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A B S T R A C T   

Batteries typically consist of multiple individual cells connected in series. Here we demonstrate single-cell state 
of charge (SOC) and state of health (SOH) diagnosis in a 24 V class lithium-ion battery. To this goal, we introduce 
and apply a novel, highly efficient algorithm based on a voltage-controlled model (VCM). The battery, consisting 
of eight single cells, is cycled over a duration of five months under a simple cycling protocol between 20 % and 
100 % SOC. The cell-to-cell standard deviations obtained with the novel algorithm were 1.25 SOC-% and 1.07 
SOH-% at beginning of cycling. A cell-averaged capacity loss of 9.9 % after five months cycling was observed. 
While the accuracy of single-cell SOC estimation was limited (probably owed to the flat voltage characteristics of 
the lithium iron phosphate, LFP, chemistry investigated here), single-cell SOH estimation showed a high accu
racy (2.09 SOH-% mean absolute error compared to laboratory reference tests). Because the algorithm does not 
require observers, filters, or neural networks, it is computationally very efficient (three seconds analysis time for 
the complete data set consisting of eight cells with approx. 780.000 measurement points per cell).   

1. Introduction 

Every year around ten billion lithium-ion battery cells are being 
produced and assembled in batteries for a large variety of portable, 
mobile and stationary applications [1–3]. All those battery-powered 
products require a reliable diagnosis of the state of charge (SOC), 
which is passed as information to the user and/or is needed for energy 
management [4]. The SOC is usually defined [5] as the remaining 
dischargeable capacity Q relative to the capacity of a fully-charged 
battery C, mathematically expressed as 

SOC =
Q
C
. (1)  

The capacity C changes over time due to battery aging. The diagnosis of 
this change is highly desirable both for the user (allowing the assessment 
of remaining storage capability and value) and for the battery manu
facturer (allowing, for example, the assessment of warranty risks or 
predictive maintenance strategies). The state of health (SOH) is usually 
defined [5] as the capacity of a fully-charged, but aged cell relative to 
the capacity of a fresh cell, in the following referred to as the nominal 
capacity CN, as 

SOH =
C

CN
. (2)  

Although other definitions of the SOH are possible (e.g., based on the 
internal resistance of the battery [6]), for the present study we use the 
capacity-based definition according to Eq. (2). 

The measurement of SOC and/or SOH is usually referred to as state 
diagnosis or state estimation. It is possible with a wide variety of 
different methods, including Coulomb counting [7], model-based 
methods such as extended Kalman filters [8], and machine learning 
based methods [9]. Each method has advantages and disadvantages; it is 
beyond the scope of the present article to provide a detailed overview 
and discussion. The interested reader is referred to numerous books 
[5,6,10–12] and review articles [4,9,13–17] on the topic. For practical 
application, both SOC and SOH need to be estimated in operando, that is, 
during the regular operation of the battery. While laboratory tests apply 
“artificial” full cycles and/or well-defined constant current phases, 
operando diagnosis must typically rely on partial cycling with undefined 
power profiles. In practice, state diagnosis is being performed as part of 
the battery management system (BMS) [18], where the method of choice 
is implemented on a microcontroller or computer. 

Battery packs usually consist of multiple, individual single cells 
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connected in series and/or in parallel [19,20]. This allows to increase 
voltage and/or capacity, and hence energy, to the required application 
level. For example, we have studied before a home storage systems 
consisting of large-format prismatic cells in 14s1p configuration [20]. 
Even larger battery packs are needed for electric vehicles (EVs). For 
example, the Renault Zoe (2019 edition) battery features 192 single cells 
in 96s2p configuration (96 serially-connected times 2 parallel- 
connected cells); the Tesla Model 3 (2020 edition) has 2976 cells in its 
battery pack [21]. All cells are expected to behave in a slightly different 
way, owing to both, variability in the cell production, and local thermal 
and electrical boundary conditions inside the pack. The differences are 
expected to increase during cell lifetime. Here and throughout the text 
we carefully distinguish between the terms cell (or single cell) and battery 
(or pack). 

SOC and SOH diagnosis of single cells in multi-cell packs is chal
lenging from the point of view of both, data acquisition and data analysis 
[18]. Concerning data acquisition, a large number of voltage, current 
and temperature sensors are required, and data has to be recorded with a 
sufficiently high time resolution (typically >1 Hz), resulting in large 
data sets. Concerning data analysis, the computational cost and memory 
requirement of filters or neutral networks, even if moderate for a single 
cell, may easily exceed the capabilities of BMS microcontrollers when 
data of hundreds of individual cells need to be analyzed in real time 
[18,22,23]. Some authors have suggested to use a small number of 
“representative” cells for state diagnosis [23], reducing the computa
tional effort. Other authors have used “mean-difference model” or 
“leader-follower” approaches, where two models are superimposed, a 
more complex one for a mean or representative cell behavior, and a 
simpler one for cell-to-cell differences [24–27]. Cloud-based data anal
ysis has been demonstrated recently to circumvent limited local re
sources [28,29], which however significantly increases the overall 
implementation complexity. Hua et al. have demonstrated a multi- 
timescale estimation framework, where single-cell SOH is estimated 
only every several weeks to reduce computational load, and the analysis 
is used to identify a representative single cell for real-time SOC diagnosis 
[30]. 

