Interestingly, theFigure 5. Visualization of the different max-pooling kernels assessed in this study.

Figure 4. The sampling technique and kernel size determine how the system modifies
the scale of the input images. Depending on the task, they can lead to undesired artifacts.
(a) Assessment of down- and up-sampling based on different quality metrics, (b) assess-
ment of max-pooling kernel configurations based on different quality metrics, and
(c) collection of eight gathers from real data. From left to right, the input data (with
multiples), the output from Case A, and the output from Case D. The red rectangles
on the right figure mark the undesirable effects of Case D (see Table 1).
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results from both scenarios are similar. We hypothesize that the net-
work learns to cancel out the same features, in the direct and inverse
formulation, and consequently, the outcomes seem equivalent. None-
theless, more advanced loss functions could potentially improve the
results.

Depth of the network

The goal of our neural network is to model a function F that
maps the raw input data x to a multiple-free output. To that
end, we create F by concatenating n nonlinear functions f,
i.e., FðxÞ ¼ f1ðf2ð::fnðxÞÞÞÞ. Notice that adding more layers pro-
vides higher capacity to the network, which leads to deeper net-
works. In our experiments, we investigate the effect of three
levels of depth. We take as a baseline the standard model shown
in Figure 1, which consists of nine blocks. Then, we remove
two down-sampling and two up-sampling layers to create a smaller
version, called “small U-net.” Finally, we repeat the procedure, but
this time adding two down-sampling and two up-sampling layers
into the baseline. We call this last model big U-net. Table 2 shows
the details of each topology and their inference times.
Figure 8a and 8b shows the depth analysis from which we derive

the following statements. (1) The small U-net is too shallow and
does not have sufficient capacity to suppress the multiples and occa-
sionally oversmoothes the gathers. As a result, metrics and real data
underperform when compared with the standard model. (2) The big
U-net model is overparametrized, and therefore, the extra layers do
not offer any further improvement. Note, however, that this analysis
involves a training data set of a constant size and thus, training the
big U-net model on a larger data set could yield different results. In
summary, our standard model has the optimal trade-off between
quality and size.

Alternative topologies

The attention U-net architecture, proposed
by Oktay et al. (2018), enhances the standard
U-net model by incorporating self-attention mech-
anisms (Jetley et al., 2018). These mechanisms,
such as channel and spatial attention, allow the
model to adaptively emphasize relevant features
during both the encoding and decoding stages. By
selectively highlighting informative regions and
suppressing noise or irrelevant details, the atten-
tion U-net improves its overall performance. In
contrast, the MultiResUNet architecture intro-
duced by Ibtehaz and Rahman (2020) introduces
the concept of multiresolution residual blocks
within the U-net structure. The main idea is that
the incorporation of multiple resolution paths will
help the architecture to effectively capture local
and global contextual information. The fusion
of information from different resolution levels en-
ables MultiResUNet to learn intricate details and
capture a broader context, enhancing its segmen-
tation capabilities. In terms of architecture details,
attention U-net and MultiResUNet consist of nine
layers with max-pooling operations at resolutions
of 2 × 2, 2 × 2, 2 × 2, 2 × 2. Attention U-net has a
parameter count of 34.9 million and uses a com-

bination of max-pooling and bilinear interpolation for down-sampling
and up-sampling. MultiResUNet has 7.2 million parameters and uses
max-pooling for down-sampling and transposed convolution for

Figure 7. Evaluation of the impact of two different objective functions. (a) Four training
examples. Given an input image with multiples x, our goal is to build a network that can
eliminate them. To achieve this, either we design a model that removes the multiples
directly, i.e., targeting y, or we design a model that only keeps the multiples, i.e., target-
ing x − y, and then we subtract this result from the input x. (b) Loss function assessment
based on different quality metrics.

Figure 6. Visualization of the size of the receptive field of one pixel
using the configuration Case A.

Table 2. The number of parameters and inference time in
dependence on network complexity defined by the number of
block layers.

