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Abstract: This paper provides a comprehensive overview of approaches to the determination of
isocontours and isosurfaces from given data sets. Different algorithms are reported in the literature
for this purpose, which originate from various application areas, such as computer graphics or
medical imaging procedures. In all these applications, the challenge is to extract surfaces with a
specific isovalue from a given characteristic, so called isosurfaces. These different application areas
have given rise to solution approaches that all solve the problem of isocontouring in their own
way. Based on the literature, the following four dominant methods can be identified: the marching
cubes algorithms, the tessellation-based algorithms, the surface nets algorithms and the ray tracing
algorithms. With regard to their application, it can be seen that the methods are mainly used in the
fields of medical imaging, computer graphics and the visualization of simulation results. In our
work, we provide a broad and compact overview of the common methods that are currently used
in terms of isocontouring with respect to certain criteria and their individual limitations. In this
context, we discuss the individual methods and identify possible future research directions in the
field of isocontouring.

Keywords: isocontours; isosurfaces; isocontouring; level set; contour lines; computer graphics; image
processing; marching cubes; marching tetrahedra; surface nets; ray tracing; tessellation
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1. Introduction

In many scientific areas, one is interested in identifying, from a set of given data,
those that have a constant value. A classic field of application here is cartography for the
representation of lines of different levels. These are represented as so-called contour lines
on a two-dimensional plane (in this case, a map). In this context, the contour lines represent
height levels that have the same value in relation to a defined reference level. This approach
enables information from three-dimensional space to be graphically illustrated in a compact
form and the characteristics of the existing data set to be visualized appropriately.

In practice, however, it is easy to see that this type of problem is not limited to geogra-
phy but can be found in many different areas. These include, for example, medical imaging,
image processing or the creation of weather maps. In most cases, three-dimensional or
four-dimensional data sets are examined in order to extract two-dimensional isocontours
or three-dimensional isosurfaces. Regardless of the particular application, however, the
overarching task of iscontour extraction is mathematically identical, which can be defined
in principle as follows, based on [1].
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Definition 1 (Isocontour extraction). Let U ⊆ Rn and V ⊆ Rm be sets with n, m ∈ N\{0} and
corresponding mapping ϕ : U → V. Consider a given sample set D = U × V over ϕ : U → V
and a constant value v ∈ V; then, find the set S ⊆ U so that ϕ(s)− v = 0, ∀s ∈ S applies. The
set S is referred to as the isocontour.

The task described in Definition 1 is qualitatively illustrated in this context in Figure 1.
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Figure 1. Exemplary isocontour extraction considering the Peaks function denoted as ϕ(x1, x2) from
MATLAB© for constant values v1, v2.

For a given mapping ϕ : R2 → R (here, the Peaks function of the MATLAB© software
environment), the sets S1 and S2 for which ϕ(s1) − v1 = 0, ∀s1 ∈ S1, ϕ(s2) − v2 = 0,
∀s2 ∈ S2, respectively, applies are to be identified. The results are then the according iso-
contours.

In our work, we focus on methods that are relevant to the task described in Definition 1
and are referred to as isocontouring methods in the following. When analyzing research
carried out in this area, it first becomes apparent that the problem, as described at the
beginning, occurs in different application areas. As a result, methods have been developed
that solve the isocontouring problem in their own way for each specific application. This is
particularly related to the structure of the available data. For example, medical applications
often use pixel-based and structured data sets from which isosurfaces must be extracted. In
the context of measurement series, on the other hand, unstructured data sets often occur,
which require a different solution approach for the extraction of isosurfaces. In addition,
the presentation of the results plays an important role in the respective methods used.

Based on our investigations in this area, it can be stated that the methods for isosurface
extraction can be classified into four dominant representatives:

• Marching cubes algorithms;
• Tessellation-based algorithms;
• Surface nets algorithms; and
• Ray tracing algorithms.

These groups are the subject of our investigation and will be examined in more detail
in the further course of the paper.
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2. Marching Squares and Marching Cubes Algorithms

The marching cubes algorithm (MC) was introduced in [2] by W. E. Lorensen and H. E.
Cline to find isovalues in medical imaging techniques such as magnetic resonance imaging
(MRI), computed tomography scans (CT scan) and single-photon emission computed
tomography (SPECT). Therefore, the initial data can be interpreted as pixels in a three-
dimensional picture. A schematic representation of the data is shown in Figure 2. The k
dimension represents the individual pictures, where the position of each pixel within one
slice is represented by i and j. Hence, the cube presented in Figure 2 is constructed by four
opposing pixels in two neighboring slices.
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(i, j + 1, k)

(i + 1, j + 1, k)

(i + 1, j, k)

(i, j, k)

(i, j + 1, k + 1)
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(i + 1, j + 1, k)

(i, j + 1, k)
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Slice k
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Figure 2. Initial data structure for marching cubes algorithm based on [2].

To be able to interpret the data in a medical context, points of equal value must be
found. This value can represent a specific tissue density, for example, so that the result
of the analysis yields the three-dimensional surface of individual parts of the scan. The
marching cubes algorithm follows a divide-and-conquer approach, where each cube is
analyzed individually, resulting in small triangles of the surface that, when put together,
reconstruct the surface formed by the isovalue. The first step is to mark all vertices of the
individual cubes that have a value smaller than, equal to or greater than the isovalue of
interest. Since a cube has eight vertices, which themselves can have two states, 256 patterns
are possible. Using the symmetries between the individual cases, only 14 different general
cases are necessary according to [2]. Cubes where all vertices have values smaller or greater
than the isovalue are outside or inside the surface, do not contribute to the surface itself and
thus must not be considered in the further process. All other combinations do contribute
and are investigated in the following steps. In Figure 3, the different combinations are
shown. Here, the highlighted triangles in the individual cubes are part of the surface.