Apart from these simplifying approaches, the published literature on 
true single-cell SOC and SOH diagnosis in battery packs is very sparse. 
Merkle et al. [28] estimated single-cell SOC and SOH in a 2014 e-Golf 
battery consisting of 264 cells in 88s3p configuration, using cloud-based 
data analysis. The data of one single charging cycle (from 13 % to 96 % 
SOC) was used for estimating capacity, and a 30 s dynamic cycle was 
used for estimating internal resistance by least-squares fitting equivalent 
circuit model (ECM) parameters to the measurement data. Tsai et al. 
used 30-min constant-current charge to estimate single-cell SOC and 
SOH in a three-cell pack by comparing experimental data with 
previously-measured charge voltage curves [31]. These methods thus 
relied on the presence and identification of certain characteristic oper
ation phases. An et al. [32] estimated single-cell SOC and pack-level 
state of energy (SOE) in a five-cell lithium-ion battery pack operated 
under laboratory conditions by applying an extended Kalman filter to 
each cell. All three studies used lithium nickel manganese cobalt oxide 
(NMC) based lithium-ion batteries. Estimation of single-cell SOC only 
(without SOH or SOE) was shown by Park et al. in a four-cell pack using 
neural networks [33], by Zhang et al. in a 21-cell pack using a single- 
point Kalman filter [34], as well as in the context of cell balancing al
gorithms using Kalman filters or Coulomb counters [35,36]. All in all, 
the published methods strongly vary in approach and complexity. 

We have recently introduced a new algorithm for SOC and SOH 
diagnosis of batteries using voltage-controlled models (VCM) [37]. In 
the present article we apply this algorithm for the first time to individual 
cells in a battery pack. We demonstrate single-cell operando SOC and 
SOH diagnosis over several months of operation under a simple cycling 
protocol. We also demonstrate for the first time the application of VCMs 
to lithium-ion cells using lithium iron phosphate (LiFePO4, LFP) as 
positive electrode (PE) material. LFP poses particular challenges to state 

diagnosis due to its flat voltage discharge behavior, a voltage hysteresis 
between charge and discharge, and asymmetric overpotentials [38–40]. 
We validate the operando results by comparing with laboratory single- 
cell characterization after pack disassembly. 

2. Approach 

The approach of using VCM for SOC and SOH diagnosis is sche
matically shown in Fig. 1. The algorithm is based on a dynamic equiv
alent circuit model (ECM) which is formulated such that cell voltage is 
the input (independent) variable and cell current is the output (depen
dent) variable (hence, the term voltage-controlled model) [37]. This is 
opposite to all common formulations used in model-based state esti
mation (e.g., with Kalman filters), where the ECM is formulated such 
that cell current is the input and cell voltage the output (current- 
controlled model) [4–6,8,10,13–17]. 

The algorithm consists of two coupled analysis steps. In the first step, 
shown in the upper part of Fig. 1, the dynamic model is fed with time 
series of the experimentally-measured voltage of a single cell, Vexp,cell. In 
an online application, these data would be fed continuously; in the 
present study, we feed the model offline with historic data. The simu
lation yields the SOC of the cell directly, which can be displayed to the 
user and/or stored for further usage. Apart from the SOC, the simulation 
also yields the cell current Isim,cell as output. The operation principle of 
the VCM can be understood by bringing into mind a “classical” constant 
voltage (CV) mode during lithium-ion battery charging. Here, as in the 
VCM, the cell delivers a current depending on the driving overpotential, 
which is the difference between the applied voltage and the open-circuit 
voltage. Mathematically, an ECM is represented by a differential- 
algebraic equation (DAE) system, which provides the relationship be
tween the variables current I, voltage V and SOC. In a “classical” current- 
controlled model, I is provided as independent variable, and the DAE 
system is solved for V and SOC. In the present voltage-controlled model, 
V is provided as independent variable, and the DAE system is solved for I 
and SOC. The mathematical form of the ECM used here will be given and 
discussed below. 

In the second analysis step, shown in the lower part of Fig. 1, the 
simulated current is used for calculating the SOH according to [37] 

SOHcell =

∫t1

t0

⃒
⃒Iexp,pack(t)

⃒
⃒dt

∫t1

t0

⃒
⃒Isim,cell(t)

⃒
⃒dt

. (3)  

Here, Iexp,pack is the experimentally-measured current of the battery, 
which is identical for all cells due to their series connection. The in
tegrals on the right-hand side of this equation represent two Coulomb 
counters for the absolute charge throughputs. The simulated charge 
throughput (denominator) represents the behavior of the fresh cell (the 
modeled cell has the nominal capacity CN and does not age), while the 
experimental charge throughput (numerator) represents the behavior of 
the aged cell. Hence, the ratio of these values yields the SOH as defined 
in Eq. (2). The integration time window t0…t1 used in Eq. (3) can, in 
principle, be set arbitrarily within the battery operation time. For the 
present study, we use consecutive time windows of the length of five 
equivalent full cycles of the cell model. This means that, starting with t0 
at beginning of test, we time-integrate both numerator and denominator 

of Eq. (3) until 
∫t1

t0

|Isim(t) |dt = 10⋅CN. At this point, SOHcell(t1) is calcu

lated using Eq. (3), giving the first SOH output point. Then the two 
Coulomb counters are reset, and time-integration is restarted setting the 
new t0 to the previous t1. This approach gives one SOHcell value every 
five equivalent full cycles, corresponding to approx. 15 h under the 
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cycling protocol applied here. All single cells are analyzed individually; 
because the cells differ in their behavior, the SOHcell values may be 
obtained at different points in time for different cells. 

In summary, SOC and SOH diagnosis with VCM uses the following 
sequence: 

1. Development and parameterization of a dynamic model that repre
sents the behavior of the fresh (unaged) target battery. Imple
mentation of a voltage-controlled version of the model.  

