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Lithium-ion batteries exhibit slow voltage dynamics on the minute time scale that are usually associated with transport processes. We
present a novel modelling approach toward these dynamics by combining physical and data-driven models into a Grey-box model. We
use neural networks, in particular neural ordinary differential equations. The physical structure of the Grey-box model is borrowed
from the Fickian diffusion law, where the transport domain is discretized using finite volumes. Within this physical structure, unknown
parameters (diffusion coefficient, diffusion length, discretization) and dependencies (state of charge, lithium concentration) are
replaced by neural networks and learnable parameters. We perform model-to-model comparisons, using as training data (a) a Fickian
diffusion process, (b) a Warburg element, and (c) a resistor-capacitor circuit. Voltage dynamics during constant-current operation and
pulse tests as well as electrochemical impedance spectra are simulated. The slow dynamics of all three physical models in the order of
ten to 30 min are well captured by the Grey-box model, demonstrating the flexibility of the present approach.
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List of Symbol

Symbol Unit Meaning

a V proportionality factor
Ae m2 active surface area
b A−1 s−1 proportionality factor
c mol m−3 (lithium) concentration
c mol m−3 average (lithium) concentration
C — nondimensionalized (lithium) concentration
C1 F conductance
Cbat A h battery capacity
ci mol m−3 average (lithium) concentration in discretization element i
Ci — average nondimensionalized (lithium) concentration in discretization element i
ci 0 mol m−3 initial average (lithium) concentration in discretization element i
Ci 0 — initial nondimensionalized average (lithium) concentration in discretization element i

cinit mol m−3 initial (lithium) concentration
Cinit — initial nondimensionalized (lithium) concentration
cLi act mol m−3 actual lithium concentration
cLi eq mol m−3 equilibrium lithium concentration at the actual operation point
cmax mol m−3 (lithium) concentration of a fully lithiated particle
cmin mol m−3 (lithium) concentration of a fully delithiated particle
CN A h nominal battery capacity
cS mol m−3 (lithium) surface concentration
CS — nondimensionalized (lithium) surface concentration
CS GB — predicted nondimensionalized (lithium) surface concentration
CS true — true nondimensionalized (lithium) surface concentration
cV act mol m−3 actual concentration of vacancies
cV eq mol m−3 equilibrium concentration of vacancies at the actual operation point
D m2 s−1 diffusion coefficient
D* s−1 partially nondimensionalized diffusion coefficient
f — neural network
F C mol−1 Faraday constant
f* — scaled neural network
g
D

— nonlinear function
i — index of discretization elements
Ibat A (battery) current
j mol m−2 s−1 molar flux
ji mol m−2 s−1 molar flux across the right boundary of discretization element i
jinflux mol m−2 s−1 molar flux across the particle surface
k — number of inputs to a neural network layer
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Lithium-ion batteries are complex dynamic systems. They exhibit
current-voltage dynamics on multiple time scales, from milliseconds
to hours.1 This can be observed both in the time domain (e.g., during
a pulse test2) and in the frequency domain (i.e., in electrochemical
impedance spectra).3 While “fast” dynamics (up to several seconds)
are well-understood today,4 “slow” dynamics on long timescales
(typically one minute and beyond) have only recently become
subject of interest. For example, slow relaxation times become
problematic when trying to measure the true open-circuit voltage
(OCV).5–8 Understanding the slow dynamics is challenging because
they have multiple potential causes, including transport processes at
the microscale (solid-state diffusion within active material
particles9), mesoscale (liquid-phase diffusion of lithium ions in the
electrolyte10), and macroscale (thermal gradients,11 lithium concen-
tration gradients in the anode overhang12).

Modelling and simulation have proven powerful tools to support
understanding of lithium-ion batteries.13 Different model categories
can be distinguished. White-box (WB) modelling uses prior physical,
chemical or engineering knowledge in the form of mathematical
equations to describe the behavior of the system under consideration.
It is therefore limited to an understanding of the underlying processes.
In contrast, black-box (BB) models learn relationships between inputs
and outputs of systems without any physical knowledge. They
therefore require a large amount of training data. Neural networks
are an important representative of BB models. So-called Grey-box
(GB) models combine WB and BB modelling techniques to take
advantage of their respective strengths. They use prior physical
knowledge in combination with parametric parts for unknown or
imprecisely-known parameters and relationships. This results in a
reduction in the amount of data required for training.14–17

(Continued).

l m length of the cuboid particle
L — loss function
MSE — mean squared error
n — charge number
N — number of discretization elements
r m length along the radius
R m radius of the spherical particle
R1 Ω ohmic resistance
Rg J mol−1 K−1 universal gas constant
ri m position of the right boundary of discretization element i
SOC — state of charge
t s time
t — index of layers of a neural network
T K temperature
T — number of layers of a neural network
u * vector of external variables
 — uniform distribution
V m3 volume
Vdiff V voltage resulting from diffusion
Vdiff GB V predicted diffusion voltage
Vdiff true V true diffusion voltage
Vfinal V final voltage drop of the RC circuit following a current step
Vi m3 (scaled) volume of discretization element i
VRC V voltage drop across the RC circuit
x m length along the diffusion path
xi m position of the right boundary of discretization element i
z — nondimensionalized length
z0 * vector of input states
Zdiff Ω diffusion impedance
zi — nondimensionalized position of the right boundary of discretization element i
zt * vector of states at layer t of a neural network
αi A−1 s−1 or— learnable parameter

iα* A−1 s−1 or— scaled learnable parameter

δ s−1 partially nondimensionalized molar flux
δi s−1 partially nondimensionalized molar flux across the right boundary of discretization

element i
γi s−1 grey-box model parameter
ε — volume fraction
η — learning rate
θ * vector of weights and biases of a neural network
θf — vector of weights and biases of the neural network f

fθ * — vector of weights and biases of the neural network f*

θt * vector of weights and biases of layer t of a neural network
τ s time constant of the RC circuit
ω s−1 angular frequency
ω1 V learnable parameter

1ω* V scaled learnable parameter

* depending on the quantity considered
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A typical WB model used for slow dynamics in lithium-ion
batteries is Fickian diffusion, which is used in physicochemical
models of transport in the solid or liquid phases.18,19 Numerical
time-domain simulation of a Fickian diffusion process requires
spatial discretization techniques. A different setting, still WB but
using a more global viewpoint, are equivalent circuit model
(ECMs). Translated to equivalent circuits, Fickian diffusion leads
to Warburg type elements.20 These belong to the class of constant
phase elements (CPEs). Although easily calculated in the fre-
quency domain, time-domain simulation of Warburg elements
gives rise to a differential equation of fractional order,21 which
is difficult to solve numerically. Therefore, instead of explicitly
using Warburg elements in ECMs, various workarounds have been
proposed. The authors of Ref. 22 used multiple resistor-capacitor
(RC) elements to model a CPE. The parallel connection of m ∈
series RC branches with recursive parameters served as the basis
for the model. They complemented this basic RC model with an
additional conductance for phase correction at low frequencies and
an additional capacitance for phase correction at high frequencies.
In Ref. 21 an ECM was built with an ohmic resistor, two CPEs and
a Warburg element. The authors used the Grunwald-Letnikov23

definition to discretize the resulting fractional equations. To keep
the computation time short, they only considered the states from
the previous time step instead of all previous data in the discretized
equations. The authors of Ref. 8 found a linear relationship
between the open-circuit time and the time constant of a second-
order RC model. Therefore, they introduced a new voltage
relaxation model with a time-varying relaxation time. This could
reduce the waiting time during OCV measurements. However, this
approach is only applicable to rest phases when no current is being
drawn. In Ref. 24 an ECM with multiple RC circuits was
supplemented with a diffusion element. Fick’s law was used as a
starting point for the derivation of the diffusion element. The
authors considered the diffusion overpotential of a single current
step with a pulse duration significantly shorter than the diffusion
time constant. The simplification of the diffusion equation from
Ref. 25 was used to calculate the diffusion overpotential. In
contrast, the authors of Ref. 26 extended an ECM with a simple
diffusion model for solid-state diffusion in the active material
particles. The particle consists of two regimes with individual
capacity in this core-shell model. The chosen approach is a
simplified version of a single particle model27–29 with only two
discrete volumes. In conclusion, there are many different ap-
proaches to model Fickian diffusion and the resulting Warburg-
type behavior of lithium-ion batteries. The matter gets further
complicated by the fact that the experimentally-observed dynamics
are often not pure Warburg.30

Because of the multiple possible causes and often ill-defined
nature of the slow voltage dynamics, as well as difficulties in

numerical simulation of Warburg-type elements, we introduce here
a novel GB modelling approach. In particular, we use neural
ordinary differential equations (NODEs)31 for a GB model
embedded in an ECM. The physical structure of the GB model is
based on the Fickian diffusion law, where the transport domain is
discretized using finite volumes. Within this physical structure,
unknown parameters (e.g., diffusion coefficient, diffusion length,
discretization) and dependencies (e.g., state of charge (SOC),
lithium concentration) are replaced by learnable parameters and
neural networks. This combination has a physical basis but at the
same time provides sufficient flexibility for describing non-ideal
behavior.

