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A B S T R A C T   

Recently, photovoltaic (PV) with energy storage systems (ESS) have been widely adopted in buildings to over-
come growing power demands and earn financial benefits. The overall energy cost can be optimized by 
combining a well-sized hybrid PV/ESS system with an efficient energy management system (EMS). Generally, 
EMS is implemented within the overall functions of the Building Automation System (BAS). However, due to its 
limited computing resources, BAS cannot handle complex algorithms that aim to optimize energy use in real-time 
under different operating conditions. Furthermore, islanding the building's local network to maximize the PV 
energy share represents a challenging task due to the potential technical risks. In this context, this article ad-
dresses an improved approach based on upgrading the BAS data analytics capability by means of an edge 
computing technology. The edge communicates with the BAS low-level controller using a serial communication 
protocol. Taking advantage of the high computing ability of the edge device, an optimization-based EMS of the 
PV/ESS hybrid system is implemented. Different testing scenarios have been carried out on a real prototype with 
different weather conditions, and the results show the implementation feasibility and technical performance of 
such advanced EMS for the management of building energy resources. It has also been proven to be feasible and 
advantageous to operate the local energy network in island mode while ensuring system safety. Additionally, an 
estimated energy saving improvement of 6.23 % has been achieved using optimization-based EMS compared to 
the classical rule-based EMS, with better ESS constraints fulfillment.   

1. Introduction 

The acceleration of the electrification process in energy sectors has 
led to an increase in electricity consumption of about 2.5 % per year. The 
current global electricity use in the building sector is around 30 % of the 
total final energy usage and consists of approximately 55 % of the global 
electricity demand [1,2]. Up to date, solar photovoltaics (PV) is one of 
the most mature and widely used renewable energy sources in buildings 
[3,4]. However, PV systems are highly intermittent and dependent on 
climatic conditions, thereby, they heavily rely on electric storage sys-
tems (ESS). One of the most commonly used ESS technologies in 
buildings is electro-chemical batteries. However, it may have significant 
impacts on how the energy management system (EMS) should be inte-
grated to achieve optimal system-level performance [5]. Typically, EMS 
is implemented within building automation systems (BASs), using low- 
level controllers such as programmable logic controllers (PLCs). 

BAS is a data acquisition and control system that incorporates 
various functionalities provided by the control system of a building [6]. 
Such functionalities cover, e.g., temperature and air quality monitoring, 
lighting system control, heating, ventilation, and air conditioning 
(HVAC) system control, electricity control, access control, security 
control, fire control, sending signals when faults occur, etc. [7]. BASs are 
computer-based automated systems, rely on sensors to collect the con-
dition or status of control parameters, actuators to conduct physical 
actions, and communication and interoperability to optimize the overall 
energy optimization via BAS. Different subsystems in the BAS and de-
vices manufactured by various vendors need to communicate with each 
other. As mentioned, data communication protocols play key roles in 
information exchange in the BAS domain. Recent protocols, such as 
Building Automation and Control Networks (BACnet) and MODBUS, 
dominate BAS communication networks [6]. However, BAS has some 
limitations, related mainly to its design: real-time data availability, 
computing capability, and big data analysis and storage are among 
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them. Additionally, current BASs fail to offer real-time data processing 
[8]. 

To enhance data analytics for BASs, some literature discusses the 
advantage of introducing a cloud-based computing paradigm, this 
arrangement transfers collected sensor data to the cloud, where machine 
learning (ML) is harnessed to generalize overall system behavior [9]. In 
terms of validated use cases in this context, an internet of things (IoT)- 
enabled building EMS is developed, and its stability and robustness are 
confirmed [10]. A real-time digital model of an office building is created 
by analyzing building information modeling (BIM) and data collected 
from an IoT-enabled sensor network [11]. It has been verified that the 
cloud-based computing paradigm can achieve energy savings of up to 
20 % on HVAC installed in an experimental building [12]. Even though 
BAS-Cloud offers such big data processing capability with increasing 
quantities of heterogeneous building data, it is challenging for the 
paradigm to achieve real-time results. In addition, other critical issues 
have not been addressed, such as communication overhead, network 
congestion [13], privacy, and data leaks [14]. 