2. Measurement of Iexp and Vexp as function of time during battery 
operation.  

3. Feeding of the model with Vexp and simulation of Isim and SOC. This 
gives continuous values of the estimated SOC.  

4. Calculation of the integrals in Eq. (3) over a predefined time or 
charge throughput. Calculation of SOH with Eq. (3) when the pre
defined time or charge throughput it reached. This gives discrete 
values of the estimated SOH. 

As shown before [37], this approach for SOC and SOH diagnosis has 
significant advantages compared to standard methods. For SOC diag
nosis, only a voltage measurement is required, making the algorithm 
robust against well-known current measurement uncertainties causing 
SOC drift [7]. For SOH diagnosis, the algorithm is applicable in oper
ando, that is, it does not “know” the battery operation protocol, SOC 
ranges, or current dynamics. Therefore, it does not require specific 
operation modes such as “artificial” full cycles, constant current phases, 
or rest phases. Neither SOC nor SOH diagnosis requires observers, filters 
or neural networks, therefore the algorithm is cheap in terms of 
computational power and memory. 

The type of battery application (portable vs. stationary vs. mobile) 
strongly affects the dynamics of battery operation; for example, home- 
storage systems exhibit relatively uniform and slow battery charge/ 
discharge, while EVs show fast battery dynamics. The approach pre
sented here is independent of the application scenario, although the 
model may have to be adapted accordingly. We have demonstrated the 
algorithm before using single-cell laboratory experiments with lithium- 
ion cells operated under both, constant-current charge and discharge 
(where a very simple ECM consisting of only a voltage source and a 
resistor was shown to be sufficient) and dynamic EV load profiles (where 
the ECM needed to be extended with an additional dynamic resistor- 
capacitor element) [37]. 

3. Methods 

3.1. Lithium-ion battery system 

Experiments were carried out using a 24 V class lithium-ion battery 
with a nominal voltage of 25.6 V, nominal capacity of 50 Ah and 
nominal energy of 1.28 kWh. The battery system consisted of eight 
prismatic LFP battery cells (Lishen, model LP44147141) connected in 
8s1p configuration. The cell voltages, battery current, and SOCBMS data 

were obtained from the BMS (BENNING CMS Technology η-Leveling 
BMS) by using its communication interface (CAN bus). An additional 
battery monitor (TBS Electronics e-xpert pro) was used solely for the 
purpose of tracking the equivalent full cycles. A grid-tied inverter 
(Studer Xtender XTM 2400-24) was used as charger and load. 

The cycling of the battery was performed continuously with the 
following steps: (1) Constant current constant voltage (CCCV) charging 
with 50 A (1C) to 3.55 V and a cut-off current of approx. 1 A, corre
sponding to 100 % SOCBMS; (2) rest 20 min; (3) discharge with 1C rate 
until 20 % SOCBMS is reached, according to the BMS; (4) rest 20 min. The 
capacity assumed by the BMS was adjusted to the measured capacity, 
therefore the absolute cycling depth (in Ah) varied during the 
experiment. 

3.2. Reference performance tests 

In order to validate the results of the operando SOH diagnosis, three 
reference performance tests (RPT) were performed on the single cells: 
one before beginning of cycling, one after 619 cycles, and one after 
1314 cycles (end of cycling). For the RPTs, the battery was dis
assembled. The cells were tested under laboratory conditions at 25 ◦C 
ambient temperature (climate chamber Binder KB 115-S). The tests 
consisted of the following procedure: First, the cells were conditioned 
with ten 1C (50 A) constant current constant voltage (CCCV) charge- 
discharge cycles. Then, two CCCV charge-discharge cycles with 0.1C 
(5 A) and 1C (50 A) were carried out and used for the present analysis. 
The CC phases were stopped at the cutoff voltages of 3.55 V (charge) and 
2.8 V (discharge). The CV phase was limited by a cut-off current of C/ 
100 (0.5 A). Cycling was performed in a four-wire setup using battery 
cyclers with 50 A channels (BaSyTec XCTS and BaSyTec GSM). The 
capacity C of the cells was determined according to 

C =
Cchg + Cdis

2
, (4)  

where, Cchg and Cdis are the measured charge and discharge capacities, 
respectively, of the 50 A CCCV cycle. Furthermore, internal resistance R 
of the cells was determined according to 

R =
Vchg − Vdis⃒
⃒Ichg

⃒
⃒+ |Idis|

, (5)  

where, Vchg and Vdis are the average cell voltages during charge and 
discharge, respectively, Ichg and Idis are the average currents during 
charge and discharge, respectively, and all averages were taken between 
40 % and 60 % SOC. 

3.3. Equivalent circuit model 

The new algorithm for state diagnosis requires a model of the battery 
cell (cf. Fig. 1). In the present work we use an ECM because of its con
ceptual and computational simplicity [41], as compared to 

Fig. 1. Single-cell state diagnosis with a voltage-controlled model (VCM). Experimentally measured single-cell voltage Vexp,cell is used as input for an equivalent 
circuit model (ECM). Model outputs are the single-cell SOC and single-cell current Isim,cell. Simulated current and experimental current Iexp,pack are time-integrated to 
obtain the absolute charge throughput. Because the model represents an unaged cell, the ratio between experimental and simulated charge throughput is the cell 
SOH. The algorithm is computationally efficient because it does not require filter operations, optimization procedures, or neural networks. 
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physicochemical models [42,43] or machine learning models [44]. The 
ECM used in the present study is shown in Fig. 2a. It consists of an SOC- 
dependent voltage source V0(SOC), a hysteresis voltage source ηhys, a 
series resistor Rs, and a resistor-capacitor element R1, C1. From this 
model, the cell voltage V is given as function of current I as 