An overview of our modelling and training approach is shown in
Fig. 1. Our study consists of three parts. We first build a GB model
for concentration dynamics due to Fickian diffusion, which we train
with numerical simulation results of a WB diffusion model (Fig. 1a).
We then extend this model by a description of a concentration-
voltage relationship, allowing to predict the diffusion voltage. This
extended model is first trained to a Warburg element simulated in the
time domain (Fig. 1b). Finally, in order to demonstrate the flexibility
of the approach, the same GB model is trained to an RC circuit
(Fig. 1c). All three WB models are parameterized such that they
show dynamics in the range of ten to 30 min.

The paper is organized as follows. In the following section we
give a short introduction to WB modelling of Fickian diffusion.
Furthermore, we show how to model a Warburg element and an RC
circuit. Afterwards, we introduce the GB modelling approach for
Fickian diffusion. First, we show how to model the concentration
dynamics of lithium in a spherical active material particle. Second,
we extend the approach to model the resulting voltage drop. We
perform model-to-model training and tests. Finally, the results are
presented and discussed. At the end of the paper we summarize the
results and give an outlook.

Physical Basis—White-Box Modelling

In this section we present the physics-based models (WB models)
used as the structural basis of the GB model, and also used for
simulating training and test data. We first present the Fickian
diffusion model. Next, we give a brief overview of the Warburg
element and the modelling of the resulting voltage dynamics.
Finally, we show how to model the voltage dynamics of an RC
circuit.

Fickian diffusion.—Model.—There are various diffusive trans-
port mechanisms taking place in a lithium-ion battery, including
solid-state diffusion in the active material particles of the electrodes,
liquid-phase diffusion of lithium ions in the electrolyte, or solid-state
diffusion of lithium into (or out of) the anode overhang. The
spatiotemporal change of concentrations due to diffusion is generally

Figure 1. Simulation and training approach. The present study consists of three parts: (a) concentration dynamics based on Fickian diffusion model, (b) voltage
dynamics resulting from a Warburg element, (c) voltage dynamics resulting from a resistor-capacitor circuit. Goal is the prediction of the slow dynamics of the
diffusion voltage Vdiff.
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described by Fick’s second law:32

c

t
D c 1

∂
∂

= ∇( ∇ ) [ ]

where, c is the concentration (e.g., lithium concentration inside the
active materials), D is the diffusion coefficient, and ∇ is the Nabla
operator. Fick’s first law describes the species flux as

j D c 2= − ∇ [ ]

where, j is the molar flux.
In the following, we assume solid-state diffusion within active

material particles as main diffusive transport mechanism (cf.
Figure 1a). For simplicity, the active material particles of lithium-
ion batteries are often assumed to be spherical. We use here a so-
called single-particle model, where the electrodes are assumed to
consist of a single spherical particle with radius R27,28 and the
externally-applied battery current Ibat is scaled to this single particle.

In spherical coordinates, the diffusion Eq. 1 simplifies to
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where, r is the radial position.
Electrochemical charge-transfer reactions take place at the sur-

face of the particle. A (de-)intercalation process with a given flux
through the particle surface results in the following initial and
boundary conditions:33–36

c c r R t, 0 , 0 4ainit= ⩽ ⩽ = [ ]

c

r
r t0, 0, 0 4b

∂
∂

= = ⩾ [ ]

D
c

r
j r R t, , 0 4cinflux− ∂

∂
= = ⩾ [ ]

where, cinit denotes the initial concentration, and37
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is the molar flux across the surface of the sphere. Here, ε is the
volume fraction of the active material, F is the Faraday constant, and
V is the volume of the electrode. Note that the particle center is at
r= 0 and the particle surface at r= R.

Discretization and nondimensionalization.—Spatial discretiza-
tion of the diffusion Eq. 3 in spherical coordinates with the finite-
volume method leads to the following expression:38
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where, N ∈ is the number of spherical shells chosen,

V r ri i i
1

3 1
3 3= ( − )+ the scaled volume of the shell between r r,i i 1[ ]+ ,

and ci the average concentration within its volume. Note that the factor

4π in the usual volume term r ri i
4

3 1
3 3π ( − )+ is cancelled by the same

factor in the surface.38 Taking into account the initial and boundary
conditions according to Eqs. 4 and 5, we can reformulate Eq. 6 as:
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where, ci 0 is the initial concentration in the shell i.
The finite-volume method gives the average concentration in

each discretization volume. To approximate the surface concentra-
tion cS, a linear extrapolation to the particle surface is
recommended:38
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To minimize the influence of rounding errors, we (partially)
nondimensionalize the equations.34–36 For this purpose, the fol-
lowing (partially) nondimensionalized quantities and functions are
introduced:
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where, cmax and cmin are the (average) concentrations when the
particle is fully lithiated or delithiated, respectively. In the single-
particle model this can be interpreted as the battery being fully
charged or discharged, respectively.

The following relationships result from Eqs. 7 and 8 with the
partially nondimensionalized quantities according to Eq. 9:
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In the single-particle setting used here, the average nondimensiona-
lized concentration C represents the SOC of the electrode.

Equations 10 are the final result of this section. We used these
equations to generate training data for GB modelling and also as a
basis for the GB model of Fickian diffusion that will be presented
below.

Parameterization.—We chose to use a representative graphite
electrode particle as basis for this study. We used parameters
representing the lithium iron phosphate (LFP) cell from the
Chinese manufacturer CALB, model CA180FI, which is described
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in detail in Ref. 39. According to the manufacturer, the cell has a
nominal capacity of CN = 180 A h. The graphite electrode has a
volume of V= 7.203 · 10−4 m3 and a volume fraction of ε= 0.554 at
50% SOC.39 The diffusion coefficient of lithium in graphite has been
observed to strongly depend on the lithium concentration, spanning
more than an order of magnitude.40 For the present study, we
decided to use a value of D= 3.9 · 10−14 m2 s−1 taken from Ref.,41

and multiplied this value with a concentration-dependent parabolic
function gD =− 3.6 · (C− 0.5)2 + 1 ranging between values of 0.1
(for C= 0 and 1) and 1 (for C= 0.5). This generic function allows
to assess the ability of the GB model to represent nonlinear diffusion
coefficients. For the graphite electrode of the cell in Ref. 42, the
maximum lithium concentration is 3.1833 · 104 mol m−3. For sim-
plicity we assumed that c c 3 10 mol mmax min

4 3− = · − . The particle
radius is R= 1.25 · 10−5 m.42

Simulation.—Equations 10 were implemented in Python (version
3.7.6) to generate training and test data. We used the odeint method
from the torchdiffeq library (version 0.2.3)43 to solve the differential
equations with the Dopri5 method. The radius of the spherical
particle was discretized in 100, 20 and 10 equidistant sections for
comparison. Note that for the GB model (see below) we only chose 5
discretization elements. Extrapolation of the concentration according
to Eq. 10f gave the surface concentration.

We simulated the concentration dynamics for different battery
currents and different initial concentrations. We used eight different
time series as input for the training data, representing eight different
virtual experiments with the cell. Specifically, we simulated con-
stant-current charge (i.e., lithiation, starting from a fully delithiated
particle) and discharge (i.e., delithiation, starting from a fully
lithiated partice) with absolute external currents Ibat of 18 A, 50 A
and 180 A. Additionally, we simulated pulsed charge and discharge
as follows. An absolute current of 50 A was applied to the cell. After
each 300 s the current was reduced to an absolute value of 25 A for
100 s. At the end of each time series we included a rest period. The
rest phase following the constant current (CC) phase with an
absolute current of 180 A was chosen to be sufficiently long to
achieve (almost) complete relaxation, at least following one lithia-
tion and one delithiation process in the training data set. This is
especially helpful when GB modelling the battery voltage dynamics
as shown below. For the (dis-)charging with an absolute current of
18 A we simulated 18000 s current load and then 2000 s rest phase.
For an absolute current of 50 A the current load lasted 12000 s, the
subsequent rest phase lasted 8000 s. The CC phase for an absolute
current of 180 A was kept up for 3600 s followed by a rest phase of
16400 s duration. For the pulsed currents we chose a total duration of
7500 s. The subsequent rest phase took 2500 s.