Alternatively, instead of using BAS-Cloud solutions, use a distributed 
computing paradigm, namely, BAS-Edge, that brings data computing, 
storage, and network functions closer to end-users on site. Edge 
computing has been an emerging solution in various fields [15]. This is 
mainly due to a few advantages observed during the implementation of 
alternative BAS solutions:  

• A data processing scheme that utilizes collaborative edges located 
near user sites for information sharing, aiming at reducing the 
amount of data transmitted to the cloud while improving data 
analytics. 

• BAS-Edge covers cyber-security concerns by processing private in-
formation via edges located in or near buildings as much as possible.  

• There are considerable computing and storage resources that can 
solve the issue of real-time data analytics. 

The intermittent and unpredictable behavior of PV systems may lead 
to harmful operation scenarios for eventual connected ESS; this matter 
becomes crucial when the building microgrid is islanded [16,17]. The 
challenge of such operations is the impact of a sudden imbalance be-
tween load and power generation; any implemented control mechanism 

has to ensure that such imbalances become controllable by the grid- 
forming unit [18]. As the frequency in microgrids is an indirect indi-
cator of the power balance, it can be used as a control signal without the 
need for additional communications. In this regard, any connected ESS 
inverters are intended to reduce their power outputs when the microgrid 
frequency exceeds a certain level (e.g., 50.2 Hz) [19]. This kind of fre-
quency control approach can not only be used as a grid support mode for 
ESS but can also perform energy management to control the ESS state of 
charge (SOC) [20]. A similar approach is validated in [21] using fuzzy- 
controlled PV/ESS inverters, in which, the goal is to simultaneously 
perform battery energy management and frequency regulation support. 
Predictive EMS approaches may also provide some potential solutions to 
deal with ESS operation in a hybrid energy system with a fluctuating 
power balance. In this context, authors in [22] propose a 24-hour pre-
dictive management of a hybrid energy system of a residential building, 
in which, the battery lifetime increase is targeted. However, the pro-
posed EMS performance is highly related to weather forecast accuracy, 
which is still a working topic up to date [23], and the island operation 
mode use case is excluded. All the mentioned EMS approaches are 
designed for one microgrid operation mode. The adoption of the new 
operation conditions associated with the change in operation modes 
(from island to grid-connected and vice versa) is not considered. This 
leads to the need for an optimization-based EMS, that takes into account 
microgrid operation modes. Typically, in the framework of BAS, ESS's 
current setpoint is to be defined by a PLC code in real-time. However, as 
mentioned previously, PLC does not support EMS approaches requiring 
high computing power. Additionally, IEC 61131-3, which is the refer-
ence standard for PLC programming, makes it a challenging task to 
implement complex EMS algorithms. 

This article addresses and validates an optimization-based EMS as a 
high-level energy manager. The proposed method simultaneously in-
tegrates frequency regulation support and battery management in both 
microgrid operation modes. To overcome the limitations associated with 
the PLC computing capability, advanced edge hardware is used instead, 
the proposed EMS approach is accomplished based on successful 
communication between the edge and BAS. The remainder of this paper 
is organized into three sections: Section 2 describes the proposed 
optimization-based EMS method. In Section 3, more details of the 
experimental validation setup are given, while Section 4 will be the 

Symbols and abbreviations 

BACnet Building automation and control networks 
BAS Building automation system 
BIM Building information modeling 
BSP Battery status processor 
DOD Depth of discharge 
EMS Energy management system 
ESS Energy storage systems 
GA Genetic algorithms 
HMI Human machine interface 
HVAC Heating, ventilation and air conditioning 
INES Institute of energy systems technologies 
IoT Internet of things 
ML Machine learning 
MPPT Maximum power point tracking 
OPC UA Open platform communications united architecture 
OS Operation system 
PC Personal computer 
PCC Point of common coupling 
PLC Programmable logic controller 
PV Photovoltaic 
RCC Remote control center 

RTOS Real time operation system 
SOC State of charge 
SOCMIN Minimum allowed limit of batteries state of charge 
SOCMAX Maximum allowed limit of batteries state of charge 
SQL Structured query language 
PPV Supplied power from PV system [kW] 
VB Batteries voltage [V] 
IB Batteries current [A] 
Pg Exchanged power with the grid [kW] 
α Grid relay state 
ηPV Power conversion efficiency from photovoltaic systems 
ηB Power conversion efficiency from batteries 
C Batteries capacity [Ah] 
Pload Load power [kW] 
X1 Decision variable 1 (grid relay) 
X2 Decision variable 2 (batteries current setpoint) [A] 
PESS− MAX Maximum power allowed by the converter [kW] 
Ki Weighting coefficient 
EPV Supplied photovoltaic energy [kWh] 
Eload Energy demand [kWh] 
Egrid Energy exchanged with the grid utility [kWh]  
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stage for some results and discussions. 