V = V0(SOC) + ηhys(I) − Rs⋅I − VRC(I), (6)  

where, V0(SOC) is the open-circuit voltage and VRC is the voltage drop 
over the resistor-capacitor (RC) element. The latter is given as 

dVRC

dt
=

1
C1

(

I −
VRC

R1(SOC, I)

)

, (7)  

where, C1 is the capacitance and R1(SOC, I) is the resistance which is 
assumed to depend on SOC and current. The SOC is given as 

dSOC
dt

= −
I

CN
, (8)  

where, CN is the nominal capacity. The combined model Eqs. (6), (7) and 
(8) form a DAE system. The system consists of three equations for three 
unknown dependent (output) variables using one independent (input) 
variable. In the present work, we solve this equation system either as a 
current-controlled model (i.e., solved for V, VRC and SOC using I as 
input), or as voltage-controlled model (i.e., solved for I, VRC and SOC 
using V as input). In case of a current-controlled model, Eq. (6) is explicit 
with respect to the output V. In case of a VCM, Eqs. (6)–(8) are implicit 
with respect to the output I. The inversion of the equations, that is, their 
solution for I at given V, is carried out numerically, as will be discussed 
below (Section 3.5). 

3.4. Model parameterization 

Dedicated laboratory experiments (in the following referred to as 
parameterization experiments) were carried out using an additional 
single cell (not part of the battery pack, but from the same delivery 
batch) using battery cyclers (BaSyTec XCTS, Biologic VMP3) and a 
climate chamber (CTS T-40/200 Li). All measurements were carried out 
at 25 ◦C. Charge and discharge curves were recorded at three different C- 
rates (0.05C, 0.25C, 1C) using a CCCV protocol with the same limits as in 
the reference performance tests (cf. section 3.2). The pseudo-OCV curve 
was obtained by averaging the measured V(SOC) curves of charge and 
discharge at 0.05C. The V0(SOC) curve determined such is shown in 
Fig. 2b. In our model, we use this curve in tabular form. Alternatively, 
the OCV curves can also be used in the form of analytical equations [45]. 

Furthermore, electrochemical impedance spectroscopy (EIS) mea
surements were carried out at 50 % SOC. The series resistance Rs was 
taken as high-frequency intercept of − Im(Z) in the Nyquist plot; a value 
of Rs = 3.64⋅10− 4 Ω was obtained. The capacitance of the RC element 
was obtained from the maximum of − Im(Z); a value of C1 = 3.82 F was 
obtained. 

The internal resistance of LFP-based cells is known to asymmetrically 
(i.e., differently for charge and discharge) depend on SOC [40]. In order 
to include this effect into the model, we use two separate expressions for 
SOC-dependent R1 for charge and discharge. The SOC-dependent in
ternal resistance was obtained from the 0.05C and 1C curves as 

Ri(SOC) =
|V0.05C(SOC) − V1C(SOC) |

|I0.05C − I1C|
, (9)  

separately for charge and discharge. Based on the model structure (cf. 
Fig. 2a), the total internal resistance Ri is composed of 

Ri(SOC) = Rs +R1(SOC). (10)  

While Rs was assumed constant, the SOC dependency R1(SOC) was 
approximated using an empirical exponential function. For the 
approximation, the internal resistance and previously determined series 
resistance were used as the data basis. The results are shown in Fig. 2c. 
The value for R1 obtained such is 

R1

(

SOC,I
)

=

{
3.577⋅10− 3 Ω⋅e− 18.11⋅SOC +1.348⋅10− 3 Ωfor I>0 (discharge)
2.995⋅10− 3 Ω⋅e− 22.76⋅(1− SOC) +9.848⋅10− 4 Ωfor I <0 (charge) .

(11) 

The hysteresis of the OCV of LFP-based cells was determined by 
taking the cell voltages at 50 % SOC at 0.05C and 0.25C, linearly 
extrapolating towards 0C for charge and discharge voltages separately, 

Fig. 2. Equivalent circuit model used in the present study. a The model consists 
of an SOC-dependent open-circuit voltage V0, an additional voltage source 
representing the OCV hysteresis ηhys, a serial resistor Rs, and a resistor-capacitor 
element R1, C1; b Pseudo-open-circuit voltage (OCV) as function of SOC, based 
on measurements; c resistance R1 as function of SOC. 
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and taking half of the difference of the extrapolated voltages. The value 
obtained such is 

ηhys(I) =
{
− 24.7 mV for I > 0 (discharge)
+24.7 mV for I < 0 (charge) . (12) 

For simulating the CCCV cycles of the parameterization experiments, 
we used the explicit form of Eqs. (11) and (12). When using the VCM for 
state diagnosis, these two equations are solved implicitly as part of the 
full equation system (see below, Section 3.5). 

The nominal capacity is assumed constant at CN = 50 Ah, repre
senting the data-sheet performance of the cell. This is consistent with the 
key assumption of the SOH diagnosis method used here, where the 
model represents a fresh cell and does not undergo aging. 

3.5. Simulation methodology 

For parameterization and current-controlled simulations we used a 
Matlab (R2019b) implementation of the ECM, using Matlab's ode23t 
solver to time-integrate Eqs. (6)–(8), (11) and (12). For SOC and SOH 
diagnosis, voltage-controlled simulations are required. In this case, Eqs. 
(6)–(8), (11) and (12) form an implicit equation system that needs to be 
solved for I, VRC and SOC using V as input. Due to the nonlinear nature 
of the equation system, it is not possible to invert it analytically. How
ever, it is straightforward to solve the system numerically. To this goal, 
the equations can be cast into the general form of a DAE system, 

dVRC

dt
=

1
C1

(

I −
VRC

R1(SOC, I)

)

, (13)  

dSOC
dt

= −
I

CN
, (14)  

0 = V0(SOC) + ηhys(I) − Rs⋅I − VRC(I) − V. (15)  

After inserting Eqs. (11) and (12), the right-hand sides can be imple
mented with standard numerical DAE solvers such as Matlab's ode23t. 
For the present work, we solved the DAE system in a C++ class using 
Euler time discretization. The resulting algorithm is very fast: Total 
computational time for SOC and SOH (5 months of data, 8 cells, approx. 
780.000 measurement points per cell) was only 3 s on a laptop computer 
equipped with an Intel i7-1185G7 CPU, using a single core. 