As test data sets for the final GB model, we simulated two
additional dynamic protocols. One time series started with a fully
delithiated particle, the other with a half-lithiated particle. We used
current steps with different lengths, absolute values and sign,
followed by rest phases of different lengths. The current profiles
will be shown below in the Results section.

Warburg element.—In an electrochemical system such as a
lithium-ion battery, diffusion-induced changes of the internal con-
centrations result in changes of the externally observable voltage. In
the following we refer to this as diffusion voltage Vdiff. In this
section we describe the Warburg element commonly used as
equivalent circuit component (cf. Fig. 1b).

Background.—The intercalation reaction of lithium is given by
following equation:3

Li e V Li 11Li
I+ + ⇄ [ ]+ −

where, Li+ denotes a lithium ion in the electrolyte, e− an electron,
VLi a lithium vacancy in the host lattice of the electrode and LiI

intercalated lithium. Based on the Nernst equation, assuming small

perturbations around the equilibrium, the relationship between the
change in battery voltage and the concentration is given as (cf. Refs.
3, 20)
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⎝
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with the universal gas constant Rg, the temperature T, the Faraday
constant F, the concentrations of intercalated lithium cLi act and
cLi eq, and the concentrations of vacancies cV act and cV eq, where the
subscript act means the actual and the subscript eq means the
equilibrium concentration at the actual operation point. Using this
relationship together with a Fickian diffusion process, the dynamic
voltage response can be derived in the Laplace domain, resulting in
the so-called Warburg element.3,20

The complex Warburg impedance Zdiff depends on the boundary
conditions on either side of the diffusion domain. We have chosen
Cartesian coordinates to generally describe Fickian diffusion in
particles with a one-dimensional diffusion path, in contrast to the
previous representation of Fickian diffusion in spherical particles.

In general, the current flux into the electrode defines the first
boundary condition at x= 0:

j D
c

x
x t, 0, 0. 13influx = − · ∂

∂
= ⩾ [ ]

The second boundary depends on the type of diffusion.44 For semi-
infinite diffusion, the second boundary condition is given by44
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The resulting complex impedance, referred to as Warburg impedance,
is inversely proportional to the square root of the frequency ω:45
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where, Rg represents the universal gas constant, c the molar
concentration, n the charge number, Ae the active surface area, and
ω the angular frequency. In the Nyquist plot it is represented by a
straight line inclined at an angle of −45° to the real axis.9,20,44,45

Model.—For the present study we assume semi-infinite diffusion.
The dynamic voltage behavior of the corresponding Warburg
impedance is given by Eq. 15. Due to the inverse proportionality to
the square root of the frequency, the semi-infinite diffusion leads to a
time-domain differential equation of fractional order according to45,46

V

t

R T

cn F A D
I

d

d
16

0.5
diff

0.5

g

2 2
e

bat= · [ ]

where, d0.5/dt0.5 represents a fractional differential with order 0.5.
The battery current serves as the model input, and the voltage

drop across the Warburg element is the model output.

Parameterization and simulation.—We used Matlab/
SIMULINK (Matlab: version R2020a, SIMULINK: version 10.1)
to implement a white-box model of the Warburg impedance
according to Eq. 16. The fractional integrator was taken from the
FOMCON toolbox (version 1.50.3).47 The integrator is imple-
mented as an Oustaloup filter.48 We have used the following
settings: Frequency range 10 Hz, 1000 Hz4[ ]− and an approxima-
tion order of 5. The selected integrator can reproduce the desired
integration of fractional order with good accuracy in the defined
frequency range. For very low frequencies and very high
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frequencies the behavior becomes resistive (cf. Ref. 49). We used
the automatic solver selection with variable step size and a
maximum step size of 0.5 s.

The proportionality factor R T cn F A Dg
2 2

e in Eq. 16 is
unknown. We arbitrarily set the factor such that, in a virtual
experiment where a current step from 0 A to 180 A is applied, the
voltage drop due to the Warburg impedance reaches a value of
200 mV after 1000 s. These are reasonable values for the chosen
battery with a capacity of Cbat = 180 A h. The proportionality
factor determined in this way was 3.210 · 10−5 Ω s−0.5. Different to
the Fickian diffusion case, this value was kept constant (indepen-
dent of SOC), mainly because we want to directly compare the
behavior of the Warburg element to that of the RC circuit (cf.
below).

To generate training data, we used similar current signals as for
the Fickian diffusion case. However, the durations of current
application were chosen such that the final lithiation was approxi-
mately 0.5 in each case when simulating the diffusion voltage with
the specified battery capacity of Cbat = 180 A h. For the (dis-)
charging with an absolute current of 18 A we simulated 18000 s
current load and then 2000 s rest phase. For an absolute current of
50 A the current load lasted 6480 s, the subsequent rest phase lasted
3520 s. The CC phase for an absolute current of 180 A was kept up
for 1800 s followed by a rest phase of 18200 s duration. For the
pulsed currents we chose a total duration of 7500 s. The subsequent
rest phase took 2500 s.

For testing, we used the same current signals as for the Fickian
diffusion case.

Resistor-capacitor circuit.—One of the goals of the present study
is to investigate whether a GB model based on finite-volume
discretization of Fickian diffusion equation can approximate time-
dependent behavior other than Fickian diffusion. We therefore
replaced the Warburg element with a simple RC circuit (cf. Fig. 1c).

The RC circuit is modelled with an ordinary differential equation
describing the variation of the voltage drop across the element with
time, according to

V
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R C
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1
bat

1 1
RC= · −

·
· [ ]

with the voltage drop VRC, the ohmic resistance R1 and the
capacitance C1. The time constant τ= R1 · C1 is a characteristic
property of the RC circuit. It is defined as the time it takes to
discharge the capacitor across the resistor to e−1 ≈ 36.8% of its
initial voltage.

For direct comparison between RC circuit and Warburg element,
we wanted the RC circuit voltage drop to reach 200 mV after 1000 s
with a current load of Ibat = 180 A, as for the Warburg element. We
chose the time constant to be τ= 1000 s. We first calculated the final
voltage drop Vfinal resulting from a current load of 180 A as

V
200.0 mV

0.632
316.5 mV. 18final = = [ ]

The ohmic resistance of the RC circuit can then be calculated from
the relation between the final voltage and the current step with
Ohm’s law as

R
V

I

316.5 mV

180 A
1.758 m .1

final

bat
= = = Ω

Finally, we used this value together with the time constant to
calculate the capacitance according to

C
R

1000 s

1.758 m
568.8 kF.1

1

τ= =
Ω

=

These parameters were kept constant (independent of SOC).

The RC circuit model was implemented in SIMULINK. We
generated another set of training and test data with the same current
signals as for modelling the Warburg element (cf. above).

Grey-box Modelling

In this section we give a brief introduction to NODEs. We then
introduce a GB model for modelling the lithium concentration
profile in a spherical active material particle. Finally, we expand
the GB modelling approach to model the voltage drop resulting from
diffusion.