2. Method description 

The proposed energy manager algorithm is based on continuously 
performing an optimization task each control cycle by taking new 
measurement data each time. The optimization outcomes are the ESS 
current setpoint to be applied during the next cycling time and the state 
of the relay connecting the hybrid system to the grid utility. Those 
optimal setpoints are designed to minimize the use of imported energy 
from the grid while optimally supervising ESS SOC in both operation 
modes: islanded and grid-connected. It is worth mentioning that in is-
land mode, the ESS inverter switches from current source mode to 
voltage source mode, in which it oversees on providing voltage and 
frequency to the whole microgrid. Both PV and ESS inverters reduce 
their power outputs proportionally with frequency increases. However, 
regardless of the power curtailment option, the PV inverter cannot be 
controlled by the proposed energy manager, in which, the Maximum 
Power Point Tracking (MPPT) algorithm is the only active control. 
During method validation, BAS is bypassed temporarily by the edge 
energy monitoring device as Fig. 1 shows. With this control procedure, 
the ESS inverter/charger is monitored solely by the edge device. For this 
end, data is being fetched from the BAS database cyclically before 
running the optimization. Thanks to its high computing capability, the 
edge energy manager can host compilers for high-level programming 
languages needed for complex EMS implementation. 

2.1. Power flow equation 

The power balance equation of the hybrid energy system is formu-
lated as below: 

Pload = ηPV PPV + ηBVBIB +α • Pg (1)  

with PPV is the supplied power from PV system; VB and IB are the bat-
teries bank voltage and current respectively; Pg is the exchanged grid 
power, it takes positive values during energy importation from the grid 
utility and negative values when feeding back energy to the grid utility; 
α is the grid relay: it takes the value “1” in grid-connected mode and “0” 
in island mode; ηPV and ηB are the energetic efficiency of PV and the 
batteries inverter/charger respectively including the cables power 
waste. 

2.2. Battery state of charge equation 

ESS SOC is a key parameter that should be supervised continuously, 
it is determined via the equation formulated below: 

SOC(t+ΔT) = SOC(t) − 100 •
IB.ΔT

C
(2)  

wherein, SOC(t) is actual battery SOC at time t; SOC(t + ΔT) is the 
predicted SOC with prediction horizon ΔT; C is the battery nominal 
capacity and IB is the battery charge/discharge current which is ob-
tained using Eq. (3). 

IB = PB/VB
(3) 

In order to reduce the algorithm complexity, VB is chosen to be 
constant (48 V) during all operation conditions. 

2.3. Cost function 

The cost function for optimization is formulated by combining three 
weighted terms: 

J = K1X1(Pload − PPV − ηBVBX2)+K2(1 − X1)(PPV + ηBVBX2 − Pload)
2
+K3X1

(4)  

where, X1 is the state of the grid relay (Boolean variable); X2 is ESS 
current setpoint. It is worthy to note that when the grid relay is off, ESS is 
uncontrollable since it works as an energy buffer depending on the 
power balance in the building local network. In this situation, X2 is the 
predicted ESS current that will be used to estimate SOC; K1, K2 and K3 
are weighting coefficients. 

The optimizer manipulates two variables to minimize J which are X1 
and X2 respecting to the following functioning constraints: 

− PESS− MAX ≤ ηBX2VB ≤ PESS− MAX (5)  

SOCMIN ≤ SOC(t) − 100 •
X2ΔT

C
≤ SOCMAX (6)  

where PESS− MAX is the maximum allowed power to be exchanged 
through the inverter/charger; SOCMIN and SOCMAX are respectively the 
minimum and maximum predefined limits for ESS SOC. 

The cost function is composed of two main terms, in which only one 
is active in a particular operation mode: 

Term 1 (X1 = 1): when the constraints, formulated in Eqs. (5) and (6), 
are expected to be violated in the next cycling time, the energy manager 
connects the local network to the grid and uses the grid as a backup 
energy, either to protect the batteries from overcharging or over-
discharging, or to cover the power transfer needs that the ESS converter 
cannot support. According to the first term formulation, the energy 
manager aims to minimize the use of grid power if the system constraints 
allow. 