Based on the values of the cube vertices, the position of the point of the isovalue
on the edges of the cube can be determined by linear interpolation. The final step of the
proposed algorithm uses the interpolated points, the vertices of the cube under investigation
and the vertices of the neighboring cubes to calculate the unit normal used for Gourard-
shaded images. This is not necessary for the interpolation itself but for the imaging and
the subsequent medical analysis. To calculate the unit normal of the density D on each
interpolated vertex, first, the normal at the cube vertices is calculated in the x, y and z
directions. For this purpose, the density gradient G is calculated, using the expressions
presented in Equations (1)–(3). The distance between two pixels in the same slice is ∆x and
∆y, while the distance between two slices is ∆z.
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Gx(i, j, k) =
D(i + 1, j, k)− D(i − 1, j, k)

∆x
(1)

Gy(i, j, k) =
D(i + 1, j, k)− D(i − 1, j, k)

∆y
(2)

Gz(i, j, k) =
D(i + 1, j, k)− D(i − 1, j, k)

∆z
(3)

After calculating the gradient at the cube vertices, the gradient at the isovalue vertices
can be determined using linear interpolation. Since the component of the gradient vector
in the tangential direction of the isovalue surface is always zero, the gradient vector itself
represents a normal vector of the respective vertex. In Figure 4, an example is depicted
where the gradients of the cube vertices are known and yield the normal unit vectors at the
vertices of the isovalue triangle.

Figure 3. Basic types of triangulated cubes based on [2].

Data Cube

Surface
triangle

Interpolated
vertex normal

Precalculated
grid point normal

Figure 4. Unit normal vector calculation at vertices of isovalue surfaces based on [3].

The original marching cubes algorithm is the subject of various other scientific works.
Authors P. Shirley and A. Tuchman propose, in [4], a method to decompose the cubes into
tetrahedral cells before linearization, to increase the calculation efficiency. A problem in the
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original algorithm is the ambiguities of the 14 patterns depicted in Figure 3. This eventually
leads to erroneous artifacts in the resulting three-dimensional object. The Asymptotic
Decider, by G. M. Nielson and B. Hamann, proposed in [5], aims to achieve exact solutions.
Hyperbolas are used to determine the exact solutions for ambiguous cases. On the other
hand, E. Chernyaev proposes 33 patterns in [6] instead of 14 to fully describe all necessary
patterns in the marching cubes 33 algorithm (MC33). In [7], B. K. Natarajan shows the
ambiguities of the isosurfaces inside the cubes. To obtain definite solutions, an extension of
the original algorithm is proposed that recognizes the shape of the interpolation surface.
For this purpose, decision paths are implemented that recognize and correctly assign
saddle surfaces. Another approach to deal with erroneous parts in the surface is presented
in [8] by X. Wang et al. The improvement is implemented by combining the surface
results of adjacent individual cubes to determine the final shape. The algorithm detects
common edges and uses this information throughout the whole surface generation process.
Further improvements regarding the computation time of the algorithm are proposed by
C. Henn et al. in [3]. Instead of calculating and storing the normal unit vectors in Cartesian
coordinates, discretized polar coordinates are proposed. Since the length of the normal unit
vectors is not needed in the later process, in polar coordinates, only two coordinates are
necessary to receive all relevant information. In addition, the use of floating point numbers
is omitted and, instead, the discretization of the space angles is proposed to reduce the
memory requirements. Z. Xu et al. also introduce improvements to the calculation time
in [9] by eliminating linearization and using the centroid of the cubes instead. According to
the authors, this is permissible for high-resolution data spaces. In addition, calculations
of cube vertices that are already calculated are omitted and edges are combined under
special conditions, yielding an overall reduced calculation load. First named by G. Nielson
in [10], the dual marching cubes algorithm (DMC) enables a higher resolution of the surface.
The triangles created by the original algorithm are used to construct new surface patches.
The new patches are formed using the centroids of four adjacent marching cube triangles,
forming a new surface mesh. Authors S. Gong and T. S. Newman improve, in [11], the
performance for two-dimensional data. R. Grosso and D. Zint enable, in [12], the algorithm
to be calculated in parallel. Furthermore, to enable the algorithm to detect sharp edges
within a cube, S. Gong and T. S. Newman implement, in [13,14], an extension of the
marching cubes algorithm. Neighboring cubes are taken into account to detect sharp edges
within one cube and the creation of the isosurface triangles is adopted accordingly. Another
problem in the original algorithm is surface construction using too small or sharp triangles.
This issue is solved by S. Raman and R. Wenger in [15] by taking cube vertices into account
that are equal to the isovalue. This eventually leads to more patterns than the original 14
but yields a more robust surface construction. In [16], L. Custodio et al. apply the same
approach to the marching cubes 33 algorithm. A further improvement in the reconstructed
surface can be achieved, according to S. Gong and T. S. Newman in [17], by comparing the
value of the estimated voxel with the original voxel. If deviations occur, a post-processing
step can adjust the estimated voxel so that the original data are matched. Measured data
that are subject to noise are the focus of the work of Y. He et al. in [18], where probability
theory is used to improve the isovaluing result of noisy input data. Further literature for
the marching cubes algorithm can be found in [19], while a compact summary of marching
cubes algorithms can be obtained from Table 1.
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Table 1. Summary of marching cubes algorithms.

Authors Year Structured Unstructured Quality 2D 3D

Lorensen, W. et al. [2] 1987 • visual inspection •
Shirley, P. et al. [4] 1990 • visual inspection •
Nielson, G. et al. [5] 1991 • •
Natarajan, B. [7] 1994 • comparison with MC and Greedy •
Chernyaev, E. [6] 1995 • •
Henn, C. et al. [3] 1996 • visual inspection •
Nielson, G. [10] 2004 • visual inspection •
Raman, S. et al. [15] 2008 • calculation time and memory requirement
Xu, Z. et al. [9] 2010 • calculation time and memory requirement •
Gong, S. et al. [13] 2013 • comparison with original MC •
He, Y. et al. [18] 2015 • visual inspection •
Gong, S. et al. [11] 2016 • comparison with original MC •
Gong, S. et al. [17] 2017 • comparison with original MC •
Gong, S. et al. [14] 2018 • comparison with original MC •
Custodio, L. et al. [16] 2019 • comparison with original MC •
Wang, X. et al. [8] 2021 • calculation time and memory requirement •
Grosso, R. et al. [12] 2021 • calculation time and deviation •

3. Tessellation-Based Algorithms

Tessellation-based algorithms have their origins in representing the inner surfaces
of three-dimensional objects. For the first time, B. A. Payne and A. W. Toga introduced a
tessellation-based method in [20], which aims to display the inner surfaces and functions of
a human brain. This requires the outer surface, the subcortex, to be removed. To do this, a
volume, the so-called minimum distance field, is first determined, where each point within
the volume is assigned the minimum distance to the nearest point on the cortical surface as
a value. The thresholding of the volume is then performed so that a set of surfaces with a
constant minimum distance to the cortex is created. Then, the surface elements generated
by thresholding are divided into connected components so that the desired inner surfaces
are separated from the surfaces equidistant from the brain. The authors use a modified
marching cubes algorithm for thresholding. Since the marching cubes algorithm can lead
to ambiguous situations that can lead to topologically unconnected surfaces, each cube is
divided into five tetrahedra and each tetrahedron through which the surface passes is then
polygonized. As previously mentioned, the basic idea of building cubes of eight pixels each
over two neighboring slices is therefore initially based on the marching cubes algorithm.
In [20], the authors show that, apart from possible holes at the edges of the sampled field,
the method produces topologically correct, closed surfaces that can then be subjected to
both quantitative analysis and rendering.