Background: neural ordinary differential equations.—
NODEs31 are a special type of neural networks. For a general
overview of neural networks, the interested reader is referred to Ref.
50. One particular type of neural network is the residual neural
network (ResNet), introduced by He et al.51 Unlike simple feedfor-
ward networks, ResNets have additional short-cut connections.
These shortcuts add a neuron’s input directly to its output.
ResNets overcome problems of training loss degradation with
increasing number of hidden layers in deep neural networks. They
can be used for time series prediction.51

The state transformation from layer t to layer t+ 1 in a ResNet
can be described by the following recursive formula:51

z z f z t T, , 0 ,..., 1 19t t t t1 θ= + ( ) = − [ ]+

with the vector zt
d∈ of states at layer t, the learned parameters θt

of layer t, and the learnable function f : d d → . The parameter
vector θt summarizes the learned weights and biases. Reducing the
time stepΔt toward zero and thus increasing the number of observed
points per time series toward infinity, while sharing the parameters
across the layers (θt = θ for t= 0,...,T− 1), leads to the explicit
Euler discretization of the initial value problem31,52–57

z
f z z z

t

t
t t

d

d
, , , 0 . 200θ( ) = ( ( ) ) ( ) = [ ]

The neural network f appears on the right-hand side of the differential
equation. Therefore, the differential equation is called NODE. Given
the initial state z 0( ), a differential equation solver returns the output
state z T( ).31,54,55,57 The differential equation according to Eq. 20 is
generalized to consider external variables u t( ):58

z
f z u z z

t

t
t t t

d

d
, , , , 0 . 210θ( ) = ( ( ) ( ) ) ( ) = [ ]

The authors of Ref. 59 call the consideration of prior knowledge
in a NODE universal differential equation. We want to emphasize
the combination of WB and BB modelling techniques and therefore
use the term GB modelling with NODEs.

Simulation and optimization methodology.—We implemented
our GB models in Python (version 3.7.6). The open-source
machine learning framework PyTorch (version 1.11.0)60 was
used. It provides two main features: Tensor computing and
automatic differentiation for neural networks. We also used the
torchdiffeq library (version 0.2.3).43 It is based on PyTorch and
allows solving differential equations and backpropagating through
their solutions.

Unless otherwise stated, we used the Dopri5 method with an
absolute tolerance of 10−9 and a relative tolerance of 10−7 to solve
the differential equations in our models. As we used different
quantities in the definition of the loss function, we used the
numerical values of the respective quantities in SI units to calculate
the training loss. The backpropagation of the training loss through
the differential equations was done using the standard method from
torchdiffeq. The standard method backpropagates through the
solutions by applying the chain rule. For algebraic equations, the
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automatic differentiation of PyTorch was used. Finally, the loss was
minimized using an Adam optimizer.

After the introduction of the necessary background information
and the description of the simulation and optimization methodology
we now focus on GB modelling.

Concentration dynamics: Fickian diffusion.—Approach.—For
simplicity, the active material particles of lithium-ion batteries are
often assumed to be spherical. For example, in the single-particle
model, the electrodes are each assumed to consist of one single
spherical particle.27,28 However, in real electrodes, microstructures
tend to be much more complex, and truly spherical particles are
rather uncommon; this is particularly true for graphite, as used in the
experimental cell studied here.39 We therefore further simplified the
diffusion model by assuming a simple cartesian one-dimensional
domain. This might be interpreted as cuboid particles of length
l= 2R, where diffusion takes place in one direction only. Real
particle shapes are likely neither spherical nor cuboid, nor consistent
throughout the electrode. In the present approach, we assume that the
particle shape and its distribution can be implicitly captured by
training the free parameters of the neural network (diffusion
coefficient, length, and discretization) within the GB model to the
effective (macroscopic) diffusion response.

Based on these considerations, we used the ordinary differential
equation system resulting from finite-volume discretization of
Fickian diffusion in a one-dimensional cartesian domain as a basis
for our GB model (called “GB I” in Fig. 1a). The corresponding
equations are derived in the Appendix (Eqs. A·5). As some of the
parameters in these equations are not known, we introduced
learnable parameters and neural networks. As mentioned above,
the active material particles in the electrodes are irregularly shaped
and have different sizes. It is unclear which value to assume for the
diffusion coefficient, the diffusion length, and the proportionality
factor between the battery current and the molar flux across the
particle surface (which is related to the active surface area).

We chose five discretization volumes in order to keep the
computation time low. Using equidistant spatial discretization would
be the simplest. However, as mentioned in Ref. 38, a non-uniform
distribution could be advantageous. We therefore decided to include
the individual lengths of the discretization volumes as learnable
parameters during the training process.

A neural network approximates the diffusion coefficient. A direct
dependence on the nondimensionalized concentration in the dis-
cretization volumes was considered. As the diffusion coefficient is
positive, we decided to use the absolute value of the output of the
neural network to simplify the training. Otherwise, the diffusion
coefficient might become (partly) negative due to the initialization of
the weights and biases of the neural network or due to the
optimization steps during training. Furthermore, the proportionality
factor in the Eq. A·5d is unknown. Here we introduced another
learnable parameter that directly includes the length of the outermost
discretization element.

Overall, these considerations lead to the following GB model:
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with the learnable parameters αi and the neural network f. For f, we
chose a feedforward network with one hidden layer, ten hidden
neurons and ReLU activation. The neural network takes a non-
dimensionalized concentration as input and returns the partially
nondimensionalized diffusion coefficient given in s−1. The para-
meters αi, 1 ⩽ i ⩽ 4 represent dimensionless quantities and the
parameter α5 is given in A−1 s−1. The battery current Ibat is the
input to the model and the normalized surface concentration CS is
the output. The current for delithiation of the particle is defined as
positive and the current for lithiation is defined as negative.

Note that we could have combined the neural network f and the
learnable parameters αi, 1 ⩽ i ⩽ 4 in Eq. 22c. However, we decided
to split the neural network and the parameters. This allows an
evaluation of the diffusion coefficient represented by the neural
network f. In addition, the concentration dependence of the diffusion
coefficient is difficult to learn. When considering the learnable
parameters within the neural network, there would be a risk of
incorrectly learning different concentration dependencies for the
different i, 1 ⩽ i ⩽ 4. It is worthwhile noting that, due to its physical
basis and the choice of finite volume discretization, the model is
mass-conservative: independently of the values of the parameters,
the spatially-averaged concentration only depends on the influx of
lithium ions over the particle boundary.

Equation 22c involving a neural network is part of the right-hand
side of the differential Eq. 22a. Therefore, this is a NODE with prior
knowledge built in, which we call a GB model.

Normalization and initialization.—The initialization and scaling
of the parameters to be learned are crucial for good training.61 The
authors of Ref. 61 recommend scaling the inputs of neural networks:
The average of the input variables over the training set should be
close to zero (note that this condition is fulfilled for the battery
current of a rechargeable battery, since negative currents for
charging and positive currents for discharging integrate to zero;
the mean SOC is about 0.5). In addition, their covariance should be
about the same.

Since the SOC is in the range 0 to 1, we decided to scale all
inputs to values between 0 and 1. We also normalized the output
value of the neural network to a similar range of values. We scaled
the learnable parameters according to the range of values and the
expected deviation from the chosen initial value.

Exemplary, we discuss how to scale and initialize the neural
network f and the parameters αi in Eq. 22c. Assuming equidistant
discretization volumes, the output of the neural network times the
respective learnable parameter αi in Eq. 22c substitutes the factor

i N, 1 1D

z z

D

z zi i l
i i

1
2

2

2
1

2( )
= ⩽ ⩽ −*

( − ) ·( − )+ +

(cf. Eqs. A·5).

Using the physical parameters from the WB model representing a
graphite electrode particle (cf. above), and using l/2= R (cartesian
coordinates), the value for the αi times the output of the neural network

can be roughly estimated as 1.872 10 s3.9 10 m s

12.5 10 m 0.02
2 1

14 2 1

6 2 2 = ··
( · ) ·

− −− −

− for

N= 5.

To keep the output of the neural network and the learnable
parameters in the value range from 0 to 1, we introduced a
scaling factor of 10−1. The output of the scaled neural network
times the scaled learnable parameter is then given by

f f, 10 ,C C
i

C C
i2 f 2 f

i i i i1 1( ) ( )θ θα α* · * = · ·*
+ +− − . We initialized the

weights and biases of the scaled neural network from the uniform

distribution ,
k k

1 1( )− , with k ∈ the number of inputs to the

respective layer (cf. Ref. 61). Note that the input of the neural
network is dimensionless and that the output is given in s−1. The
learnable parameters i, 1 4iα* ⩽ ⩽ were initialized with 1. The
scaling and initialization of the other learnable parameter is
described in the Appendix.
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The adapted scaled model is given by the following equations:
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with the learnable parameters iα* and the neural network f* with one
hidden layer, ten hidden neurons and ReLU activation. Since the scaling
factors are dimensionless, the parameters have the same units as the
unscaled ones. Equations 23 represent the GB model “GB I” in Fig. 1.

Training and test.—We implemented the final GB model for
Fickian diffusion according to Eqs. 23 in Python. We used the time-
dependent surface concentration simulated with the WB model
which uses a spherical diffusion domain with 100 spherical shell
discretization volumes for training and testing (cf. above).