Term 2 (X1 = 0): when the constraints are fulfilled, the energy 
manager disconnects the hybrid system from the grid and lets the load be 
satisfied by the power mix between PV and ESS. When converging this 
term to 0, the energy manager can predict the ESS current during the 
cycling time, as this later depends only on the power balance between 
PV/ESS and load (ESS is not controllable anymore). Thanks to the pre-
dictable ESS current, the energy manager can keep tracking SOC evo-
lution during the cycling time. 

Optionally, Term 3 has been added to be active in grid-connected 
mode (X1 = 1) when trying to satisfy the constraints. In cases where 
the power difference between load and PV/ESS is lower than a certain 
threshold, this term makes the energy manager switch to island mode to 
use the natural power flow to keep ESS within the tolerated operation 
zone instead of a forced mode (in grid-connected mode). This threshold 
is determined by the third weighting coefficient K3. 

2.4. GA optimization strategy 

The cost function formulated in Eq. (4) is non-linear, which requires 

Fig. 1. Proposed EMS validation strategy during test phase.  
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a non-linear optimization method, which leads to the use of Genetic 
Algorithms (GA) strategy. Unlike other optimization methods, GA is a 
robust method capable of optimizing complex objective functions 
without having to know the objective function derivatives. GA is sto-
chastic, easily parallelized and supports multi-objective optimization 
[24,25]. The GA optimization parameters are listed in Table 1. The rest 
of parameters are the ones set by default when using the predefined 
function in MATLAB. 

2.5. Control procedure 

During the initial test phase, the BAS PLC is to be bypassed 

Table 1 
GA main optimization parameters.  

Parameter Value 

Number of decision variables 2 
Population 50 
Generations 200 
Function tolerance 1e− 6 
Constraints tolerance 1e− 6  

Fig. 2. Flowchart of the proposed optimization-based EMS.  

Fig. 3. INES smart grid system.  

Table 2 
INES hybrid system parameters.  

Component Subcomponent Parameter Value 

PV system PV module Power at MPP 240 Wp 
Voltage at MPP 30.0 V 
Current at MPP 8.1 A 
Open circuit voltage 37.4 V 
Short circuit current 8.6 A 
Temperature 
coefficient 

− 0.46 %/K 

Module model Bosch solar module 
c-Si M 60 

PV power plant Number of modules 27 
Inclination 9 × 35◦

18 × 30◦

Alignment 180◦ south 
Power 6.3 kWp 

Batteries system Battery cell Voltage 4 V 
Nominal capacity 546 Ah 
Battery model Rolls Battery 

4CS17P 
Batteries bank Number of cell in 

series 
12 

Number of cells in 
parallel 

1 

Power 4.5 kW 
Programmable 

load 
– Nominal power 3.6 kW 

Load mode Constant power 
Control mode Remote 
Model Chroma 63803  
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temporarily, in which case the edge device (energy manager) controls, 
in real-time, the ESS inverter/charger directly. In this case, the serial RS- 
232 port is used as a physical connector. The communication is 
accomplished via a serial protocol provided by the inverter/charger 
manufacturer. Due to the relatively slow dynamic of the hybrid system, 
which is basically related to PV production and building power demand 
changes, the standard PC operation system (OS) is initially enough for 
carrying out EMS tasks. In industrial applications, where the system 
dynamic is fast or when real-time control is crucial, the standard OS is no 
longer valid, and the edge PC should be provided with a real-time OS 
(RTOS). 

After retrieving PV, ESS, and load data from the local database, the 
SOC level at the end of the cycling time, can be predicted using Eq. (2). 
At this point, the GA optimization process can start. The optimization 
outcome is the control mode to be applied during the cycling time, either 
by controlling the ESS current or by connecting or disconnecting the grid 
utility. The target is to minimize the use of grid energy by driving 
optimally ESS while favoring island mode over grid-connected mode if 
the system constraints are respected. In island mode, ESS current is 
calculated using Eq. (7); negative values indicate charging currents, 
while positive values indicate discharging currents. 