3.6. Coulomb counter 

In this work, an additional Coulomb counter was used as a reference 
for the SOC of the battery pack. It was calculated as 

SOCCC(t) = −
1

CN

∫t

t0

Iexp(τ)dτ (16)  

with the measured current Iexp and the nominal capacity CN [37]. We 
use the same value for the nominal capacity (CN = 50 Ah) as in the ECM. 
The Coulomb counter was calibrated as follows. In case one of the cells 
in the battery pack reached or exceeded the charge cut-off voltage (3.55 
V), the SOC was set to 100 %. Similarly, the SOC was set to 0 % when one 
individual cell voltage reached or fell below the final discharge voltage 
(2.8 V). 

We use a conventional Coulomb counter as reference because it is a 
simple and widely-used algorithm. In addition, it has a very low 
computational effort. There are many other, more elaborate SOC diag
nosis algorithms (see literature overview in the Introduction). In future 
work, we plan to compare the present algorithm based on voltage- 
controlled models with state-of-the-art algorithms, such as Kalman 
filters. 

3.7. Data analysis 

In order to quantify the performance of the new algorithm, the 
following statistical values were calculated. The cell-to-cell standard 
deviation in estimated SOC was calculated as 

SDSOC =
1

Npoints

∑Npoints

n=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Ncell

∑Ncell

k=1

(
SOCn,k − SOCn

)2

√
√
√
√ , (17)  

where, the index n runs over the number of time points and the index k 
runs over the number of cells. The difference between SOC determined 
by the VCM and the Coulomb counter was calculated as 

MADSOC =
1

Npoints

∑Npoints

n=1

( ⃒
⃒SOCCC,n − SOCn

⃒
⃒
)
, (18)  

where, the index CC stands for Coulomb counter. The cell-to-cell stan
dard deviation in estimated operando SOH was calculated at a given 
point in time as 

SDSOH =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Ncell

∑Ncell

k=1

(
SOHn,k − SOHn

)2

√
√
√
√ . (19)  

The cell-individual scatter of the operando SOH over consecutive points 
in time was calculated as standard deviation according to 

SDSOH,cell =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Npoints

∑Npoints

n=1
(SOHn − SOH)

2

√
√
√
√ . (20)  

The difference between a single-cell operando SOH and the average 
operando SOH over consecutive points in time was calculated as 

DSOH,cell =

(
1

Npoints

∑Npoints

n=1
SOHn

)

−

(
1

NpointsNcell

∑Npoints

n=1

∑Ncell

k=1
SOHn,k

)

. (21)  

The standard deviation of the experimental capacities determined in the 
RPT is given as 

SDC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Ncell

∑Ncell

k=1
(Ck − C)

2

√
√
√
√ . (22)  

The mean absolute error (MAE) of the SOH determined in operando 
compared to the RPT is given as 

MAESOH =
1

Npoints

∑Npoints

n=1

( ⃒
⃒SOHRPT,n − SOHn

⃒
⃒
)
. (23)  

To quantify the quality of the parameterization, the MAE of the model 
output compared to parameterization data was calculated. The MAE of 
the voltage deviation, 

MAEV =
1

NV

∑NV

m=1

( ⃒
⃒Vsim,n − Vexp,n

⃒
⃒
)
, (24)  

was calculated using the simulated voltage Vsim and measured voltage 
Vexp. The MAEV is calculated using charge and discharge curves at three 
different C-rates (cf. below, Section 4.2). The index m runs over the data 
points of the three charge and discharge curves. 

4. Results 

4.1. Battery operation 

The lithium-ion battery studied here is a 24 V class 50 Ah system 
consisting of eight serially-connected single prismatic cells with LFP PE 
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and graphite negative electrode (NE) (see Section 3.1 for details). It was 
operated for a total of 1314 charge/discharge cycles between 100 % 
SOCBMS and approx. 20 % SOCBMS. For clarity, we use the acronym 
SOCBMS for the SOC provided by the battery's own BMS (cf. Section 3.1). 
The cycling time was 66 days between July 3 and September 7, 2021 
(cycles 1–619), then interrupted by an RPT of the single cells, and 
complemented by additional 76 days between September 15 and 
November 30, 2021 (cycles 620–1314). Exemplary data over a 6-h 
duration at beginning of test (cycles #1–3) are shown in Fig. 3. Pack 
current (panel a), pack voltage (panel b) and system-level SOCBMS 
(panel c) show the behavior of the applied cycling protocol, consisting of 
constant-current (CC) discharge, rest phase, constant-current constant- 
voltage (CCCV) charge, and another rest phase. Notably, Panel d shows 
the individual voltages of the eight serially-connected cells. They show 
slight differences, indicating that even here, at beginning of life, there 
are cell-to-cell differences, owed probably to manufacturing differences. 
The single-cell voltages and the pack current will be used as input to the 
state diagnosis algorithm. 