After setting the initial concentration, the battery current Ibat(t)
served as an external variable. We solved the differential equations
using the Dopri5 method and performed backpropagation through
their solutions using the standard odeint method from torchdiffeq.
The backpropagation of the loss through the algebraic equations was
done with the automatic differentiation of PyTorch. We used the
mean squared error (MSE) of the true and approximated surface
concentration to define the loss function L as

L C C100 MSE 100 , 100 . 24S GB S true= · ( · · ) [ ]

Additionally, we penalized negative values as output of the
neural network f*. We calculated the output of the neural network for
input values in the range between −1 and 2 in steps of 0.1. We chose
this wide range of values because due to the definition of the
nondimensionalized concentration it is also possible to get negative
values or values greater than 1. If an output value of the neural
network was smaller than zero, 10000 times this value was
subtracted from the error.

An Adam optimizer with a decaying learning rate between
η= 10−2 and η= 10−3 minimized the loss. The parameters were
saved as the training loss decreased. We decided to exclude some
data at the beginning of the training to speed up the training process.
During the first 99 epochs we only considered the first 10% of the
data points of the time series. The number of data points was
increased until we considered the entire time series from epoch 300
on. In total, we ran 750 training epochs with stochastic gradient
descent which means that the backpropagation of the training loss
was carried out separately for each time series. The simulation and
optimization methodology is described above in detail. The training
results are presented and discussed below.

The aim of the present study is to develop a GB modelling
approach for Fickian diffusion as well as the resulting voltage drop
across a Warburg element and an RC circuit. We want to show that
the modelling approach works in principal. Finding the best possible
model for this synthetic case is not our intention. Therefore, we did
not perform hyperparameter tuning and we did not split off a
validation data set.

Still, we tested the resulting GB model against the two additional
test data sets. After providing the initial concentration, the current

served as external input. Again, we solved the differential equations
using the Dopri5 method.

Voltage dynamics: Warburg element and resistor-capacitor
circuit.—In the previous section a GB model for the concentration
dynamics due to Fickian diffusion (“GB I” in Fig. 1) was derived. In
the present section, we extend this model to approximate the
resulting voltage dynamics (“GB II” in Fig. 1). The proposed
modelling approach is trained not only to the dynamics of a
Warburg element (which is based on Fickian diffusion), but also
to the dynamics of an RC circuit.

Approach.—The voltage drop due to concentration gradients is
given by the Nernst Eq. 12. The concentration dynamics are given
by Eqs. A·5. The combination of both equations serves as a basis for
the full GB model. To this goal, we reformulated Eq. 12 by
neglecting the vacancies:

V a
c

c
ln 25diff

S= −
¯

[ ]

with a proportionality factor a, the surface concentration cS of
lithium, and the mean lithium concentration c in the particle.
Applying the logarithmic laws c cln ln lnc

c S
S = − , using the non-

dimensionalized quantities CS andC instead of cS and c , recognizing
that C SOC= , and linearizing the logarithmic terms leads to the
following simplified expression:

V CSOC 26diff 1 Sω= ·( − ) [ ]

with the learnable parameter ω1. This equation is based on the
nondimensionalized quantity CS which results from the GB transport
model Eqs. 22.

We add an additional equation for the SOC as we need to know
the average lithium concentration in the particle. The SOC of the
battery is given by current integration (“Coulomb Counter”):

t C
I

dSOC

d

1
27

bat
bat= − · [ ]

with the battery capacity Cbat.
According to the manufacturer, our representative cell (cf. above)

has a nominal capacity of CN= 180 A h. Therefore, for the
Coulomb Counter, we set the battery capacity to Cbat=
180 A h · 3600 s h−1= 648000 A s.

Taken together, these assumptions result in the following GB
model:
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with the learnable parameters αi and ω1 and the neural network f.
The parameter ω1 represents a voltage and is given in volts. The
parameters αi represent the same quantities, and the neural network f
has the same configuration, as before when GB modelling Fickian
diffusion. Overall, the equation system yields the diffusion voltage
Vdiff(t) as output for a given current Ibat(t) as input.

Normalization and initialization.—Again, we had to scale and
initialize the parameters and the neural networks. Equations 28a to
28e are equal to the Eqs. 22. Therefore we used the same scaling
factors as for the Eqs. 23 and initialized the parameters and neural
networks as before.

There is an additional learnable parameter ω1 in Eq. 28g which
represents the factor a in Eq. 25. The estimation of a resulting from
comparison with Eq. 12 is given in the Appendix.

These assumptions result in the following scaled GB model:
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with the scaled learnable parameters iα* and 1ω* and the scaled
neural network f* with one hidden layer, ten hidden neurons and
ReLU activation. Since the scaling factors are dimensionless, the
parameters have the same units as the unscaled ones. The neural
network takes a dimensionless quantity as input, the output is given
in s−1. Equations 29a to 29e represent the model “GB I” in Fig. 1,
whereas Eq. 29g represents model “GB II”.

We applied this GB model to the voltage dynamics of both, a
Warburg element (Fig. 1b) and an RC circuit (Fig. 1c).

Training and test.—We implemented the final GB model for slow
voltage dynamics according to Eqs. 29 in Python. The differential
Eq. 29f and the NODE given by Eqs. 29a to 29d were summarized in
one differential equation system and solved together. The SOC and
the lithium concentrations in the outer discretization elements were
then used to calculate the surface concentration and the voltage drop
across the diffusion element. We trained the final GB model against
the voltage drop across either the Warburg element or the RC circuit.

For the Warburg element, simulation results from the SIMULINK
model with fractional integrator (as shown above) were used as
training and test data. The training is described in the following. The
initial concentrations and SOC were set to 0 or 1 depending on the
time series. The battery capacity was given as Cbat= 180 A h and the
current Ibat served as the external variable. We solved the differential
equations using the Dopri5 method and performed backpropagation
through their solutions using the standard odeint method from
torchdiffeq. The loss function was defined as

L V V100 MSE 100 V, 100 V . 30diff GB diff true= · ( · · ) [ ]

Additionally, we penalized negative values as output of the neural
network f*. We calculated the output of the neural network for input
values in the range between −1 and 2 in steps of 0.1. If an output
value of the neural network was smaller than zero, 10000 times this
value was subtracted from the error.

An Adam optimizer with a decaying learning rate between
η= 10−2 and η= 10−4 minimized the loss. The parameters were
saved as the training loss decreased. We decided to exclude some
data at the beginning of the training to speed up the training process.
During the first 299 training epochs, we considered only the training
data for pulsed current charging and discharging. Afterwards, we
also took the other training data sets into account. During the first 19
epochs we froze the parameter 1ω*. We only considered the first 10%
of the data points of the time series during the first 99 epochs. Note
that we used an adaptive solver to generate the training data.
Therefore, the data points were irregularly sampled. The number
of data points was increased until we considered the entire time
series from epoch 300 on. This was done to facilitate the approx-
imation of the voltage dynamics and to speed up the training. In
total, we ran 500 training epochs with stochastic gradient descent.

As before, we used the two remaining data sets for model testing.
The Dopri5 method was used to solve the differential equations. The
initial concentrations and the initial SOC as well as the current
signals were provided.

For the RC circuit, we used simulation results of the SIMULINK
model with the RC circuit (as shown above) as training and test data.
The training and test procedure was the same as for the Warburg
element.

Results and Discussion

This section presents the results of the GB models derived in the
previous section, starting with the concentration dynamics due to
Fickian diffusion (Fig. 1a) and followed by the voltage dynamics
from a Warburg element (Fig. 1b) and an RC circuit (Fig. 1c).

Fickian diffusion.—A total of eight time series of Ibat(t)
(cf. above) with the resulting single-particle surface concentration
dynamics (using parameters inspired by a graphite electrode,
cf. above) were used as training data. The absolute value of the
output of the scaled neural network f*, representing the scaled
diffusion coefficient, at the end of training is shown in Fig. 2 as
function of C on the right axis. On the left axis, the figure shows the
chosen concentration-dependent diffusion coefficient used to gen-
erate the training and test data. For a direct comparison, both axes
were individually scaled such that the maxima of the curves

Figure 2. Output of the scaled neural network f* (“GB”) after completing
the training in comparison to the true diffusion coefficient (“true”) for
Fickian diffusion.