The controller ensures continuously that ESS SOC levels are main-
tained within the predefined maximum and minimum limits, SOCMAX 
protects the batteries from overcharging and gasification, and assures 

enough capacity to recover any sudden PV power surplus. Unexpected 
PV peaks can be harmful if they are not stored or exported to the grid 
utility. SOCMIN is kept at 50 % to avoid deep discharging scenarios and 
ensure a Depth Of Discharge (DOD) level below 50 %. Fig. 2 summarizes 
the schematic of the proposed control flowchart. 

IB =
PL − PPV

ηB • VB
(7)  

3. Experimental setup description 

3.1. INES experimental setup description 

In this section, more details about the implementation of the pro-
posed EMS are given. The experimental system is a part of the smart grid 
prototype of the institute of energy systems technologies, commonly 
known as INES, at Offenburg University. General overview on INES 
smart grid subsystems is displayed in Fig. 3. 

The test setup consists of three single phase STUDER XTM 4000-48 
Xtender inverters/chargers in parallel to form a three-phase system. 
This three-phase inverter/charger is used to control the exchange of 
power between 4.5 kW lead-acid batteries and the emulated building 
microgrid. The inverter can also connect the whole local network to the 
grid or disconnect it to operate as an island microgrid. This operation is 

Fig. 4. Experimental setup.  
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feasible by means of a relay called an “external relay”. The 6.3 kWp PV 
system is connected to the AC bus via three Sunny Boy 2500 HF in-
verters, these inverters are controlled to supply the maximum available 
power to the microgrid. The different system parameters are listed in 
Table 2. The control cycling time is fixed at 10 min which fits the system 
dynamic; shorter control cycling times can lead to harmful operation of 
the ESS inverter/charger and the local energy network in general, while 
larger ones can make the controller unable to efficiently follow the 
system evolution as it will be mostly offline. 

ESS status signals are measured permanently via the battery status 
processor (BSP) device, which offers real-time measurements of all 

battery parameters (SOC, voltage, current, and temperature). PV and 
load power data are other requested signals; they are collected via 
transmitters, treated by means of a Beckhoff CX2040 PLC, and stored, 
along with the local microgrid data, in a local database (Microsoft SQL 
Server). To simulate a residential building's power demand profile, three 
CHROMA 63803 programmable loads are connected to the local 
network to form a three-phase load system, and those loads are 
controlled remotely to follow a predefined profile. The PLC will also 
communicate with a Labview-based human machine interface (HMI) 
system via open platform communications united architecture (OPC UA) 
to offer data visualization in real time. 

The system is initially designed in such a way that the ESS current 
setpoint is to be generated continuously by means of a PLC using a 
classical IF-THEN management code (rule-based). In this article, we 
prefer to use the GA-based optimization method, explained in Section 2, 
to generate an ESS setpoint for each cycling time. In this regard, a 
Windows-based PC is used as an edge device, and the optimization al-
gorithm is coded using MATLAB as a high-level programming language. 
Real-time data is being retrieved from the database using SQL (struc-
tured query language) statements at each cycling time before running 
the optimization and building up the optimal control mode. During the 
test phase, instead of sending the ESS current setpoint to the PLC, the 
ESS inverter/charger is targeted instead, using a serial communication 
protocol. For this purpose, the Xcom-232i communication module is 
used. All system parameters, to be read or written, can be accessed in the 
Remote Control Center (RCC-02). The whole experimental prototype is 
presented in Fig. 4. 

Fig. 5. Decision variables in clear-sky day test using optimization-based EMS: (a) ESS current, (b) grid relay state.  

Fig. 6. Grid current variation in clear-sky day test using optimization- 
based EMS. 
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3.2. PC – Xtender communication protocol 

Xtender Serial Protocol is the communication method between 
Xcom-232i and the edge. This protocol is highly similar to Modbus RTU, 
in which the edge device, which is a personal computer (PC) in this case, 
acts as a master device. It consists of exchanging data frames composed 
of a header of 14 bytes followed by a variable number of data bytes and 2 
bytes of checksum. To facilitate the implementation of the protocol, a 
Windows command-line tool provided by the manufacturer, combined 
with the MATLAB programming language, is used. As an example, to 
force the batteries to be charged under 12 A, the following command 
line statement is used in the Windows Command Prompt console: 

where is the “Write” function; is the 
destination device address, in this case, 101 for Xtender; 

is the “charging current” parameter ID. is 
the charging current value in Ampere. 