4.2. Model validation 

For model parameterization and validation, we used an additional 
single cell (not included in the battery pack, but from the same delivery 
batch), termed reference cell in the following. Simulated charge and 
discharge curves at different C-rates are compared to experimental data 
from the reference cell in Fig. 4a. The model is able to describe the 
voltage characteristics with a high level of accuracy, as shown in panel 
b: The MAEV (Eq. (24)) over the complete validation data (three charge 
and discharge curves with different C-rates) is 9.19 mV. Increasing de
viations are observed towards low and, in particular, towards high 

charge throughput (low SOC), owed to the nonlinearity of the voltage 
curves in those ranges. Notably, the capacity of the reference cell is 
slightly higher (50.9 Ah) compared to the battery cells (average 50.0 Ah) 
and the nominal capacity (CN = 50 Ah). It is important to note that the 
model is isothermal: The model was parameterized to a cell operated at 
25 ◦C ambient temperature, and the simulation results are independent 
of temperature. The consequences of this assumption will be further 
discussed in Section 5. For the simulations shown in Fig. 4, the model 
was operated under current control (i.e., given C-rate), in order to allow 
a direct comparison to the experiments. In the remainder of this article, 
following the basic principle of our diagnosis algorithm, the model will 
instead be solved with voltage as input and current as output. 

4.3. Single-cell SOC 

We first discuss results of the single-cell SOC diagnosis. The model 
was fed with the time series of an experimentally-measured single-cell 
voltage (cf. Fig. 3d), resulting in time-dependent SOC and current of that 
cell as simulation output. After analyzing all eight cells individually, the 
arithmetic average of the individual SOCs was calculated at each point 
in time. In addition, the battery SOC was calculated using a standard 
Coulomb counter (cf. Section 3.6). The results obtained are shown in 
Fig. 5. Here, panel a shows six hours at beginning of the battery test 
(cycles 1–3), and panel b shows six hours at the end of the battery test 
(cycles 1312–1314). The estimated SOCs show charge-discharge cycles 
between approx. 20 % and 100 % SOC. The eight individual cells show a 
slight cell-to-cell variation: The time-averaged standard deviation SDSOC 
is 1.25 SOC-% and 0.908 SOC-% for the six hours shown in panels a and 
b, respectively (see Section 3.7 for definition of this and all other sta
tistical values). The SOC estimated with a Coulomb counter shows a 

Fig. 3. Exemplary 6 h of battery operation close to beginning of cycling test. a Current within the serially-connected battery pack (50 A corresponds to nominally 1C 
rate; we assign positive sign of current for discharge). b Total voltage of the battery pack. c State of charge SOCBMS, as provided by the battery management system. 
d Voltages of the eight individual cells. Small differences between the individual cells motivate the development of single-cell diagnosis. Note the flat voltage 
characteristics during discharge of the LFP chemistry used here. 
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quite linear behavior during each charge or discharge phase, resulting 
from the relatively constant current (cf. Fig. 3a). In contrast, the cell- 
averaged SOC estimated with the VCM has a slightly nonlinear 
behavior, which is more pronounced at the end of test. The difference 
between Coulomb counter and VCM is particularly apparent during the 
rest phase after discharge. The mean absolute difference between VCM 
and Coulomb counter MADSOC is 4.68 SOC-% and 4.11 SOC-% for the 6 h 
at beginning of test and at end of test, respectively. 

4.4. Single-cell SOH 

For SOH analysis, the simulated and experimental currents were 
evaluated for each individual cell according to Eq. (3). The results are 

shown in Fig. 6. Both the single-cell SOH as well as the arithmetic 
average over all cells are shown. Note that, in the present work, the SOH 
is defined relative to the nominal capacity (SOHk = Ck/CN with CN =

const. = 50 Ah, where k is cell number). The figure extends over the 
complete five-month operation of the battery; the data “gap” in the 
middle of the experiment results from the RPT after cycle #619. Clearly, 
the cells exhibit capacity loss, starting from 98.1 % SOH at beginning of 
test, and ending at 88.2 % SOH at end of test (average over all cells of 
first and last four SOH values). The capacity loss is nearly similar for 
each individual cell. The single-cell SOH data show a clear cell-to-cell 
difference; for the first time point, the standard deviation of the eight 
cells SDSOH is 1.07 SOH-%. The individual single-cell SOHs also show a 
significant point-to-point scatter. A quantitative analysis is given in 

Fig. 4. Equivalent circuit model (ECM) used for the model-based state diagnosis. a Simulated charge and discharge curves using the ECM shown in Fig. 2a, in 
comparison to experimental data from a reference cell, at 25 ◦C and different C-rates. b Deviation between experiment and model, where the gray shade represents a 
range of ±10 mV. The mean absolute error MAEV (Eq. (24)) over the complete data is 9.19 mV. 

Fig. 5. Single-cell SOC during battery operation, estimated with the voltage-controlled model. a, c Exemplary 6 h at beginning of battery test. b, d Exemplary 6 h 
close to the end of battery test. The upper panels show the estimated single-cell SOC, the lower panels show the average SOC as well as a reference value based on a 
standard Coulomb counter (cf. Section 3.6). 
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Table 1 for a representative 10-day period. The cells show an average 
point-to-point scatter of around 0.533 SOH-%; this number is repre
sentative of the precision of the new algorithm. The cell-individual 
differences to the average SOH are in the range of ≤1 SOH-%, with 
two outlier cells (#4 and #8). These findings will be further discussed in 
Section 5. 