Journal of The Electrochemical Society, 2023 170 120537



coincide. The learned diffusion coefficient shows good qualitative
agreement with the true one over a wide range of concentration.
Only the areas around the boundary points and the extreme point
show greater deviation. Here one has to keep in mind that we chose a
small neural network with only 10 hidden neurons and ReLU
activation.

The trained parameters are given in Table I. The values 1α* to 4α*
represent the different lengths of the discretization volumes. They
increase with increasing i, that is, the volumes become smaller
toward the surface. According to Ref. 38, a nonuniform distribution
with smaller discretization elements toward the surface allows a
dramatic reduction of the number of discretization elements

Figure 3. Training results for delithiation of a spherical particle with a pulsed current. The upper panels show the complete time series, the middle panels show
the last two pulses and the lower panels show the rest phase; left: battery current, right: concentrations. The right panels compare results from the Fickian
diffusion model with 100 discretization elements (“true”) and the GB model (“GB”). The legend indicates the position within the diffusion length, where S is the
surface, 2 is the middle discretization element and 0 is the innermost element.

Table I. Results for the scaled learnable parameters after completing the training and the mean squared error (MSE) between the true and
predicted nondimensionalized surface concentration (Fickian diffusion) or diffusion voltage (Warburg element and resistor-capacitor circuit) for
delithiation with a pulsed current.

1α* 2α* 3α* 4α* 5α* 1ω* MSE

Fickian Diffusion 0.1869 0.7905 1.1810 1.3498 0.4330 A−1 s−1
— 9.6959 · 10−7

Warburg Element 0.0132 0.0951 0.4458 1.3048 0.7842 A−1 s−1 0.0899 V 3.0955 · 10−7 V2

Resistor-Capacitor Circuit 0.6145 0.4965 0.2672 0.1166 0.7651 A−1 s−1 0.0204 V 2.8343 · 10−7 V2
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compared to a uniform distribution while maintaining a high
accuracy. The training process has “automatically” recognized this
requirement and has adapted the discretization lengths accordingly.
The parameter 5α* represents the proportionality factor between the
battery current and the molar flux and additionally takes into account
the particle surface area and the length of the discretization volume
closest to the particle surface.

Figure 3 shows the training results of delithiation of the
spherical particle using a pulsed current as an example. In
addition to the concentration at the surface, which is the value
used in the loss function, the average concentrations in the
innermost discretization volume (indicated with 0 in the legend)
and the middle discretization volume (indicated with 2 in the
legend) are shown. The upper panels show the entire time series,

the middle panels focus on the last two current pulses, and the
lower panels show the rest phase at end of delithiation. The
surface concentration dynamics predicted by the GB model are in
very good agreement with the training data. However, the
concentrations in the middle and the center deviate from the
true values. They are both lower than for the WB model. We
believe that this difference results from both, the significantly
lower number of only five discretization volumes in the GB model
compared to 100 in the WB model, as well as the non-equidistant
distribution of these volumes in the GB model (cf. previous
paragraph) compared to the equidistant distribution in the WB
model. During the rest phase the approximated concentrations
approach each other until they are almost the same in the end, as
required from mass conservation.

Figure 4. Training results for delithiation of a spherical particle with a pulsed current. The focus is on one current pulse; left: current, right: surface
concentration. The figure compares results from Fickian diffusion models (“true”) with 100, 20 and 10 discretization volumes along the particle radius to the
results of the GB model (“GB”) trained to the Fickian diffusion model with 100 discretization volumes.

Figure 5. Test results for Fickian diffusion. The upper panels show the results for test data set one, the lower panels show the results for test data set two; left:
battery current, right: concentrations. The right panels compare results from the Fickian diffusion model with 100 discretization elements (“true”) and the GB
model (“GB”). The legend indicates the position within the diffusion length, where S is the surface, 2 is the middle discretization element and 0 is the innermost
element.
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For a more detailed analysis, Fig. 4 focuses on the value of
interest, the surface concentration, shown here for the last pulse.
Overall, the estimated concentration dynamics are consistent with
the true values. However, in the first seconds after the current step,
there is a clear deviation—the estimated concentration changes
slower than the true concentration. It should be noted that we only
considered 5 discretization volumes in our GB model, while the
training data was calculated with our WB model (Eqs. 10) using a

much finer discretization of 100 volumes. In order to test the
influence of discretization on the results, we carried out additional
simulations with the WB model using only 10 and 20 volume
elements. The results are also shown in Fig. 4. These simulations
show a significant deviation compared to the WB model with 100
volumes. The GB model, based on only 5 volumes, shows a behavior
somewhat in between the WB models with 10 and 20 volumes in the
first seconds after the current step. At the end of the current pulse,
the concentration is slightly overestimated by the GB model.

In addition to the learned parameters, Table I gives the MSE
between the true and the approximated surface concentration for the
delithiation with a pulsed current.

After completing the training process, we wanted to test the
model on data that was not included in the training. Figure 5 shows
the results for the two test data sets. The long rest periods between
the pulses with alternation between positive and negative current
steps of different duration characterize the two test profiles and
distinguish them from the training data set with CC training data and
regular current steps. Test data set two is also characterized by
starting with a half-lithiated particle. For both data sets, the surface
concentration predicted by the GB model shows very good agree-
ment to the results of the WB model.

The results show that our GB model can successfully predict the
slow concentration dynamics resulting from Fickian diffusion. It is
able to at least partially compensate for the difference in the assumed
transport domain (cartesian vs. spherical) and in the number of
discretization volumes (5 vs. 100). This demonstrates the validity
and the flexibility of the chosen approach for modelling the surface
concentration.

Figure 6. Output of the scaled neural network f* for GB modelling the
Warburg element and the RC circuit after completing the training.

Figure 7. Training results for discharge of a Warburg element with a pulsed current. The upper panels show the complete time series, the middle panels show the
last two pulses and the lower panels show the rest phase; left: battery current, middle: concentrations, right: voltage drop over the Warburg element. The figure
compares results from a Warburg element (“true”) to results of the GB model (“GB”). The legend indicates the position within the diffusion length, where S is the
surface, 2 is the middle discretization element and 0 is the innermost element.
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Figure 8. Change of the GB model concentrations with time for battery discharge with a pulsed current; a) GB model trained to a Warburg element, b) GB
model trained to an RC circuit. The legend indicates the position within the diffusion length, where 4 is the discretization element closest to the surface and 0 is
the innermost element.

Figure 9. Test results for the simulation of a Warburg element. The upper panels show the results for test data set one, the lower panels show the results for test
data set two; left: battery current, middle: concentrations, right: voltage drop over the Warburg element. The figure compares results from a Warburg element
(“true”) to results of the GB model (“GB”). The legend indicates the position within the diffusion length, where S is the surface, 2 is the middle discretization
element and 0 is the innermost element.

Figure 10. Simulated electrochemical impedance spectrum of the GB model trained to the Warburg element. Impedance was simulated using a current step
voltage response method; left: the amplitude response, middle: the phase response, right: a Nyquist plot from the Warburg model (“true”) and the GB model
(“GB”). Angular frequency scale is logarithmic. The dashed green line indicates a −45° angle representing ideal Warburg behavior resulting from semi-infinite
diffusion.
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Warburg element.—In the following we discuss the results for
GB modelling the voltage drop across a Warburg element. Again, we
used six times series covering CC lithiation and delithiation and two
times series with pulsed currents for training. The training and test
data were generated with the SIMULINK model featuring a
fractional order integrator to replicate the Warburg element
(cf. above).

Figure 6 shows the output of the scaled neural network f*

representing the partially nondimensionalized diffusion coefficient at
the end of training. It is almost independent of the concentration. As we
only used constant SIMULINK model parameters, this was expected.
Still, after having demonstrated that the GB model is able to capture
nonlinear dependencies when modelling Fickian diffusion (see above),
these results demonstrate the flexibility of the GB model by showing
that it can also capture constant diffusive behavior. The scaled learnable
parameters iα* and 1ω* can be found in Table I. As before, the
parameters 1α* to 4α* increase with increasing i which means that the
discretization volumes become smaller toward the surface.