To not oversize the content of this article, more information about 
the structure of the command lines and the Xtender Serial Protocol in 
general is to be referred to in the documentation section of the manu-
facturer's website. 

The fact that Windows command-line statements can be formulated 
in MATLAB using the function “dos” dramatically facilitates the 
conception of any EMS policy. Sophisticated optimization algorithms 
can be simply called using predefined functions, such as “ga” for genetic 
algorithm optimization. 

4. Results and discussions 

In this section, the outcomes of the experimental tests using the setup 

Fig. 7. Grid feeding internal control: (a) as a function of grid voltage at PCC (b) as a function of grid frequency (c) as a function of batteries voltage.  

Table 3 
Implemented voltage and frequency regulation parameters in grid feeding.  

Parameter Value Description 

U0 230 V 
(ph-n) 

The PCC voltage threshold in which the inverter starts 
the regulation process 

U1 240 V 
(ph-n) 

The PCC voltage limit in which the inverter stops grid 
feeding 

f0 51 Hz The frequency threshold in which the inverter starts the 
regulation process 

f1 53 Hz The frequency limit in which the inverter stops grid 
feeding 

V0 46 V The batteries voltage limit in which the inverter stops 
grid feeding 

V1 48 V The batteries voltage threshold in which the inverter 
starts the regulation process  

Fig. 8. ESS SOC variation in a clear-sky day test using optimization-based EMS.  

Fig. 9. Power share in clear-sky day test using optimization-based EMS.  
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explained previously, are presented. Two main scenarios are considered: 
a clear-sky day, where the PV production rate is significant, and a 
partially cloudy day, where PV power is highly fluctuating. The purpose 
from the second test is to investigate the impact of high PV fluctuation 
on the robustness of the proposed EMS. The test is to be completed in 8 h, 
starting at 10:00. The system status signals are queried from the data-
base each time cycle using the MATLAB database explorer. The selected 
upper and lower limits for ESS SOC are 90 % and 50 % respectively. The 
maximum allowed power for the ESS inverter/charger is fixed at 3.6 kW. 
The cost function weighting coefficients K1, K2 and K3 are 1, 1 and 1e4, 
respectively, those values are reached after the “trial-and-error” method. 
The ESS charging and discharging conversion efficiency is assumed to be 
97 %. 

4.1. Clear-sky test 

The optimized decision variables during the clear-sky test day are 

presented in Fig. 5. Before triggering the optimization process, the 
controller makes sure that the variables (ESS SOC/power) are initially 
within the acceptable predefined intervals, therefore, an ESS discharg-
ing process, through the grid utility, with a constant current is being 
performed during the first test hour (see Fig. 6). Appeared current 
fluctuations are caused by voltage and frequency regulation and batte-
ries protection mechanisms. Fig. 7 shows the regulation strategy 
implemented in the inverter charger regarding the grid support and 
batteries safety functions, in which PCC is the point of common coupling 
of the inverter with the grid utility, while PMAX is the power defined by 
EMS. The associated voltage/frequency regulation parameters are listed 
in Table 3. The controller can follow the evolution of SOC during the 
cycling time and keep it continuously within the allowed limits, as 
shown in Fig. 8. When the controller predicts a SOC upper constraint 
violation (90 %) at the end of the current cycling time, it operates the 
system in on-grid mode and feeds the extra power into the grid. When 
ESS SOC remains within the tolerant operation range, the system goes 
back to island mode. By doing so, the proposed EMS aims to charge ESS 
from the extra PV power only. ESS discharging periods are highlighted 
in Fig. 8 to show the ESS dynamic operation during the test. Fig. 9 shows 
the power share between different energy sources, storage, and loads. 
Since it consists of a sunny day test, the overall PV supplied energy was 
obviously higher than the load demand, which explains the frequent 
connection to the grid utility to feed extra power and keep ESS SOC 
below the upper limit. 