# of the
block layer # of parameters (M)

Inference
time (s)

Standard U-net 9 17.2 22.91 ± 0.02

Big U-net 13 276.8 42.70 ± 0.01

Small U-net 5 1.0 13.67 ± 0.04

Note: The last column shows the inference time for each model when testing on 6000
images 64 × 256 pixels.
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up-sampling. In Figure 9a, we show the evaluation scores from
topology analysis. Twenty-five models have been trained with each
topology and tested on synthetic testing data. Based on the depicted
curves, the performance of the attention U-net is comparable with that
of the proposed U-net architecture, whereas the MultiResUNet
demonstrates noticeably inferior results. Figure 9c shows the results
of U-net, MultiResUNet, and attention U-net and amplitudes ex-
tracted along two selected reflectors, which are plotted above the
gathers. Based on these plots, it becomes evident that the MultiRe-
sUNet affects the absolute amplitudes of primaries, whereas the U-net
and attention U-net output primaries with an overall similar amplitude
intercept and gradient. Moreover, the MultiResUNet has not success-
fully suppressed the multiple crossing of the red reflector. Figure 9b
shows another comparison of these three topologies, this time, how-
ever, on numerous gathers from the Norwegian Sea. A comparable
observation can be made based on this figure.

In summary, both the attention U-net and the MultiResUNet
introduce modifications to the standard U-net architecture to ad-
dress specific limitations and potentially enhance performance.
For our use case, the MultiResUNet demonstrates a tendency to
diminish the absolute amplitude across the gathers rather than solely
addressing the presence of multiples. In contrast, the U-net and
attention U-net exhibit similar outcomes, although the attention
U-net occasionally exhibits too severe of an effect. It is important
to note that the attention U-net, as opposed to standard U-net, is not
fully convolutional and thus is input-shape dependent. Despite
its competitive performance, the constraint of this topology to a
specific input shape is too limiting for our use case.

BAYESIAN INVESTIGATION

Once we have analyzed the role of the different parameters, it is
important to quantify the uncertainty of the model, i.e., epistemic

uncertainty. In this manner, one can determine
how reliable the actual predictions are, avoiding
miscalibrated models. To that end, we need to
move from a deterministic approach, where
we solely rely on a point estimator, to a prob-
abilistic approach, where we leverage Bayesian
probabilities via Bayesian neural networks
(BNNs). Although traditionally BNNs have
been computationally expensive and difficult
to train, recent approximations, such as deep en-
sembles (Lakshminarayanan et al., 2017), con-
crete dropout (Gal et al., 2017), and stochastic
weight averaging Gaussian (Maddox et al.,
2019), have eased these constraints.
In this work, we have implemented deep-en-

semble learning, which can be considered a spe-
cial case of BNNs (Wilson et al., 2022). The idea
behind ensemble learning comes from the
observation that aggregating the predictions of a
large set of average-performing but independent
predictors can lead to better predictions than a sin-
gle well-performing expert predictor (Breiman,
1996). In our case, however, we prefer to use such
a method to obtain the uncertainty associated with
the underlying processes. This is achieved by
normalizing and then computing the standard
deviation of the predictions of numerous sampled

Figure 8. The capacity of a network plays an important role in any learning task. Too
shallow topologies cannot capture the complexity of the data; too deep can overfit, not
improving the final results. (a) Depth assessment based on different quality metrics and
(b) a collection of eight gathers from real data. From left to right, the input data (with
multiples), the output from the small U-net, the output from the standard U-net, and the
output from the big U-net.

Table 3. Summary of all models used for the Bayesian analysis.