In [21], J. Bloomenthal describes an algorithm for the polygonization of implicit
surfaces. In the method, an initial cube is first centered on a surface point and then a
new cube is generated on each face that contains corners with opposite polarity. If the
entire surface contains cubes, the surface in each cube is approximated by one or two
polygons. To do this, the cube is divided into five tetrahedra, which are then polygonized.
The polygonization is based on a table that has an entry for every possible configuration.
In contrast to the 256 entries with possible configurations in the marching cubes algorithm,
there are only 16 entries when using tetrahedra. Each tetrahedral configuration produces
either nothing, a triangle or a quadrilateral, i.e., two triangles, as shown in Figure 5.

In [22], A. Guéziec and R. Hummel present an approach, based on the algorithm of B.
A. Payne and A. W. Toga, for the fast and efficient extraction and visualization of surfaces
defined as isosurfaces in three-dimensional interpolated data. The surface is extracted as
a collection of closed triangles, where each triangle is an oriented closed curve within a
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single tetrahedron. Thus, the entire surface is wrapped with triangles. A. Guéziec and R.
Hummel have extended the algorithm in [23,24] in terms of surface simplification and the
necessary memory capacity.

Positive function

Negative function

Surface vertex

(a)
Positive function

Negative function

Surface vertex

(b)

Figure 5. The two types of possible tetrahedral configurations based on [21]; (a) triangle, (b) quadrilateral.

Y. Zhou et al. clarify in [25] that, despite the decomposition of the cubes into tetrahedra,
the ambiguity problem has not yet been solved. Therefore, the authors propose a method
of determining the intersection points and a criterion to test the intersection between the
isosurface and the edge of the tetrahedron, which are based on the assumption that the
function is linear along the edge of a cube. However, the authors deduce in [25] that there
is a quadratic variation in the function value f (t) along the triangle edge t, as can be seen
in Equation (4).

f (t) = c0 + c1t + c2t2, t ∈ [0, 1] (4)

The values for c0, c1 and c2 are determined by the function values at the vertices. If
one or both zeros of the function

c2t2 + c1t + c0 − C = 0

are an element of the interval [0, 1], the isocontour with the isovalue C intersects the triangle
edge. In addition, the connection of intersection points in the tetrahedra to construct the
polygons and the triangulation of the polygons are discussed. They show that, with the
proposed method, the isosurfaces are independent of the exact distribution of the tetrahedra
resulting from the decomposition of the cubes.

In [26], G. M. Nielson and R. Franke present an algorithm that computes a triangulated
surface that separates a collection of data points segmented into several different classes
instead of only two. The algorithm can be used for both structured, rectilinear and scattered
data sets. For tetrahedrization, each cell is decomposed into five or six tetrahedra for
structured data sets, while tetrahedrization is assumed for scattered data sets. However,
the algorithm assumes that the data are already segmented.

Authors K. S. Bonnell et al. describe, in [27], a new algorithm for the reconstruction
of material interfaces from data sets with volume fractions. The algorithm is based on
a dual tetrahedral mesh constructed from the original mesh, where each vertex in the
dual mesh is assigned an associated barycentric coordinate representing a fraction of each
material present. The material boundaries are determined by mapping a tetrahedron into
barycentric space and calculating the intersection points with Voronoi cells in barycentric
space. These intersections are then mapped back into the original physical space and
triangulated to approximate the surface boundary.

The so-called marching tetrahedra algorithm (MT) was developed and improved in
parallel to the polygonization method already presented, where cubes are divided into
tetrahedra. This method is also based on the basic idea of the marching cubes algorithm,
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but, unlike the polygonization method described above, it does not first create cubes, which
are then divided into triangles, but the grid is divided directly into triangles. In the new
method, which was first presented by S. L. Chan and E. O. Purisima in [28], the space is
divided directly into tetrahedra to create a regular and symmetrical tessellation. This can
be achieved by using a space-centered cubic grid, as shown in Figure 6. In this way, all
tetrahedra have the same shape, even if they differ in orientation.

B
F

A
E

D

C

Figure 6. Tessellation scheme for the marching tetrahedra algorithm based on the space-centered
cubic lattice based on [28].

The tetrahedra thus obtained have two different types of edges, the longer ones, i.e.,
AB and CD, and the shorter ones, i.e., AC, AD, BC and BD, as shown in Figure 6. Each
long edge is used in four tetrahedra and each short edge is used in six. In contrast to the
15 ways in which the surface can intersect a cube, there are only four with the tetrahedrons
constructed in this way. The first case is that all vertices have the same state and the surface
therefore does not intersect the tetrahedron. If one vertex has a different state from the
other three, the surface can be constructed parallel to the triangle formed by the three
vertices. If two vertices have the same state, there are two ways in which the surface can
intersect the tetrahedron, whereby a quadrilateral surface element can be formed for both
cases. The two cases are that the identical vertices can be connected either with a short or
with a long edge. Another advantage is that the sampling efficiency is improved compared
to using the standard cubic grid. However, the space-centered cubic grid is not available
per se for applications that include a scan, so the values in the center of each cube must
be interpolated.

In [29], S. L. Chan and E. O. Purisima extend the marching tetrahedra algorithm for
the generation and triangulation of molecular surfaces. The triangulated surface generated
in this way can be used both for molecular graphic display and for boundary element
continuum dielectric calculations. T. Lu and F. Chen present, in [30], an algorithm that has
been improved in terms of computing time and employ it for a quantitative analysis of
molecular surfaces.

As an extension to the original marching tetrahedra algorithm, authors G. M. Treece et
al. proposed the regularized marching tetrahedra algorithm in [31]. The method combines
the marching tetrahedra algorithm with the vertex clustering algorithm so that isosurfaces
are generated that match the data topologically and, at the same time, contain an appro-
priate number of triangles with improved aspect ratios for the sampling resolution. This
significantly reduces the number of triangles used to represent the surface and improves
the smooth, shaded representation of the surface. The surface triangulations generated
using the method are presented for implicit surfaces, medical data with thresholds and
surfaces created from object cross-sections.