4.5. Reference performance tests 

In order to assess the accuracy of the SOH diagnosis shown above, 
RPTs of the individual single cells were carried out under controlled 
laboratory conditions before start of battery test, after 619 cycles, and 
after 1314 cycles. For this purpose, the battery was disassembled, the 
cells characterized, and the battery reassembled after RPT. Results are 
shown in Fig. 7. Panels a and b show charge/discharge curves at 0.1C 
and 1C rate, respectively, of the single cells before operation of the 
battery. The cells exhibit the typical behavior of LFP/graphite chemis
tries [40]: At 0.1C (panel a) the voltage curve shows extended plateaus 
and characteristic voltage steps owed to the graphite NE; at 1C (panel b), 
the behavior is asymmetric with respect to charge and discharge (the 
branches do not run in parallel towards high and low SOC), owed to the 
LFP PE. Comparing the set of curves, it becomes clear that the individual 
cells exhibit a different behavior in terms of both, absolute voltages and 
the position of the voltage steps: they differ in capacity and in internal 
resistance. Panels c and d show RPT results after 1314 cycles of battery 
operation. The behavior remains qualitatively unchanged, although the 
capacity of the cells has clearly decreased. For further comparison, we 

have quantified the capacity and the internal resistance of the individual 
cells from the three RPTs. Capacities are shown in panel e. Before the 
test, the cells have an average capacity of 50.0 Ah, corresponding 
exactly to the nominal data-sheet capacity of 50 Ah, with a standard 
deviation SDC of 0.224 Ah. After 619 and 1314 cycles in the battery, 
average capacity has decreased to 46.8 Ah and 45.2 Ah, respectively: the 
cells clearly exhibit aging. The cell-to-cell scatter has slightly increased 
at 1314 cycles. Internal resistances are shown in panel f. The cell-to-cell 
scatter in resistance is significantly higher than the scatter in capacity; 
also, there is no clear trend when comparing the average values (2.02, 
1.95 and 1.92 mΩ) upon progressing cycling (fresh cells, 619 cycles, 
1314 cycles, respectively). 

4.6. SOH validation 

A direct comparison of the results of the single-cell operando SOH 
(Fig. 6) and the SOH determined in the RPTs (Fig. 7) is shown in Fig. 8. 
Each data point corresponds to one single cell at a specific point in time. 
The RPT SOH before the test are compared to the average first four data 
points of the operando SOH; the RPT SOH during the test break is 
compared to the average operando SOH of the two data points before 
and after the break; and the RPT SOH after test is compared to the 
average last four data points of the operando SOH. Fig. 8 plots operando 
SOH as function of RPT SOH, such that an exact agreement would yield 
points along a line through the origin, as indicated in the figure. 

The results show that the new operando SOH diagnosis is in good 
agreement with the RPT and is able to quantitatively capture the aging 
trend. The MAESOH (deviation of operando SOH to RPT SOH) over all 
data points is 2.09 SOH-%. The data points show some scatter which is 
increasing with increasing cycling time (MAESOH over all cells for the 
three RPTs are 1.95, 1.89 and 2.42 SOH-% at beginning, middle, and end 
of test, respectively). Overall, these numbers demonstrate a good accu
racy of the new algorithm. When taking the average over all cells, the 
agreement further improves slightly (MAESOH of the three cell-averaged 
data points is only 1.95 SOH-%). Furthermore, two cells show a 
comparatively high but opposite deviation, namely cells #4 and cells 
#8. For these two “outlier” cells, operando SOH and RPT SOH exhibit an 
opposite behavior at end of test (cell #4 is the “best” cell in the operando 
diagnosis and the “worst” cell in the RPT; cell #8 shows the opposite 
behavior). Potential reasons include a difference in internal resistance or 
open-circuit voltage curve of these cells, compared to the reference cell 
used for model parameterization; this will be further discussed in Sec
tion 5. 

Fig. 6. Single-cell operando SOH during battery operation, estimated with the voltage-controlled model. Each point represents results of the analysis of one single 
cell during one time interval (five equivalent full cycles, cf. Eq. (3) and text for details). The black solid line represents the average of the eight single cells. We define 
the SOH of cell k as SOHk = Ck/CN (cf. Eq. (2)); this means that all values are given relative to the nominal capacity (here: CN = 50 Ah) which is identical for all cells. 
The range of SOH values, at each given point in time, therefore represents the range of estimated single-cell capacities. The data show a gap in September due to the 
RPT carried out there. Cell-to-cell variation is 1.07 SOH-% (standard deviation) at beginning of cycling, and the cells show an average capacity loss of 9.9 % during 
the operation time. 

Table 1 
Analysis of scatter (standard deviation, SDSOH,cell) and difference to the average 
value (DSOH,cell) of the SOH for a representative period from Jul 16 to Jul 26, 
2021, consisting of 14 data points per cell. The average SOH in this period over 
all points and all cells is 96.5 %.  

Cell 
number 

SDSOH,cell of each cell / SOH- 
% 

Difference DSOH to average / SOH- 
% 

1  0.427  − 1.01 
2  0.597  0.707 
3  0.553  − 0.338 
4  0.780  2.34 
5  0.654  0.283 
6  0.417  − 0.318 
7  0.640  − 0.181 
8  0.197  − 1.48  
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5. Discussion and outlook 

The results shown in the previous section represent, to the best of our 
knowledge, the first single-cell operando SOH diagnosis within an LFP 
battery pack shown in literature. Still, the accuracy of the SOC and SOH 
estimates demonstrated here is limited (MADSOC = 4.68 SOC-% 
compared to a Coulomb counter, MAESOH = 2.09 SOH-% compared to 
RPTs). It should be repeated that the LFP chemistry used in the present 
study is particularly challenging for state diagnosis because of the flat 
discharge voltage characteristics, charge/discharge hysteresis of the 
open-circuit voltage, and asymmetric overpotentials [38–40]. Indeed, 
the lower SOC limit of approx. 20 % used in the present cycling protocol 
is right within the battery's voltage plateau. In a VCM, flat voltage curves 
result in an increased uncertainty in the estimated SOC. 