# of block layers Optimizer Configuration

Model A (Subsection optimization) 9 SGD 1 × 1, 2 × 2, 2 × 2, 2 × 2

Model B (Subsection optimization) 9 ADAM 1 × 1, 2 × 2, 2 × 2, 2 × 2

Model C (Subsection sampling — Case B) 9 SGD 1 × 2, 2 × 4, 2 × 4, 2 × 4

Model D (Subsection sampling — Case C) 9 SGD 2 × 2, 2 × 2, 2 × 2, 2 × 2

Model E (Subsection Sampling — Case D) 9 SGD 2 × 4, 2 × 4, 2 × 4, 2 × 4

Model F (Subsection depth — big U-net) 13 SGD 1 × 1, 2 × 2, 2 × 2, 2 × 2

Model G (Subsection depth — small U-net) 5 SGD 1 × 1, 2 × 2, 2 × 2, 2 × 2

Model H (Subsection topology — MultiResUNet) 9 SGD 2 × 2, 2 × 2, 2 × 2, 2 × 2

Model I (Subsection topology — attention U-net) 9 SGD 2 × 2, 2 × 2, 2 × 2, 2 × 2
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model parameterizations. Notice that the resulting range of values
indicates the percentage with respect to the output signal amplitude.
As a result, if the different models agree on the multiple-free solutions
and their absolute amplitudes, then the uncertainty is low. Otherwise,
the uncertainty is high.
Figure 10a–10d shows four prestack gathers from a real data set

and their associated uncertainties for a set of experiments (see Ta-
ble 3). These uncertainty figures show the areas of the prestack
gather where the models have a lack of knowledge, resulting in
a certain ambiguity within the multiple removal process. In prac-
tice, this manifests itself as variations in the amplitude or shape of
the removed events across parameterized models. Low uncertainty
is displayed in black or dark purple, high uncertainty is displayed
in pink and yellow. Given that the demultiple model is not perfect
and hence its epistemic uncertainties are not zero, one has to target
a model that does not exhibit high amplitude uncertainties that
align with primaries. Otherwise, this would suggest that some real-
izations of the model remove or suppress primary energy, which is
highly undesirable. However, uncertainties following a parabolic
or a linear moveout are tolerated, as they potentially belong to a
multiple. Such uncertainty suggests that the model is not certain
about whether the event is a multiple or there is
a mismatch in the amplitude. We observe that
Models B, C, E, and H exhibit a clear increased
uncertainty throughout the entire gather, hinting
that some of these model realizations do affect
the amplitudes of primaries. On the contrary,
Models A, D, F, G, and I only produce uncer-
tainties with significant values that follow
parabolic events which we presume to be multi-
ples. Finally, although these five models pro-
vide similar uncertainty maps, Models A, F,
and I achieve the best qualitative performance
(see the previous section). Therefore, as already
mentioned, we prefer Model A because it offers
a better trade-off between quality, size, and flex-
ibility.

SYNTHETIC EXAMPLE

Figure 11a shows the outcomes of our method
and compares them to the results obtained from
the Radon-based demultiple technique. The as-
sessment is carried out on gathers obtained from
a synthetic data set. This data set is created using a
3D finite-difference method that incorporates a
free-surface boundary condition. The gathers
are represented in the depth-offset domain, and
our deep-learning approach was directly applied
in this domain. Both our method and the Ra-
don-based demultiple technique successfully
eliminate the clearly defined parabolic events
within a depth range of 3–5 km. However, in
the far-offset shallow section, our deep-learning
approach exhibits superior performance in remov-
ing steeply dipping linear noise when compared
with the Radon-based demultiple method. For
deep-learning approaches, which take seismic
data as input and produce seismic data as output,
amplitude preservation of the primaries is of

utmost importance. Figure 11b shows the amplitude preservation
capabilities of the U-net (our deep-learning model) and the
Radon-based demultiple results. Displayed amplitudes are extracted
along the red and blue lines from the raw gather and plotted above
their respective gathers. The red line follows a potential phase-rever-
sal event with a positive intercept, whereas the blue line traces an
event with a negative intercept and a positive gradient. Both the
deep-learning approach and the Radon-based method preserve the
overall amplitude trend. In addition to multiple removal, an AVO-pre-
serving denoising effect of the deep-learning approach can be ob-
served. In the difference plots, marked by arrows, we observe
how high amplitude events in the removed energy along the lines
align closely for both approaches.