In [32], A. Cong et al. propose the mulitregional marching tetrahedra method, which
is used for the extraction of surface and volume meshes from segmented CT, micro-CT or
MRI image volumes of a small experimental animal. The method is used to extract the
triangulated surface mesh and construct a volumetric mesh for all anatomical components
within a sweep over all segmented CT slices. Since the volume of all components is meshed
with a finite element mesh, it can be used directly for finite element calculations. In addition,
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compared to the marching tetrahedra method, two further cases are considered during
surface extraction within the tetrahedra and a seamless transition between anatomical
components is ensured. The surface is then smoothed and simplified without losing the
seamless transition. The method is used by the authors in bioluminescence tomography.

In [33], G. M. Nielson presents a further extension of the classical marching tetrahedra
method, the dual marching tetrahedra method. The method is a generalization of the cuber-
ille method from cubes to tetrahedra and is used to render surfaces in a three-dimensional
space. The dual marching tetrahedra method solves a fundamental problem in the original
cuberille method, in which the separating surfaces are not necessarily manifolds. The
method can be used for both structured and unstructured point clouds.

V. d’Otreppe et al. use the marching tetrahedra method to generate smooth surface
meshes from multi-region medical images. For this purpose, the marching tetrahedra
method is extended in [34] for use in multi-domain data, so that multi-region meshes are
generated as a set of triangular surface pieces that consistently connect to each other at the
material boundaries, combined with a method for the reconstruction of implicit surfaces.
With this mesh generation strategy, it is possible to produce surface meshes using triangles
from segmented medical data sets with multiple tissues. In addition, the terracing artifacts
are avoided by the smooth description of the tissue boundaries before triangulation.

T. Shen et al. pursue a deep learning approach for high-resolution three-dimensional
shape synthesis in [35], where the marching tetrahedra method is integrated into the deep
learning framework. In the proposed approach, implicit and explicit surface representations
are combined and the quality of shape synthesis is improved by the additional supervision
defined directly on the extracted surface from the implicit field.

Further research on the use of the marching tetrahedra method in the field of geological
modeling can be found in [36,37].

Another approach to determining isocontours in the field of tessellation-based algo-
rithms comprises methods incorporating the triangulation of the point cloud to be analyzed.
In [38], C. L. Bajaj et al. present a fast isocontouring algorithm for scalar volume data. In a
preprocessing step, seed cells are selected so that at least one cell per connected component
of each isocontour is present. For the given isovalue, all cells of the previously defined seed
cells that intersect the isocontour are then extracted. This leads to a significant reduction in
calculation complexity.

Another mesh-based method of approximating isocontours in a three-dimensional
scalar field is the RooTri() function, introduced by J. Oellerich et al. in [39]. A specific
feature of the proposed algorithm is that unstructured three-dimensional point clouds
can be processed. Furthermore, intersection points with an arbitrarily oriented plane
can be determined. First, the unstructured three-dimensional point cloud is projected
onto a two-dimensional plane so that the third component describing the variable under
investigation is neglected for each point. The point cloud is then triangulated using
Delaunay triangulation. Subsequently, each triangular vertex, i.e., each point from the
point cloud, is again supplemented by the corresponding third component. This creates a
three-dimensional, triangulated surface, as shown in Figure 7.

Next, the method verifies whether there is an intersection point with the plane for
each triangle generated in this way. To do this, we proceed as shown in Figure 8 for each
triangle, interpolating linearly between the vertices v1, v2 and v3.

Using the vertices vj (or the edge midpoints aj), j ∈ {1, 2, 3} of the k-th triangle, it is
possible to set up the vectors tj, j ∈ {1, 2, 3}, as in Equations (5)–(7).

tk
1 = vk

1 + λ(vk
2 − vk

1) = vk
1 + λqk

1 (5)

tk
2 = vk

2 + λ(vk
3 − vk

2) = vk
2 + λqk

2 (6)

tk
3 = vk

3 + λ(vk
1 − vk

3) = vk
3 + λqk

3. (7)

Here, λ ∈ [0, 1] applies. Inserting the plane in coordinate form
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P : ax + by + cz = d

and solving for lambda leads to

λ =
d − (a vk

j,x + b vk
j,y + c vk

j,z)

a qk
j,x + b qk

j,y + c qk
j,z

. (8)

Substituting λ from Equation (8) into Equations (5)–(7) results in the coordinates

sk
j = tk

j (λ
∗)

of the intersection point. If λ∗ is an element of the interval [0, 1], it is a valid intersection
point. The code is implemented by the authors in vectorized form, which significantly
increases the performance of the algorithm, although each triangle must be checked for
intersection points. The validity of the algorithm is checked by comparing it with the
contourc() function provided by MATLAB©. In addition to the quality of the results
obtained, the number of intersections calculated, the time required and the estimated
memory requirements are moreover considered for various functions. In addition to the
significantly higher quality of the intersection points, RooTri() also has a significantly
greater number of intersection points, which simplifies the determination of connected
isocontours. Furthermore, RooTri() is, on average, 12.85 % faster than contourc() and
requires only half the memory. The use of the algorithm is not limited to the analysis
of functions, but it can also be used in the evaluation of unstructured data, such as in
measurements. In [39], the algorithm was used to evaluate the measurement results of a
permanently excited synchronous machine. Equipotential lines of constant torque were
determined. Another use case of the algorithm is topology optimization, which is a subarea
of structural optimization. The aim here is to find a suitable material distribution within
a given design domain. With the help of RooTri(), zeros of a higher-dimensional scalar
function can be determined that correspond to the material boundary.

Research on the extraction and compression of hierarchical isocontours from image
data using dynamic tessellation can be reviewed in the papers [40,41] of T. Lewiner et al.
In [42], a computational framework for two-dimensional shape-enclosing contours based
on the application of Delaunay tessellation is presented by B. R. Schlei. Research on the use
of tessellation-based methods for terrain models and topography can be found in [43,44].
A summary of the tessellation-based algorithms cited in this work can be found in Table 2.

Table 2. Summary of tessellation-based algorithms.