Figure 7 shows the results for exposure to the pulsed discharge
current. The left column shows the current, which is the model input.
The middle column shows the SOC resulting from the integration of
the current over time. In addition to the SOC, the GB model
concentrations at surface, and the average concentration in the
middle discretization element (indicated with 2 in the legend) and in
the innermost discretization element (indicated with 0 in the legend)
are shown. The right column shows the voltage drop across the
Warburg element, which is the main value of interest as it is used in

the loss function. The top row shows the entire time series, while the
middle row focuses on the last two current pulses. The lower row
shows the rest phase. We have defined the nondimensionalized
concentrations in such a way that the average concentration is equal
to the SOC. In the middle columns we can see that the SOC is
always between the concentration in the innermost volume element
and the surface concentration. During the rest phase the concentra-
tions approach each other. The approximated voltage drop across the
Warburg element agrees very well with the training data. During the
pulses, the approximation deviates slightly from the true voltage.
Notably, the model captures the slow voltage dynamics during the
rest phase (here around 0.7 h) very well. The rest phase was too short
to allow complete relaxation.

The MSE between the true and the approximated diffusion
voltage is given in Table I for the pulsed delithiation.

For a more detailed analysis, Fig. 8a shows the change of the
concentrations within the individual GB finite volumes with time.
The concentration change is largest at the surface, from where it
clearly propagates into the inner discretization volumes.

We tested the final GB model against the two test data sets that
were not included in the training process. We used the same current
profiles as for modelling Fickian diffusion. Figure 9 shows the
results. Even during the long rest phases, the voltage predicted by
the GB model corresponds very well to the output of the WB model.
This is the case for both test data sets.

We further investigated the behavior in the frequency domain.
We used the computational approach of Bessler62 to simulate the

Figure 11. Training results for discharge of an RC circuit with a pulsed current. The upper panels show the complete time series, the middle panels show the last
two pulses and the lower panels show the rest phase; left: battery current, middle: concentrations, right: voltage drop over the RC circuit. The figure compares
results from an RC circuit (“true”) to results of the GB model (“GB”). The legend indicates the position within the diffusion length, where S is the surface, 2 is
the middle discretization element and 0 is the innermost element.
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electrochemical impedance spectrum using our time domain models.
We applied a current step excitation and evaluated the voltage
relaxation using Fourier transforms. We set the initial nondimensio-
nalized concentrations in the discretization elements to 1. Starting
with zero current, we simulated a fast linear current step of
ΔIbat = 0.1 A during 10−5 s. The simulation was carried out over a
time of 105 s. We used the current signal and the voltage response of
the model to calculate the impedance according to the findings in
Ref. 62 for a frequency band between 10−5 Hz and 10 Hz.

A proper choice of solvers and tolerance turned out to be
important for the impedance simulations. Using the Dopri5 method
with an absolute tolerance of 10−9 and a relative tolerance of 10−7

resulted in very noisy impedance spectra. With lower absolute and
relative tolerances of 10−20 the results improved significantly. These
settings are used in the following. We also tested the SciPy38 solver
LSODA, which in turn wraps a Fortran solver from ODEPACK.63

For the same tolerances, the results were only slightly affected.
The results are shown in Fig. 10. The left panel shows the

amplitude response, the middle panel shows the phase response of
the trained GB model, and the right panel shows the resulting
Nyquist plot. A pure Warburg element would give a straight line
with an angle of −45° starting at an impedance of Z= 0 Ω in the
Nyquist plot (cf. dashed lines). It should be mentioned that neither
the WB nor the GB model shows this ideal behavior. Due to the use

of the Oustaloup filter in SIMULINK, the training data deviates from
the straight line for low angular frequencies (ω< 10−3 s−1, as the
lower frequency range of the Ostaloup filter was set to f= 10−4 Hz,
or ω= 2πf= 6.283 · 10−4 s−1 respectively). The amplitude of the
impedance as well as the phase angle are smaller than for the pure
Warburg element. This is reproduced by the GB model. At angular
frequencies above ca. 20 · 10−3 s−1 there are significant deviations of
the GB model from the training data: the phase angle does not stay at
−45° but decreases toward −90°. The limited discretization (only 5
volumes) used in the GB model is insufficient to capture fast
dynamics (which was, however, not the goal of the present study).
Towards low and high frequencies, numerical noise is visible in the
impedance spectrum for both the SIMULINK model and the GB
model. However, the GB model has more numerical noise.

Overall, the GB model shows a very good quantitative agreement
with the time-domain training and test data, and good agreement
with the frequency-domain behavior below an angular frequency of
ca. 20 · 10−3 s−1. We can conclude that the proposed GB modelling
approach is suitable for describing the voltage drop across the
Warburg element at long time scales.

Resistor-capacitor circuit.—Finally, we used the same GB
modelling framework to approximate the voltage drop across an
RC circuit. The GB model was trained and tested against a

Figure 12. Test results for the voltage drop across an RC circuit. The upper panels show the results for test data set one, the lower panels show the results for test
data set two; left: battery current, middle: concentrations, right: voltage drop over the RC circuit. The figure compares results from an RC circuit (“true”) to
results of the GB model (“GB”). The legend indicates the position within the diffusion length, where S is the surface, 2 is the middle discretization element and 0
is the innermost element.

Figure 13. Simulated electrochemical impedance spectrum of the GB model trained to the RC element. Impedance was simulated using a current step voltage
response method; left: the amplitude response, middle: the phase response, right: a Nyquist plot from the RC model (“true”) and the GB model (“GB”). Angular
frequency scale is logarithmic.
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SIMULINK model with a single RC circuit, using the same
simulation protocols as for the Warburg element.

The output of the scaled neural network f* after completion of
training is shown in Fig. 6. It represents the partially nondimensio-
nalized diffusion coefficient. Again, as expected and consistent with
the training data, it does not show a strong dependence on
concentration. Note that the value is significantly lower than for
the GB model trained to the Warburg element. This reflects the
difference in voltage dynamics between the Warburg element and
the RC circuit. The scaled learnable parameters 1α* to 4α*, repre-
senting the lengths of the discretization volumes, are given in
Table I. In contrast to the values for the other cases, the values
here decrease with increasing i. This means that the elements
become larger toward the surface. This difference will be further
discussed below.

Figure 11 shows training results for a pulsed discharge. The
figure has the same layout as in the case of the Warburg element
(Fig. 7). The middle column shows SOC and concentrations. As
expected and physically required, the SOC is always between the
center concentration and the surface concentration. During the rest
phase the concentrations approach each other until they are almost
equal. The approximated voltage dynamics are plotted in the right
column. The voltage shows good agreement with the training data. A
slight deviation is visible right after the current step to high currents.
During the rest phase, the voltage drop across the RC circuit
approaches zero volts.

Again, the MSE between the true and the approximated diffusion
voltage is given in Table I for the delithiation with a pulsed current.

Compared to the results of the GB model trained to the Warburg
element (Fig. 7), the surface concentration is significantly lower here
during the current load. This is consistent with the lower value for
the diffusion coefficient with a similar range of values for

i, 1 4iα* ⩽ ⩽ and almost the same proportionality factor 5α*.
Furthermore, the values of the parameters i, 1 4iα* ⩽ ⩽ suggest a
different distribution of the discretization elements, which is
reflected in the results.

Figure 8 shows the change of the concentrations with time for
modelling the RC circuit in comparison to the Warburg element. In
the WB model used for training, the voltage dynamics are given by
one single differential equation (see Eq. 17). The GB model used in
the Eqs. 29 consists of five differential equations. After training,
the outer discretization volume is the largest (physically, this
means that it contains most of the electrode capacity). Due to this
particular distribution of the discretization volumes in combination
with the low diffusion coefficient, the concentrations in the inner
discretization volumes are only slightly affected by the external
current. Therefore, the behavior of the GB model is dominated by a
single differential equation representing concentration change at
the surface of the diffusion domain. This means that the training
process has reproduced the mathematical structure of the RC
circuit model.

Again, we tested the final GB model against the two test data
sets. The results are shown in Fig. 12. The voltage approximated by
the GB model shows excellent agreement with the true voltage given
by the WB model for both test data sets. In the middle panels it can
be noted that the surface concentration can reach values lower than 0
and larger than 1. Here, a physical interpretation of this internal state
of the GB model is not possible.

Using the same approach as described in the previous section, we
simulated the electrochemical impedance spectrum of the GB model.
The results are shown in Fig. 13. An ideal RC circuit appears as
semicircle in the Nyquist plot with the ohmic resistance as the
diameter. The right panel shows good approximations of a semi-
circle for both the WB model and the GB model. We used an ohmic
resistance of R1 = 1.758 mΩ in our WB model to generate the
training data. This resistance value is well estimated by the final GB
model. Numerical noise is present at low and high frequencies for
both the SIMULINK model and the GB model.