FIELD EXAMPLES

In addition to tests on synthetic data, the trained model has been
tested on numerous real postmigration data sets without any addi-
tional fine-tuning. Figure 12 shows the results of our method as
compared with a traditional Radon-based demultiple approach on
a real data set from the Norwegian Sea, subsequently referred to

Figure 9. Results of an assessment of three alternative U-net topologies. (a) A topology
assessment based on different quality metrics (calculated on testing synthetic data), (b) a
collection of eight gathers from real data, and (c) amplitudes extracted along two re-
flectors from a real data set. For (b and c): From left to right, the input data (with multi-
ples), the output from standard U-net, the output from MultiResUNet, and the output
from attention U-net.
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as Field Data A. In addition, Figure 13 shows a similar comparison
using prestack gathers of the Volve field data set (Equinor, 2018)
from the Norwegian North Sea, subsequently referred to as Field
Data B. The deep-learning approach was applied directly in the
depth-angle domain, whereas the PRT application involved
depth-to-time and angle-to-offset conversions. For both real data
examples, we plot the removed multiples for the proposed and
the traditional methods to help visualize the main discrepancies be-
tween the two systems. From this visualization, we observe that
PRT predominantly removes events along idealized parabolas,
which are unlikely to closely represent multiples in real data
CDP gathers. Complex overburden causes deviations from the para-
bolic shape, thus, the mapping of such multiples to clusters of points
in tau-p space is in disagreement with the attempt of modern high-
resolution PRTs to achieve a sparse tau-p representation. Our deep-
learning approach, in contrast, does not make use of any specific
path of the multiples and is able — based on what was shown
to the network during training — to remove along its full path
any given event that intersects other events with smaller RMO.
In this way, it also removes converted wave energy and steeply
down-dipping linear noise, and it is better suited to remove residuals
of a demultiple process of the premigration steps, i.e., which appear
only in the far stack. Such events can be seen in the far stack of the
first three gathers in Figure 12. We also provide the results of the
same data sets as full-stack sections in Figures 14 and 15. Herein,
we can see how the lateral coherency of the removed events is con-
sistent in both approaches. For Field Data A, the removed multiples
by the U-net model appear to align better with the overlaying stra-
tigraphy, resulting in sharper results.

DISCUSSION

Given postmigration prestack gathers, our
deep-learning approach identifies the multiples
and cancels them out from the output result based
on their moveout and geometric interference with
primaries in a parameter-free manner. The main
success of our implementation is not only the
ability to remove multiples, but to do it while
preserving the high-frequency components that
characterize the data, and to generalize to different
data scenarios without the need to retrain.
Although denoising is a common postprocessing
step targeting these frequency components, a non-
controlled application of it can lead to smoothing
of the data, resulting in a loss of relevant features.
We believe that seismic interpretation is a chal-
lenging task, therefore, any processing method
needs to guarantee the preservation of these
characteristics.
Despite the fact that in the past years CNNs

have been extensively used in seismic applica-
tions, there is still a lack of rigorous explanation
of hyperparameters choice. Thus, we think that
the geophysics community would benefit from
our approach to unbox neural networks to estab-
lish the relationship between the neural network
parameters and their effects on the demultiple task
from a deterministic and probabilistic perspective.
In particular, our extensive set of experiments has

Figure 10. Four prestack gathers of a real data set from the Nor-
wegian Sea, the U-net demultiple result from our best model (Model
A), and the collection of seven associated uncertainties. Looking at
the uncertainty maps, from left to right: results from Model A, B, C,
D, E, F, G, H, and I. The colorbar displays the standard deviation
between runs within the same gather.

Figure 11. Part of a depth-offset prestack gather from a synthetic data set modeled with
a 3D finite-difference method with a free-surface boundary. (a) From left to right, the
input data (with multiples), the output from our approach, the output from the parabolic
Radon approach, removed multiples by our approach, and removed multiples by the
parabolic Radon approach. Amplitudes extracted along the red and blue lines in the
respective gathers are plotted above. (b) Several prestack gathers in the depth-offset
domain. From left to right, the input data (with multiples), the output from our approach,
and the output from the parabolic Radon approach.
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Figure 12. Several prestack angle gathers of a real
data set from the Norwegian Sea. First row:
migrated raw angle gathers. Second row: angle
gathers, U-net demultiple result (left), and re-
moved multiples (right). Third row: angle gathers,
Radon-based demultiple (left) and removed
multiples (right).