Authors Year Structured Unstructured Quality 2D 3D

Payne, B. A. & Toga, A. W. [20] 1990 • •
Bloomenthal, J. [21] 1994 • •
Guéziec, A. & Hummel, R. [22–24] 1994/1995 • visual inspection •
Zhou, Y. et al. [25] 1995 • visual inspection •
Bajaj, C. L. et al. [38] 1996 • • visual inspection • •
Nielson, G. M. & Franke, R. [26] 1997 • (•) visual inspection •
Chan, S. L. & Purisima, E. O. [28,29] 1998 • visual inspection •
Treece, G. M. et al. [31] 1999 • comparison of required time with MC, MT •
Bonnell, K. S. et al. [27] 2000 • visual inspection •
Cong, A. et al. [32] 2005 • visual inspection •
Nielson, G. M. [33] 2008 • • •
d’Otreppe, V. et al. [34] 2012 • visual inspection •
Shen, T. et al. [35] 2021 • •
Oellerich, J. et al. [39] 2023 • • statistical test procedure •
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Figure 7. Basic approach of the RooTri() function from [39]: ➀ three-dimensional point cloud P and
defined contour level, ➁ projection of the point cloud onto the original plane to obtain the set P ′,
➂ Delaunay triangulation of the point cloud to receive triangle set K, ➃ re-adding the z-component
to each triangle vertex k ∈ K.
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Figure 8. Calculation of intersection points for each triangle k ∈ K from [39].

4. Surface Nets Algorithms

The surface nets algorithm was first presented by S. F. F. Gibson in [45] for the creation
of a globally smooth surface model from a set of three-dimensional data points. The
method is commonly used in computer graphics, e.g., medical imaging, and computational
geometry to create smooth surfaces from binary segmented data. The advantage of this
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method is its simplicity and effectiveness, which makes it a popular choice for the creation of
surface models from structured three-dimensional point clouds, such as binary-segmented
MRI or CT image volumes. However, it may not always produce the most accurate or
detailed meshes, especially in regions with complex geometry or high curvature. Overall,
this method follows a similar approach to the marching cubes algorithm in the initial steps.
Nevertheless, the two methods differ with regard to the exact determination of the surface
area within a cube.

The basic idea of the surface nets algorithm is to link the surface nodes of the binary-
segmented volume and relax the node positions within a given dimension in such a way
that a smooth surface is generated. The linked surface nodes form the surface nets. To
generate the surface net, the first step is to find the surface nodes in the data. To do this, the
three-dimensional point cloud is first divided into cubes with eight voxels each. If all eight
voxels have the same binary value, this means that the cube is either completely inside or
outside the object. If at least one voxel has a different binary value from its neighbors, then
the surface travels through this cube. A node is placed in the centroid of all cubes through
which the surface travels and connected to the node in the neighboring surface cubes to
create the surface net; see Figure 9a. One node can thereby have up to six connections.
The positions of the nodes of the surface net are then iteratively relaxed so that an energy
measure in the links is reduced. Here, the energy E is determined in [46] by the sum of the
length of the connections between the nodes within a surface net, as shown in Equation (9).

E = ∑
n
∥(x1, y1, z1)− (x2, y2, z2)∥ (9)

In this connection, (x1, y1, z1) and (x2, y2, z2) describe the two linked nodes and n
represents all links within a surface net. Subsequently, the total energy is reduced by
reducing the length of all links in a surface net and a local minimum of energy is achieved by
moving the nodes to a position between two neighboring nodes, as shown in Equation (10)
for node i.

(xi, yi, zi) =
1
Ni

(
Ni

∑
j=1

xj,
Ni

∑
j=1

yj,
Ni

∑
j=1

zj

)
(10)

The number of neighboring links for node i is described here via Ni. However, a node
can only be moved within the surface cube in which it was defined, in order to remain true
to the original segmentation; see Figure 9b. This makes it possible to reduce the aliasing and
terracing artifacts on the surface. In contrast to the marching cubes algorithm, the surfaces
in the surface nets algorithm are not drawn arbitrarily through the surface cubes, which
have identical elements at the opposite corners. In marching cubes, there are two different
ways in which the surface can run through the cube, which leads to topologically different
surfaces; see Figure 9➀,➁. One of the two possibilities is chosen arbitrarily. In surface nets,
the surface is pinched at the net node, whereby the surface is neither divided nor connected;
see Figure 9➂. Since the topological decision is not made arbitrarily, it is possible that
higher-level algorithms can be used to separate or connect the surface at the ambiguous
points after smoothing. S. F. F. Gibson shows, in [45], that the surface nets algorithm is
capable of generating relatively smooth surfaces for curved objects and sharp corners
for rectangular objects, as well as obtaining thin structures and cracks. The smoothed
surface net can then be triangulated to create a three-dimensional surface model. To render
these surfaces, distance maps are determined from the triangulated surface, which can be
determined from the distance of the respective point from the distance map to the next
surface triangle. S. F. F. Gibson later patented the approach for the calculation of isosurfaces
from binary-segmented data and the subsequent smoothing of these surfaces in [46].

In [47], S. F. F. Gibson used the distance maps generated with the surface nets algorithm
to comprehensively demonstrate its quality and effectiveness for surface reconstruction in
sampled volumetric data. This is shown primarily using the example of medical images
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from MRI or CT data. For this purpose, the values for the distance to the nearest surface
are mapped to each sample point and the surface is reconstructed using the zero value of
the distance map.

(a) (b)

1 2 3

Figure 9. Qualitative illustration of the surface nets algorithm based on [45]. (a) The underlying net
with linked surface nodes in the center of each surface cube. (b) The relaxed net with smoothed out
terraces. ➀ and ➁ Possible surface constructions for a two-dimensional surface cube with matched
diagonal elements, whereby one of the two topologies is selected arbitrarily in marching cubes. ➂ In
surface nets, the surface is pinched together at the ambiguous node point.

M. E. Leventon and S. F. F. Gibson present, in [48], the dual surface nets algorithm,
which combines two orthogonal scans. In this way, a model can be generated with a higher
resolution than with both scans alone. This reduces the most severe artifacts, caused by
a low sampling rate between image slices of a scan, which is important in the field of
medical diagnosis, treatment, surgical guidance and surgical simulation. To achieve this,
the two scans are first registered to each other and then a net of connected surface nodes is
initialized for each of the two scans.

An extension of the surface nets algorithm with regard to the quality of the triangular
mesh is proposed in [49] by the authors P. W. de Bruin et al. The increase in mesh quality is
achieved by first moving the nodes in the direction of the isosurface and then distributing
them as evenly as possible. The high quality of the triangular mesh is important for a finite
element analysis, which is also used in the field of surgical simulations for the calculation of
soft tissue deformations. The mesh is generated from MRI or CT image data. The authors
conclude that the meshes generated with the extended surface nets algorithm are better
suited for finite element modeling than those generated with a marching cubes algorithm.

