Volltext-Downloads (blau) und Frontdoor-Views (grau)

Differentiation of Human and Robots with Thermal Images and Convolutional Neural Network for Human-Robot Collaboration

  • This paper introduces the use of convolutional neural networks to detect and classify humans and robots in Human-Robot Collaboration workspaces based on their thermal radiation power. The measurement setup includes an infrared camera, two cobots and up to two persons walking or interacting with the cobots in industrial settings. The chosen architectures are the YOLOv5 and YOLOv8 in different modelThis paper introduces the use of convolutional neural networks to detect and classify humans and robots in Human-Robot Collaboration workspaces based on their thermal radiation power. The measurement setup includes an infrared camera, two cobots and up to two persons walking or interacting with the cobots in industrial settings. The chosen architectures are the YOLOv5 and YOLOv8 in different model sizes. The results are promising, showing real-time object detection in industrial settings with up to 303 fps with the YOLOv8n model. YOLOv5m achieves the best mAP50 result at 99.2% and the YOLOv5m achieves the best mAP50-95 at 85.8%show moreshow less

Download full text files

Export metadata

Statistics

frontdoor_oas
Metadaten
Document Type:Conference Proceeding
Conference Type:Konferenzartikel
Zitierlink: https://opus.hs-offenburg.de/9747
Bibliografische Angaben
Title (English):Differentiation of Human and Robots with Thermal Images and Convolutional Neural Network for Human-Robot Collaboration
Conference:GMA/ITG Fachtagung Sensoren und Messsysteme (22. : 11. und 12. Juni 2024 : Nürnberg)
Author:Sinan SümeStaff MemberORCiD, Katrin-Misel PonomarjovaStaff MemberORCiD, Thomas WendtStaff MemberORCiDGND, Stefan RupitschORCiD
Year of Publication:2024
Creating Corporation:GMA/ITG
Publisher:AMA Service GmbH
First Page:32
Last Page:36
Parent Title (German):22. GMA/ITG-Fachtagung Sensoren und Messsysteme 2024
ISBN:978-3-910600-01-0
DOI:https://doi.org/10.5162/sensoren2024/A1.3
Language:English
Inhaltliche Informationen
Institutes:Fakultät Wirtschaft (W)
Collections of the Offenburg University:Bibliografie
Formale Angaben
Relevance for "Jahresbericht über Forschungsleistungen":Konferenzbeitrag: h5-Index < 30
Open Access: Open Access 
 Bronze 
Licence (German):License LogoUrheberrechtlich geschützt