4.2. Robustness test 

The effectiveness of the proposed EMS approach will be determined 
by its robustness against high PV generation fluctuations. Supplied PV 
power depends highly on the insolation level; a partly cloudy day makes 
the generated PV power fluctuate, which may pose additional challenges 
to the energy manager's performance. During cycling time, PV modules 
may experience fast changes between cloudy and partially cloudy pe-
riods several times. This last case causes frequent PV power generation 
drops, which forces ESS to continuously cover the missed power. In 
some situations, ESS cannot fulfill this mission due to limited capacity in 
terms of power and SOC; this point is particularly critical in the case of 
island mode. Likely, the used ESS inverter/charger is equipped with an 
internal security feature that disconnects batteries in such a situation, 
whatever the external control mode. 

The optimization decision variables in this case are displayed in 
Fig. 10. The PV power fluctuations are reflected directly on the ESS 
current in island mode (Fig. 10 (a)). The current fluctuations in grid- 
connected mode are due to the inverter grid support feature explained 
previously. In Fig. 10(b), we can clearly see that, in this particular test 
case, the island mode was applied for a longer time compared to the 

Fig. 10. Decision variables in partial-cloudy day test using optimization-based 
EMS: (a) ESS current, (b) grid relay state. 

Fig. 11. Grid current variation in in partial-cloudy day test using optimization-based EMS.  
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previous test, which is explained by the ESS SOC that was running 
mostly within the accepted interval (see Fig. 12). However, the 
maximum allowed ESS power constraint was violated more than once, 
which explains the connection to the grid during the last 2 h of the test to 
sustain ESS with the imported power from the grid (see Fig. 11). The 
optimal power share is displayed in Fig. 13, which shows significantly 
reduced PV supplied energy compared to the first test. This scenario has 
led to a verified power balance in the microgrid, which explains the 
extended operation of island mode compared to the previous test. Apart 
from the case of ESS current fluctuations observed in island mode, the 
partially cloudy scenario had no significant effect on the EMS perfor-
mance. However, those fluctuations in island mode can lead to battery 
performance degradation as a long-term impact if they are not damp-
ened by a high dynamic ESS, such as ultracapacitors [26]. 

4.3. Baseline test (rule-based EMS) 

Rule-based EMS is a simple method that offers a real-time evaluation 
of the energy system's performance using pre-defined conditions (rules). 
In this study, a rule-based ESS management system based on real-time 
evaluation of SOC is developed. It defines the operation mode of the 
hybrid system according to SOC level. The island mode is active only if 
the ESS constraints, formulated in Eqs. (5) and (6), are satisfied. The 
flowchart of the proposed rule-based EMS is shown in Fig. 14. Rule- 

based EMS is an efficient approach when it comes to cost-effective 
implementation. The rules are designed to focus mainly on ESS SOC 
variation. Operating ESS between predefined upper and lower limits 
offers various advantages: the lower limit protects ESS from deep 
undercharging scenarios, which increases the battery's life, and it also 
offers an energy backup in case any unexpected energy needs occur. The 
upper limit is put to protect the batteries from overcharging issues, such 
as corrosion on the positive plates and excessive temperatures. The 
upper limit also ensures the energy recovery capacity of any sudden 
extra PV supply, particularly in island mode. The control commands 
used to ensure the targeted performance are the same as those used in 
the previous optimization-based approach (external grid relay and ESS 
current). Rule-based methods can be performed online without 
requiring much computing time, which makes them suitable for real- 
time EMS. 

Based on the testing day specifications, the control commands are 
defined as shown in Fig. 15. Accordingly, the system is moving contin-
uously between island and grid-connected modes. Although the ESS 
current setpoint, defined by the energy management, is constant during 
the control cycling time (10 min), we can see in Fig. 15(a) current 
fluctuations. As stated earlier, this is due to the fact that the inverter/ 
charger is designed to participate in the local grid voltage and frequency 
regulation by continuously adjusting the power fed to the grid. Never-
theless, those fluctuations are negligible compared to the constant 

Fig. 12. ESS SOC variation in partial-cloudy day test using optimization-based EMS.  

Fig. 13. Power share in partial-cloudy day test using optimization-based EMS.  
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setpoint defined by EMS. 
As it was a sunny day, the amount of supplied PV energy was rela-

tively larger compared to the energy demand (see Fig. 17), therefore, 
EMS aims to keep SOC below the upper limit by connecting a hybrid 
system to the grid to feed extra power. When SOC is turned back inside 
the tolerated zone, EMS operates the system in island mode again. 
During the test, ESS SOC crossed the upper limit several times, as shown 
in Fig. 16. This is due to the fact that EMS was totally offline during the 

cycling time. In this case, the control actions are being updated only 
after the end of each cycle. To protect the batteries from overcharging 
scenarios, EMS feeds extra power to the grid with different AC current 
levels, as shown in Fig. 18. Even though grid feeding current was defined 
constant (~6 A), the ESS inverter/charger adjusts the current setpoint 
for frequency/voltage regulation considerations, as they are prioritized 
over any EMS commands. 