In [50], J. S. H. Baxter et al. demonstrate a unified framework for voxel classification
and triangulation for medical images, allowing surface meshes for different anatomical
structures to be generated in one process. In the proposed method, for volumetric data, the
voxels are labeled by a two-dimensional classification function based on the voxel intensity
and gradient. The surface nets algorithm, which is modified with respect to the reduction
of image artifacts and a relaxation criterion for the surface nodes, is integrated into the
classification function. Thus, the method enables the fast visualization of a suitable surface
model of the anatomical structure.

In [51], S. F. F. Frisken extends the original three-dimensional surface nets algorithm
for medical images consisting of several materials represented as indexed labels. The author
states that the presented extension of the surface nets algorithm produces smooth, high-
quality triangle meshes that are suitable for rendering and tetrahedralization and preserves
the topology and sharp boundaries between materials. The method also guarantees user-
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defined accuracy and ensures efficient processing. Further research work and application
examples for the surface nets algorithm can be found in [52–54]. A summary of the main
results regarding the surface nets algorithms can be found in Table 3.

Table 3. Summary of surface nets algorithms.

Authors Year Structured Unstructured Quality 2D 3D

Gibson, S. F. F. [45] 1998 • visual inspection • •
Gibson, S. F. F. [47] 1998 • visual inspection • •
Leventon, M. E. & Gibson, S. F. F. [48] 1999 • visual inspection •
de Bruin, P. W. et al. [49] 2000 • comparison with MC •
Baxter, J. S. H. et al. [50] 2011 • •
Frisken, S. F. [51] 2022 • visual inspection •

5. Ray Tracing Algorithms

In connection with the algorithms described previously, a related class of methods
is often used for the visual representation of primarily three-dimensional scenes. The so-
called ray tracing techniques are a frequently used method in the field of computer graphics
for the generation of realistic light and shadow effects and thus contribute to a realistic
representation of three-dimensional objects, as is the case with rendering, for example.
Accordingly, the calculation of the isosurfaces precedes the application of ray tracing,
but this method certainly offers added value with regard to the visual representation of
simulation results, for instance. The basic idea of ray tracing is to expose the (previously
calculated) isosurfaces to artificial light rays from a virtual light source and to observe
the course of the light rays in order to determine the lighting conditions in the image;
see Figure 10.

In the first step, the image is divided into pixels, whereby a ray is generated for each
pixel of the image. Here, the ray is described by a parameterized line in Equation (11),
which is defined by two points x1, x2 ∈ Rd, d ∈ {2, 3} and a scaling factor λ ∈ R [55].

p(λ) = (1 − λ)x1 + λx2 (11)

This ray then travels from the viewer through the pixel into the respective scene and
represents the viewer’s line of sight. The generated rays are of particular importance in this
context, as they are used to calculate the light and shadow ratios. The rays are followed
as they propagate through the scene and their interaction with the objects in the scene is
observed. Here, we are particularly interested in where the ray intersects the corresponding
scene. In the event that the ray has crossed an object in the scene, it is then checked whether
this point is in shadow. This is done by determining whether the point is illuminated by
a light source. If, for example, an obstacle blocks the direct connecting line between the
point and the light source, the point is in the shadow. In the event that the point is not in
shadow, lighting calculations are subsequently carried out that take into account, among
other aspects, the incident ambient light and the effects caused by the irradiation of direct
and indirect light resulting from reflections. Other influencing variables in this context
are, for example, the surface properties, which take into account the respective color tones
and the reflexion coefficients. The stored reflexion coefficients can be used to determine
whether the ray hits a reflective surface. If this is the case, a new reflexion ray is generated
and the entire process is repeated for this ray. For transparent materials, on the other hand,
a refracted ray is generated. The calculated color values for each ray are accumulated to
obtain the final color value for the pixel. In the event that reflections or refractions occur, the
described process is continued recursively, which means that, for each reflected or refracted
ray, the ray tracing process is performed again. The entire process is then repeated for each
pixel on the image surface to obtain the final image. As mentioned above, the ray tracing
method offers the possibility of displaying realistic scenes. However, this is counteracted
by the high level of computational effort.
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Figure 10. Qualitative illustration of the ray tracing method based on [55].

In this context, it can be stated that the technique of ray tracing is the subject of current
research work, with the first preliminary work in this field having been carried out by
A. Appel [56] and intensified in the 1980s, especially by T. Whitted [57]. At that time,
the potential of the method was already recognized, but it was hindered by the intensive
computational effort required. For this reason, the initial research work in this field focused
on developing approaches to reduce the computational cost. For example, J. Amanatides
and A. Woo present, in [58], a simplified method to reduce the computational effort and
introduce an incremental transversal algorithm; see Figure 11. The idea is to first identify
the voxel in which the ray origin lies and then determine the value at which the ray passes
the boundary of the first vertical voxel.

x

y

Ray

Grid

a b

c d e f

g h i j

Figure 11. Grid traversed by a ray based on [58]; ray visits voxels from a to j.

An identical step is performed for the other spatial direction. The minimum of both
calculated values then indicates the extent to which it is possible to move along the beam
without leaving the voxel.

In their work, the authors S. Parker et al. show how the isosurface of an object can be
determined using the ray tracing method on the basis of analytical approaches [59]. The ray
under consideration is interpreted as a vector. Each cell is checked to determine whether its
data range is bounded by a defined isovalue. If this is the case, an analytical calculation is
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performed to determine the ray parameter t that defines the intersection point. The entire
procedure is then carried out for all cells. To validate the procedure, the authors apply the
method developed to the Visible Woman data set [60].

Y. Livnat and C. Hansen present, in [61], a ray tracing method to visualize the polygo-
nal isosurface of the visible part of the isosurface. In the first phase, coarse visibility tests
are performed to identify the visible cells. The visible parts of the extracted triangles are
then resolved and processed by the graphics hardware.

The possible integration of implicit kd-trees ([62], p. 99) for the determination of the
isosurface and simultaneous rendering is presented by I. Wald et al. in [63]. Here, Figure 12
illustrates the method.

(a) (b)

Figure 12. Application of kd-tress in ray tracing based on [63]: (a) conventional approach, (b) exploit-
ing property of kd-trees to skip large empty regions.

