Volltext-Downloads (blau) und Frontdoor-Views (grau)

LLM-Driven Multi-Agent System for Market Trend Analysis and Capability Mapping

  • This thesis presents a multi-agent AI system for automated market trend analysis by processing emails, newsletters, and PDFs. The system employs a structured workflow of autonomous agents for content extraction, summarization, subtopic identification, and topic clustering, leveraging OpenAI’s GPT-4 within an Autogen-based framework. Key features include multi-tenant adaptability,This thesis presents a multi-agent AI system for automated market trend analysis by processing emails, newsletters, and PDFs. The system employs a structured workflow of autonomous agents for content extraction, summarization, subtopic identification, and topic clustering, leveraging OpenAI’s GPT-4 within an Autogen-based framework. Key features include multi-tenant adaptability, customer-specific trend analysis, and Azure SQL integration for structured data storage. The system demonstrates good accuracy in trend extraction and classification, addressing challenges like varying LLMs output and multi� schema architecture. This research underscores the potential of AI-powered automation in business intelligence, optimizing decision-making and strategic market analysis.show moreshow less

Download full text files

  • Masterthesis_Shivaraju_Anusha.pdf
    eng

Export metadata

Statistics

frontdoor_oas
Metadaten
Document Type:Master's Thesis
Zitierlink: https://opus.hs-offenburg.de/10548
Bibliografische Angaben
Title (English):LLM-Driven Multi-Agent System for Market Trend Analysis and Capability Mapping
Author:Anusha Shivaraju
Advisor:Daniela Oelke, Immo Brueggemann
Year of Publication:2025
Publishing Institution:Hochschule Offenburg
Granting Institution:Hochschule Offenburg
Contributing Corporation:Creatum GmbH
Place of publication:Offenburg
Publisher:Hochschule Offenburg
Page Number:47
Language:English
Inhaltliche Informationen
Institutes:Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019)
Collections of the Offenburg University:Abschlussarbeiten / Master-Studiengänge / CME
DDC classes:600 Technik, Medizin, angewandte Wissenschaften
Tag:AI-Driven Solutions; Autogen Framework; Azure SQL; Business Intelligence; Market Trends Analysis; Multi-Agent System; Multi-Tenant Environment; Newsletters and Email Processing; OpenAI GPT-4.0; Technological Insights; Topic Clustering
Formale Angaben
Open Access: Closed Access 
Licence (German):License LogoCreative Commons - CC0 1.0 - Universell - Public Domain Dedication