Overall, the results show that the proposed GB modelling
framework can successfully reproduce the slow voltage dynamics
of an RC circuit. One has to keep in mind that the GB model is based
on Fickian diffusion. However, by training the parameters, it can
also reproduce dynamic behavior other than pure Warburg (here: RC
circuit behavior). This shows the flexibility of the approach, which is
required when training to experimental data that may not show ideal
Warburg type behavior.

Summary and Conclusions

In this article we have presented the development and validation
of a GB modelling framework for the voltage dynamics of lithium-
ion batteries, focusing on long timescales. The finite-volume
discretization of solid-phase diffusion in an active material particle
in combination with an expression for the diffusion voltage served as
the physical base structure of the GB model. We performed model-
to-model comparisons. The main results can be summarized as
follows.

In the first part of this study, we have shown how to derive a GB
model for a Fickian diffusion process, in particular for lithium
diffusion inside an active material particle, using a finite-volume
discretization of Fick’s second law with an appropriate choice of
learnable functions (formulated as NODEs) and parameters. We
trained and tested the GB model with simulation data obtained from
numerical simulations of Fick’s law for a spherical particle. As
training data we used two time series with pulsed current lithiation
and delithiation, as well as six more time series applying a constant
current with a subsequent rest phase. The test data set consisted of
two more time series covering current pulses of different amplitude
and length followed by long rest phases. For generating the training
and test data, we chose a spatial discretization of 100 equidistantly
distributed finite volume elements along the particle radius. The GB
model only consisted of five finite volume elements. However, the
spatial distribution of the elements was used as a degree of freedom.
Despite the small number of discretization volumes, the GB model
was able to approximate the dynamics of the surface concentration
with good accuracy. The trained GB model showed a decreasing size
of the discretization volumes toward the particle surface. Such a
non-equidistant discretization scheme is known to lead to a higher
accuracy of the simulations.38 We conclude that the training has
successfully resulted in an adaptive spatial discretization scheme.

In the second part of this study, we extended the GB model by
adding a physically motivated expression for the voltage drop
resulting from a difference between the surface concentration and
the average concentration over the diffusion length. The GB model
was trained and tested with two different equivalent circuit model
elements typically used to represent long-timescale dynamics. The
first training model was a Warburg element, implemented in the time
domain using an Oustaloup filter to represent the required fractional
integrator of order 0.5. The voltage drop over the Warburg element
was simulated for similar current profiles as before. After training,
the GB modelling results were in good agreement with the training
data. Again, the finite-volume elements were observed to get smaller
toward the surface. The second training model was an RC circuit,
which shows qualitatively different voltage dynamics than the
Warburg element. Again, the GB model was able to reproduce the
dynamic behavior of the RC circuit. Here, the finite-volume element
closest to the surface was observed to be the largest. Both models
showed a very good prediction accuracy of the test data.

As a key result, the developed GB model was able, through
appropriate training of the learnable parameters, to approximate
three different types of dynamics in lithium-ion batteries: concen-
tration dynamics of Fickian diffusion, voltage dynamics of a
Warburg element, and voltage dynamics of an RC circuit.
Noteworthy, the characteristic dynamics toward long timescales,
here in the order of ten to 30 min, could be well reproduced, both in
the time domain and in the frequency domain. The GB model should
therefore be flexibly applicable to experimental training data, even to
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those that do not show ideal Warburg-type or RC-type behavior. In
future work we will integrate the GB model into a full ECM of a
lithium-ion battery, including open-circuit voltage and ohmic
resistances.

In conclusion, we have shown that the use of NODEs can be a
powerful methodology for GB modelling of the long-timescale
voltage dynamics of batteries.
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Appendix

A.1. Finite Volume Discretization of the Fickian Diffusion
Equation for a Cuboid Particle.—In this section we derive the
equation system for one-dimensional Fickian diffusion in a cartesian
coordinate system using finite-volume discretization. This diffusion
domain represents cuboid particles of length l= 2R. Lithium ions
enter the diffusional domain on both sides of the domain with equal
flux. Due to this symmetry, we only have to consider half of the
particle. The diffusion Eq. 1 is given as

c

t x
D

c

x
x

l
, 0

2
. A 1⎛

⎝
⎞
⎠

∂
∂

= ∂
∂

· ∂
∂

⩽ ⩽ [ · ]

The electrochemical reaction takes place at the particle surface.
Considering a (de)intercalation process with a constant flux over the
particle surface, the initial and boundary conditions are as
follows:33–36
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where, cinit is the initial concentration and jinflux is the molar flux
across the particle surface. Note that the particle center is at x= 0
and the particle surface is at x= l/2.

The numerical discretization of the diffusion Eq. A·1 with the
finite volume method leads to the following expression:
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where, N ∈ is the number of discretization volumes chosen, Vi the
volume of the discretization volume between x x,i i 1[ ]+ , ci the average
concentration within its volume, and A the area. The volume Vi is
given by V A x xi i i1= ·( − )+ . Taking into account the initial and
boundary conditions according to the Eqs. A·2, we can reformulate
Eq. A·3 to
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where, ci 0 is the initial average concentration in the discretization
volume i. Additionally, we used the extrapolation according to the
Eq. 8 to calculate the surface concentration.

In order to minimize the influence of rounding errors, the equations
were (partially) nondimensionalized.34–36 For this purpose, we used
the nondimensionalized quantities according to the Eq. 9. Using
Eqs. A·4 and 8 under the assumption of a proportional relationship
between the molar flux across the particle surface and the battery
current, this results in the following final equation system:
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with the proportionality factor b including the nondimensionaliza-
tion of the quantities.

A.2. Estimation of initial values of the learnable para-
meters.—This section shows how to estimate the initial values of
the learnable parameters.

A.2.1. Fickian diffusion.—The normalization and initialization
of the learnable parameters for GB modelling Fickian diffusion are
described above. Here, we show how to estimate the learnable
parameter α5 in the Eqs. 28 to complement the information.

The proportionality factor between the battery current and the
partially nondimensionalized molar flux δN across the particle surface
in Eq. A·5d is unknown. However, we used the proportionality factor
between the two quantities that results for a spherical particle. It is

given by
FV c c

1
3

1

3 0.554 96485 A s mol 720.3 cm 30000 mol mmax min
1 3 3− = − =

ε ( − ) · · · ·− −

2.886 10 A s7 1 1− · − − − according to Eq. 10d. We had to divide this
value by the length of the fifth discretization volume z5 − z4 ≈ 0.2
to get an estimation for the learnable parameter α5 (see Eqs. 22a
and A·5a). Therefore, in the optimal case, the learnable parameter

has the value 1.443 10 A s2.886 10 A s

0.2
6 1 1

7 1 1
= − ·− · − − −− − −

. For an irre-

gular distribution of discretization volumes, we would expect the
discretization volumes near the surface to be smaller than
the estimated value. The absolute value of the parameter α5 would
be higher. Therefore we introduced the scaling factor 10−5 and
initialized the normalized parameter 105

5
5α α* = · with 0.5 A−1 s−1.

Note that the proportionality factor between the current and the
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flux is negative (we define positive current for delithiation). The
minus sign was directly implemented in the equation system.

A.2.2. Warburg element and resistor-capacitor circuit.—The
normalization and initialization of the learnable parameters for GB
modelling long-timescale battery dynamics is described above. Here
we show how to estimate the learnable parameters to complement
the information.

As the other model parameters are the same as for modelling
Fickian diffusion, we only had to provide an estimation for the
learnable parameter ω1 in Eq. 28g. This parameter represents among
other things the factor a in Eq. 25. The absolute value of the factor a

is given by 2.569 10 V
R T

F

8.3145 J mol K 298.15 K

96485 A s mol
2g 1 1

1= = ·· −− −

− .

The learnable parameter ω1 is affected by the conversion factors
for nondimensionalization of the lithium concentrations. Additionally,
one has to keep in mind that we used a linearization of the logarithmic
function. Therefore, the parameter is difficult to estimate. Due to the
shape of the voltage response for pulsed charging and discharging (see
true voltages in Figs. 7 and 11), we expected a higher value for the
Warburg element than for the RC element. We introduced the scaled
parameter 101 1ω ω* = · and initialized it with 0.3 V for the Warburg
element and with 0.02 V for the RC element.
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