The idea of the approach essentially consists of two parts: on the one hand, a kd-tree
contains information about which isosurfaces are contained and a modified transversal
algorithm runs through the kd-tree and also implicitly classifies whether the corresponding
node contains the defined isovalue. This also allows large empty areas to be skipped
more quickly, which is also adressed by N. Morrical et al. in [64]. Therefore, the method
presented has the advantage that it requires less memory than conventional methods. An
extension of the approach can be found in [65]. Further applications of kd-trees can be
found in [1,66–68], for example. Another alternative for the efficient handling of large data
sets is the use of so-called octree-based, hierarchical data structures. As indicated in their
name, octrees describe the recursive decomposition of a space into eight sub-volumes (or
four cells in the two-dimensional case). The root of the octree represents the entire volume;
see Figure 13.

(a) (b)

Figure 13. Application of octrees based on [69]: (a) active cells in black, (b) corresponding octree.

Research on the use of octree-based approaches can be found in [69–72]. A. Knoll et al.
present, in [73], an approach based on an octree volume format and a traversal method that
allows the faster ray tracing of compressed scalar volume data. The method is particularly
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suitable for large volume data, whereas GPU volume renderers are preferable for smaller
volume data, according to the authors. In [74], a further development of the procedure
is described.

In [75], authors B. Nelson and R. M. Kirby develop a ray tracing isosurface algorithm
for spectral/hp element methods, which are higher-order finite element methods. The
method can be used to both quantify and minimize the visualization error that occurs.
The intersection point between the ray and the isosurface is determined on the basis of
analytical methods. The advantage of this method is that the polynomial approximation can
be adapted to the true solution as precisely as required. In addition, the convergence speed
is higher than with other classical low-order methods, such as marching cubes algorithms.

To process unstructured data sets, P. Rosenthal and L. Linsen present an approach
in [76] that is based on the use of partial differential equations (PDE). The advantage of the
method is that no resampling of the data or mesh generation is required. The authors use
the information regarding the neighborhood relationships to estimate the gradients and
mean curvature at each individual sampling point using a four-dimensional least-square
fitting approach, as these are necessary for the use of the PDE-based method.

In [77], A. Schollmeyer and B. Froehlich propose a method of determining the iso-
surface that incorporates a NURBS-based isogeometric analysis. The main aspects of the
novel approach include a ray generation scheme that only generates rays that tend to
contribute to the subsequent image creation. In addition, there is a method to determine all
intersection points of the rays with the curved surface and a solution approach for memory
management. In the course of validating the method, the authors find that the approach
that they present is both faster and more accurate than GPU-based ray casting approaches.
Further research work in the field of ray tracing can be found in [78–80]. Table 4 provides a
condensed overview of the ray tracing methods described in the literature.

Table 4. Summary of research work related to ray tracing techniques.

Authors Year Structured Unstructured Quality 2D 3D

Amanatides, J. & Woo, A. [58] 1987 • Time over grid subdivision •
Parker, S. et al. [59] 1998 • Visual inspection •
Livnat, Y. & Hansen, C. [61] 1998 • Visual inspection •
Wald, I. et al. [63] 2005 • Computational cost; visual inspection •
Knoll, A. M. et al. [73] 2006 • Computational cost; visual inspection •
Nelson, B. & Kirby, R. [75] 2006 • Root-mean-square error •
Wald, I. et al. [65] 2007 • • Computational cost; visual inspection •
Rosenthal, P. & Linsen, L. [76] 2008 • • Computaional cost; visual inspection •
Knoll, A. M. [74] 2009 • Qualitative comparison •
Schollmeyer, A. & Froehlich, B. [77] 2014 • • Computational cost; visual inspection •
Morrical, N. et al. [64] 2019 • • Performance; skipping empty regions •

6. Proposed Future Research Activities

The investigation carried out in this paper shows that the assessment of the suitability
of the algorithms presented is primarily based on a quantitative analysis in the form of a
visual representation of the results. This is mainly the consequence of the original objective
for the respective application. Another criterion that is often the subject of evaluation is the
computing capacity required, as large volumes of data are usually analyzed. This applies
in particular to ray tracing methods.

However, we note that there is no general scheme for the evaluation of the developed
algorithms according to a defined standard. We therefore propose, as future research work,
to develop and establish a standardized test procedure in order to be able to generate reliable
statements regarding the performance of the procedures to be examined with regard to the
fulfillment of the task described in Definition 1 and to create a basis for the comparison
of the individual procedures. In the field of numerics, the following categories are of
particular interest, which we propose as evaluation criteria for isocontouring methods:

• condition;
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• stability;
• consistency; and
• convergence.

6.1. Condition

The condition of the problem describes the extent to which the problem oscillates
in the event of any perturbations. This is particularly important for so-called inverse
problems, where the cause of the problem must be deduced from the effect. This often
occurs when calculating inverse matrices, where a variation in the entries of the matrix
can have a significant effect on the solution. In this context, one can also speak of ill-posed
problems. Various regularization techniques exist to mitigate these effects, such as Tikhonov
regularization [81]. However, the extent to which this category needs to be examined in
relation to isocontouring methods depends on the method proposed.

6.2. Stability

In contrast to condition, stability refers to the oscillation of the numerical algorithm
in the event of possible perturbations, i.e., how sensitively the algorithm reacts to a per-
turbation in the input parameters. An example of this would be the extent to which the
distortion of an originally structured data set affects the quality of the result.

6.3. Consistency

The consistency of the method refers to the actual solution to the original problem. If
it is assumed that the analytical solution to a problem is known, the consistency checks the
extent to which the algorithm deviates from the analytical solution if the input is exact. An
example of this would be the numerical calculation of one-dimensional zeros, whereby the
analytically known zero is passed to the procedure in order to subsequently check how
large the deviation from the target value (in this case, 0) is.

6.4. Convergence

Convergence is similar to the consistency of the algorithm and examines the extent to
which the problem is solved with perturbed input data. In the context of convergence, the
speed with which the solution is approximated is of central importance.