Because the algorithm is based on a model, the accuracy of both SOC 
and SOH diagnosis can be improved by further improving the model 
fidelity. To this goal, we suggest two main pathways for future work. 
Firstly, the model used here is isothermal. However, cell temperatures 
are expected to vary both on a short time scale of minutes to hours (cells 
are known to exhibit a significant temperature variation during cycling 
[40]) and on a long time scale of weeks to months (e.g., due to seasonal 
variations of the ambient temperature or due to cell aging that changes 
the thermal signature). For example, during the RPTs, an increase of cell 
surface temperature of up to 7 K above the ambient temperature was 
observed for 1C cycles. In future studies, using measured cell tempera
ture as additional input to a model where the key parameters (in 
particular, Rs and R1) are thermally activated is expected to improve 
both accuracy and precision of the diagnostic algorithm. 

Fig. 7. Results of laboratory reference performance tests. a, b Fresh cells: charge/discharge curves at 0.1C rate and at 1C rate. c, d Cells after 1314 cycles of the 
battery: charge/discharge curves at 0.1C rate and at 1C rate. e Capacities of all cells before test, after 619 cycles, and after 1314 cycles, obtained from the 1C tests. f 
Internal resistances of all cells, obtained from the 1C tests. 
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Secondly, the model uses parameters that are identical for all single 
cells and do not change with consecutive cell aging (i.e., the parameters 
V0(SOC), CN, Rs, R1 and C1 are cell-invariant and time-invariant). This 
reduces the model fidelity upon progressive aging, likely causing the 
decreased accuracy and precision of SOC and SOH estimates observed 
here for the aged battery pack. The estimation accuracy of the two 
“outlier” cells (cf. Section 4.6) could likely be improved by using cell- 
individual parameters. Future studies should therefore focus on model 
parameter adaptation (both in terms of progressive aging and individual 
cells). 

A limitation of the present study is the fact that the battery pack was 
operated in a continuous 1C cycling protocol between 20 % and 100 % 
SOC. Although this information does not enter the algorithm, its appli
cability to arbitrary battery load profiles (including dynamic load pro
files that are typical for EVs), as has been demonstrated before on the 
cell level [37], has yet to be shown and will be subject of ongoing 
studies. 

6. Summary and conclusions 

In the present work we have demonstrated operando SOC and SOH 
diagnosis of the eight single cells of a 24 V class lithium-ion battery pack. 
To this goal, we have applied a new algorithm based on a voltage- 
controlled model (VCM) [37]. The algorithm uses measured single-cell 
voltage as input to an ECM, resulting in simulated single-cell SOC and 
current as output. By comparing the simulated current with the 
measured battery current, the SOH is determined. 

State diagnosis with VCMs does not require observers, filters or 
neural networks. For SOC diagnosis, the model used here requires nu
merical time-solution of a differential-algebraic equation system con
sisting of only three unknown states (SOC, I, VRC). For SOH diagnosis, 
only two additional Coulomb counters are required, processing the 
simulated and the experimental currents. The algorithm is therefore 
significantly simpler (both conceptually and computationally) than 
other diagnosis algorithms. In the present work we have used a C++

implementation of the algorithm. The total computational time (5 
months of data, 8 cells, approx. 780.000 measurement points per cell) 
was only 3 s on a laptop computer. Although not shown in the present 
work, the implementation on a microcontroller should be 
straightforward. 

For the battery studied here, single-cell SOC diagnosis was carried 
out successfully over the complete five-months cycling time. The cells 
were shown to operate in consecutive cycles between approx. 20 % and 
100 % SOC. The observed cell-to-cell scatter had a standard deviation 
SDSOC of 1.25 SOC-% at beginning of test. It is notable that SOC diag
nosis was possible in the aged battery pack without requiring adaptive 
model parameters. However, a significant difference between cell- 
averaged SOC and a reference Coulomb counter (MADSOC = 4.68 SOC- 
% at beginning of test) was observed. This difference is likely a result of 
the flat discharge voltage characteristics of the cells' LFP chemistry. 

Single-cell operando SOH diagnosis was also demonstrated success
fully over the complete battery cycling time. The algorithm yields one 
SOH data point every five equivalent full cycles (around every 15 h 
under the present cycling protocol). At beginning of test, the cell-to-cell 
scatter (standard deviation SDSOH) was 1.07 SOH-%. The cells were 
shown to exhibit an average of 9.9 % capacity loss over the five-month 
duration of the experiment. The precision of the algorithm (point-to- 
point scatter of a single cell SDSOH,cell) was around 0.533 SOH-%. A 
comparison of the operando results with laboratory RPTs shows a good 
accuracy of the algorithm (MAESOH = 2.09 SOH-% over the complete 
experiment). 

To the best of our knowledge, this work is the first time that SOC and 
SOH diagnosis with VCMs was applied to single cells of a battery pack. It 
is also the first time that operando single-cell SOH diagnosis was applied 
to a battery with LFP-based cells. These results underline that the new 
algorithm is a promising approach towards battery state diagnosis. 
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Fig. 8. Comparison of the operando single-cell SOH (new algorithm) with the 
SOH obtained in the reference performance tests. Each data point corresponds 
to one single cell at one of three points in time (beginning, middle, and end of 
cycling test). The dashed line is a guide to the eye, it corresponds to exact 
agreement between the two data sets. The average values, shown as black 
symbols, show a good accuracy (MAESOH of 1.95 SOH-%), as do the single-cell 
values (MAESOH over all data points of 2.09 SOH-%) of the new algorithm, 
compared to the RPT. Note that we define the SOH relative to the nominal 
capacity (here: CN = 50 Ah) which is identical for all cells. 
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