Figure 13. Several prestack angle gathers of a real
data set from the Volve data set. First row: mi-
grated raw angle gathers. Second row: angle gath-
ers, U-net demultiple result (left), and removed
multiples (right). Third row: angle gathers, Ra-
don-based demultiple (left) and removed multiples
(right).
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Figure 14. Full-stack of depth angle gathers of a
real data set from the Norwegian Sea. First row:
migrated raw full-stack section. Second row:
full-stack, U-net demultiple (left), and removed
multiples (right). Third row: full-stack Radon-
based demultiple (left) and removed multiples
(right).

Figure 15. Full-stack of depth angle gathers of a real data set from the
Volve data set. First row: migrated raw full-stack section. Second row:
full-stack, U-net demultiple (left), and removed multiples (right). Third
row: full-stack Radon-based demultiple (left) and removed multiples
(right).
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determined that for multiple removal (1) the SGD optimizer is a better
candidate than Adam, as it leads to more stable, consistent results;
(2) the choice of the sampling operations seems to play a minor role
and thus, we prefer to keep the model simpler with less demanding
up- and down-sampling operators; (3) as for the kernel size, we em-
pirically have found that square- and small-sized kernels do consis-
tently outperform other kernel shapes when applied on real data;
(4) both direct and inverse loss functions provide similar results;
and finally (5) the depth of the network has a dramatic effect on
the performance and consequently, one needs to determine the correct
trade-off between network capacity and inference time. Although the
results are encouraging, the empirical assessment only represents a
subset of the total number of possible hyperparameter configurations.
Nonetheless, they are sufficient to decide which hyperparameters
play an important role in improving the transferability of features
learned from synthetic to real data applications. As demonstrated
by Breuer et al. (2020), similar neural network topologies can be used
for different gather-to-gather processing steps, such as trim-statics.
Hence, our hyperparameter analysis should also be of value for other
seismic gather-to-gather approaches based on the U-net architecture.
In general, it is relatively trivial to train a neural network that can

yield accurate results on a synthetic data set. However, it is highly
challenging to obtain similar performance on unseen real data with
potentially very different acquisition, geology, and processing set-
tings. For this reason, producing synthetic data that realistically
mimic subsurface events is crucial ongoing research (Durall et al.,
2021). During our experimental evaluation, we have iteratively
modeled different synthetic training data to investigate the effects
on real data. This data-driven methodology has allowed us to gen-
erate a concise multiple-oriented data set, with high generalization
properties. Instead of focusing on the large-scale periodic relation-
ships between primary and multiple events, in our approach, we use
their geometric shapes and localized interactions. Counterintui-
tively, the proposed approach does not require a global view of
the gather to complete the task. As a result, training the model with
larger or elongated max-pooling kernels to increase the receptive
field size does not enhance performance; instead, it introduces un-
wanted compression-decompression artifacts on the primary fea-
tures (Figure 10). Nonetheless, for tasks where a global view of
the gather is of critical importance (e.g. approaches using periodic
relationships between events), elongated max-pooling kernels
might prove beneficial. Moreover, the main objective of our hyper-
parameter study was the ability of the model to generalize. To that
end, we test the intermediate models on numerous data sets and
evaluate their performance qualitatively, as opposed to solely
benchmarking using quantitative metrics on synthetic testing data.
This fact, together with a feature-rich training data set containing
primaries and multiples of various frequencies, moveouts, densities,
and noise levels, allows us to reliably process data sets of various
characteristics.
The model is applicable to both offset and angle gathers in the time

and depth domains, using a parameter-free approach. In this way, our
approach can expedite interpretation tasks, providing human experts
with assistance in managing extensive volumes of real data.

CONCLUSION

In this work, we propose a demultiple model that can be inter-
preted as an image-to-image transformation system in the category
of separation-based multiple removal approaches. Thanks to

elaborate hyperparameter analysis using ensemble methods and
iterative synthetic training data generation, our approach has proven
to generalize well when applied to various synthetic and real field
data without the necessity to retrain the model. The events removed
by our method and PRT are mostly similar, with occasional advan-
tages for the proposed methodology. This advantage is pronounced
in cases where the remnant multiple energy is concentrated in the far
stack. Due to its parameter-free nature and independence of the
CDP gather domain (i.e., offset, angle, depth, and time), this ap-
proach has the potential to drastically reduce the turn-over time
for postmigration gather conditioning.
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