Although the above categories allow a standardized examination of the developed
methods, they require knowledge of the analytical solution. For this reason, we suggest
introducing suitable test functions that have an appropriate degree of complexity and whose
analytical solution is known. A possible function for two-dimensional solution sets would
be, for example, the simple parabolic function of the form f (x1, x2) = x2

1 + x2
2. In this case,

a value [x̄1, x̄2] calculated by the algorithm, which should result in a previously defined
function value v, can then be inserted into the analytical form in order to review the quality
with which the nominal value was approximated, i.e., f (x̄1, x̄2)− v = ε is calculated, with
ε being the deviation according to the nominal value. Note that the use of test functions is
common practice in the field of nonlinear optimization—for instance, in order to verify the
solution quality of developed algorithms. Examples include Himmelblau’s function [82] or
the Rosenbrock function [83]. To obtain a statistically reliable statement, a certain number
of experiments must also be carried out. Here, it is important to limit the number of
parameters to be varied in the experiments to a manageable level. In this context, the
authors J. Loeppky et al. propose, in [84], that the number of computer experiments nt to
be carried out should be determined by the relation nt ≈ 10 · nD, where nD describes the
number of parameters to be varied. Subsequent statistical evaluation can then be used to
draw conclusions about the quality of the procedure by using the arithmetic mean and the
corresponding standard deviation. However, the method that we propose requires that
the results obtained by the algorithm are available in a form that is suitable for evaluation
in the categories mentioned, such as the generation of point clouds that can be used as
raw data.
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Key aspects of the proposed method have already been successfully demonstrated
in [39] through the systematic comparison of two functions in MATLAB© for isocontouring.
The categories considered include the quality of the results achieved, taking into account
perturbations in the input data and the computing time required. Test functions were
defined in analytical form in advance in order to be able to compare the calculated results
with the exact solution in each case. With the help of the procedure, it was thus possible to
make quantitative statements with regard to the investigated aspects, in addition to the
qualitative presentation of the results.

7. Discussion

The previous sections describing the various methods reveal that they all have specific
limitations and are used in certain areas of application. Therefore, the methods are first
summarized, compared and discussed. As the methods presented were all developed and
implemented in different application areas, the algorithms are first discussed within their
method families which finally leads to a cross-method analysis.

7.1. Marching Squares and Marching Cubes Algorithms

Overall, the marching squares and marching cubes algorithms provide a robust
method to calculate isovalues within a given data set. The main application of the process
is in imaging techniques, such as for medical purposes. The original data are therefore
structured as image recordings and divided into pixels. It is not possible to vectorize the
algorithm, as the data cubes have to be analyzed individually, which has a significant
impact on the overall speed of the algorithms. Since structured data in grid form must be
available for the application of the algorithm, transferability is only possible to problems
that incorporate exactly these types of data structures. This limits the applicability of the
algorithm to predominantly imaging problems. Furthermore, the results of the marching
cubes algorithms are mainly tested using visual inspections, or, in some cases, a comparison
is carried out with the original marching cubes algorithm of W. E. Lorensen and H. E. Cline.

7.2. Tessellation-Based Algorithms

The tessellation-based algorithms are made up of several different approaches, all
of which are based on polygonization or the general use of triangles or tetrahedra. The
polygonization algorithms, and the marching tetrahedra algorithm in particular, are based
on the fundamental idea of the marching cubes algorithm and therefore originate primarily
from the field of medical imaging. However, the methods have also been extended to the
generation and triangulation of molecular surfaces, for example. These methods require
structured data but often provide topologically more correct surfaces than the marching
cubes algorithm. Mesh-based algorithms, on the other hand, originate from a different
problem-solving context, where primarily technical problems need to be solved. Structured
data are generally not available for these problems, meaning that the algorithms must also
provide results with unstructured data. This means that these algorithms could also be
used in other areas.

Thus, it can be concluded that the tessellation-based algorithms are primarily used for
structured data sets and are only occasionally used for unstructured data sets. The data
sets can be two- or three-dimensional. The quality of the various algorithms, if validation
is carried out, is predominantly analyzed via a visual inspection. The RooTri() algorithm
in [39] is an exception, as it can be used for unstructured data sets and a test routine based
on statistically sound methods is performed to evaluate the quality of the algorithm.

7.3. Surface Nets Algorithms

The general concept of the surface nets algorithm is based on the approach of the
marching cubes algorithm, whereby cubes are constructed from layered, structured data.
The method is therefore preferably used in the field of medical imaging, which provides
structured data for evaluation. In addition to medical imaging, the method is also used
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in computer geometry and offers a simple and effective procedure for the determination
of isocontours or isosurfaces. By smoothing the surfaces, the terracing effect can also be
significantly reduced. However, the method does not always produce the most accurate or
precise surface meshes, especially for complex geometries or strong curvatures. It can also
be observed that the quality of the surface nets algorithms is only evaluated by means of
visual inspection, while a comparison with the original marching cubes algorithm by W. E.
Lorensen and H. E. Cline is only carried out in one case.

7.4. Ray Tracing Algorithms

In the field of computer graphics, such as the visualization of simulation results, ray
tracing algorithms offer the possibility of generating realistic light and shadow effects for
three-dimensional scenes. However, this leads to great computational effort overall. The
method also requires predominantly structured data, although approaches that can also
process unstructured data have recently been pursued. It is found that the quality of the ray
tracing method is mainly determined by visual inspections. However, due to the overall
great computational effort of the method, the resulting computational cost of the algorithms
is also a frequently used criterion.

In summary, it can be stated that the methods were all developed from their respective
areas of application and therefore require a specific form of data, often structured data.
However, this frequently makes it difficult to transfer them to other areas of application
that provide different data. Furthermore, the assessment of the algorithm quality largely
relies on visual inspection, posing challenges in comparing different method families.

8. Conclusions

This paper provides a comprehensive overview of approaches for the determination of
isocontours and isosurfaces from given data sets. Based on the review of existing algorithms
for iscontouring, four dominant methods can be identified: marching cubes algorithms,
tessellation-based algorithms, surface nets algorithms and ray tracing algorithms. The
algorithms have each been developed from specific problem areas; thus, the corresponding
solution strategies for isocontouring have also resulted from these contexts. Nevertheless,
all algorithms must solve the same task from a mathematical point of view. With regard to
their application, it can be seen that the methods are mainly used in the fields of medical
imaging, computer graphics and the visualization of simulation results. The preferred
areas of application of the algorithms also imply that they have different requirements
for the necessary input data. Marching cubes and surface nets algorithms, for example,
can only process structured data sets. In contrast, tessellation-based methods and ray
tracing algorithms are also able to process unstructured data sets. This is particularly
advantageous when using measurement data, as these can be subject to errors due to
measurement inaccuracies. Another key finding of the literature review is that there is
no standardized scheme for the evaluation of the quality of the algorithms developed.
Depending on the use case, different categories are examined, most of which involve a
visual inspection of the results. Therefore, a possible scheme for the statistical analysis of
the developed algorithms is proposed in this paper.
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