4.4. Comparison study 

In this section, we would like to estimate the energy cost improve-
ment using optimization-based EMS compared to the baseline method in 
the two different sunny days. Since the testing conditions were not 
perfectly matching for the two different EMS techniques, it is not trivial 
to quantify the difference in energy operation performance between 
them. Contrary to the power demand, which is generated by a pro-
grammable load device, it was obviously not possible to have the same 
supplied PV energy for all tests due to the different weather conditions. 
In this study, we could overcome this challenge by creating a common 
virtual operation scenario for both techniques. This reference scenario is 
when the produced PV energy is ideally matching the energy demand 
(EPV/Eload = 1). The evaluation criteria is the energy exchanged with the 
grid. Accordingly, calculated values for both EMS techniques are listed 
in Table 4. As both testing scenarios are carried out on sunny days, 
supplied PV energies were considerable in such way the energy manager 
was often feeding back extra powers into the grid, which explains the 
negative values in Table 4. The table also shows 0.58 kWh more energy 
exported to the grid using optimization-based EMS compared to rule- 
based EMS during the seven testing hours, which represents an 
improvement of 6.23 %. 

Regarding SOC control performance, Fig. 8. shows clearly that the 
optimization-based energy manager avoids driving ESS near the upper 
SOC limit in all different operation conditions, while Fig. 16 shows that 
the upper SOC limit has been violated few times using rule-based EMS, 
even though both strategies are carried out under comparable condi-
tions. The reason is the ability of GA optimization to anticipate the 
power flow trend in the network and predict the system state at the end 
of the control horizon, therefore, it is possible to take command actions 
in advance to avoid SOC upper limit violations. Similarly, the proposed 
EMS performed better in terms of respecting the maximum exchanged 
power through the ESS inverter/charger (3.6 kW), while the rule-based 
approach violated this limit a few times during the test (see Figs. 9 and 
17). 

5. Conclusion 

In this article, the implementation of advanced EMS into existing 
BAS using edge technology is investigated. Taking advantage of the 
available communication protocols of the low-level controllers and the 
high computing capability of the edge, sophisticated management al-
gorithms can be implemented to optimize the energy use in the build-
ing's local network in real time. This article demonstrates the edge 
aptitude of significantly upgrading the data analytics capability of BAS 
by adding high-level hardware and software to the management layer. It 
has also been proven that, by applying GA-based optimization, to 
perform cyclically real-time control, it is possible to operate the hybrid 
energy system in island mode while ensuring system safety, conse-
quently, renewable resources local self-share can be maximized. 
Furthermore, the robustness of the proposed management algorithm 
against rapid weather fluctuations has been verified. 

Thanks to the short-horizon optimization, optimal operation set-
points have been periodically defined for each cycling time regardless of 
the optimization nonlinearity. As the main target is to minimize the 
imported energy from the grid or maximize the exported one, 6.23 % 
improvement in this context has been achieved for GA-optimization 
EMS in opposition to the classical rule-based EMS. 

Fig. 14. Rule-based EMS flowchart.  

Fig. 15. Decision variables in a clear-sky day test using rule-based EMS: (a) ESS 
DC current, (b) grid relay. 
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Since the ESS safety is crucial in any EMS policy, the proposed 
strategy showed better performance compared to the classical rule- 
based approach when it comes to respecting the operation limits. As 
the power flow in the building's local network is predictable, the pro-
posed EMS is capable of driving ESS within the tolerated margin in terms 
of SOC and exchanged power levels. Even though the energy manager is 
still offline during cycling time, GA optimization makes it possible to 

track the internal power flow direction and predict the ESS state at the 
end of the control horizon. 
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Exchanged 
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(Egrid) 

EPV/ 
Eload 

Estimated 
exchanged 
energy with 
the grid 
when EPV/ 
Eload = 1 

Rule-based 34.11 
kWh 
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kWh  
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based 

31.9 kWh 27.88 kWh − 10.61 
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