Can Machine Learning and Explainable Artificial Intelligence Help to Improve an Expert Model for Predicting Thermomechanical Fatigue?
- Machine learning (ML) models are increasingly used for predictive tasks, yet traditional data-based models relying on expert knowledge remain prevalent. This paper examines the enhancement of an expert model for thermomechanical fatigue (TMF) life prediction of turbine components using ML. Using explainable artificial intelligence (XAI) methods such as Permutation Feature Importance (PFI) and SHAPMachine learning (ML) models are increasingly used for predictive tasks, yet traditional data-based models relying on expert knowledge remain prevalent. This paper examines the enhancement of an expert model for thermomechanical fatigue (TMF) life prediction of turbine components using ML. Using explainable artificial intelligence (XAI) methods such as Permutation Feature Importance (PFI) and SHAP values, we analyzed the patterns and relationships learned by the ML models. Our findings reveal that ML models can be trained on TMF data, but integrating domain knowledge remains crucial. The study concludes with a proposal to further refine the expert model using insights gained from ML models, aiming for a synergistic improvement.…
Document Type: | Conference Proceeding |
---|---|
Conference Type: | Konferenzartikel |
Zitierlink: | https://opus.hs-offenburg.de/9815 | Bibliografische Angaben |
Title (English): | Can Machine Learning and Explainable Artificial Intelligence Help to Improve an Expert Model for Predicting Thermomechanical Fatigue? |
Conference: | The Upper Rhine Artificial Intelligence Symposium (6. : 13./14.11.2024 : Offenburg) |
Author: | Stefan GlaserStaff MemberGND, Thomas SeifertStaff MemberORCiDGND, Daniela OelkeStaff MemberORCiDGND |
Year of Publication: | 2024 |
Date of first Publication: | 2024/10/29 |
Place of publication: | Offenburg |
Publisher: | Hochschule Offenburg |
First Page: | 21 |
Last Page: | 30 |
Parent Title (English): | Proceedings of the Upper-Rhine Artificial Intelligence Symposium 2024 |
Editor: | Janis Keuper, Klaus Dorer |
ISBN: | 978-3-943301-34-2 |
DOI: | https://doi.org/10.60643/urai.v2024p21 |
Language: | English | Inhaltliche Informationen |
Institutes: | Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) |
Fakultät Maschinenbau und Verfahrenstechnik (M+V) | |
Collections of the Offenburg University: | Bibliografie |
GND Keyword: | Künstliche Intelligenz; Materialermüdung |
Tag: | thermomechanische Ermüdung AI; ML; Machine Learning; TMF life prediction; XAI; explainable artificial intelligence | Formale Angaben |
Relevance for "Jahresbericht über Forschungsleistungen": | Konferenzbeitrag: h5-Index < 30 |
Open Access: | Open Access |
Diamond | |
Licence (German): | ![]() |