Volltext-Downloads (blau) und Frontdoor-Views (grau)

Can Machine Learning and Explainable Artificial Intelligence Help to Improve an Expert Model for Predicting Thermomechanical Fatigue?

  • Machine learning (ML) models are increasingly used for predictive tasks, yet traditional data-based models relying on expert knowledge remain prevalent. This paper examines the enhancement of an expert model for thermomechanical fatigue (TMF) life prediction of turbine components using ML. Using explainable artificial intelligence (XAI) methods such as Permutation Feature Importance (PFI) and SHAPMachine learning (ML) models are increasingly used for predictive tasks, yet traditional data-based models relying on expert knowledge remain prevalent. This paper examines the enhancement of an expert model for thermomechanical fatigue (TMF) life prediction of turbine components using ML. Using explainable artificial intelligence (XAI) methods such as Permutation Feature Importance (PFI) and SHAP values, we analyzed the patterns and relationships learned by the ML models. Our findings reveal that ML models can be trained on TMF data, but integrating domain knowledge remains crucial. The study concludes with a proposal to further refine the expert model using insights gained from ML models, aiming for a synergistic improvement.show moreshow less

Export metadata

Statistics

frontdoor_oas
Metadaten
Document Type:Conference Proceeding
Conference Type:Konferenzartikel
Zitierlink: https://opus.hs-offenburg.de/9815
Bibliografische Angaben
Title (English):Can Machine Learning and Explainable Artificial Intelligence Help to Improve an Expert Model for Predicting Thermomechanical Fatigue?
Conference:The Upper Rhine Artificial Intelligence Symposium (6. : 13./14.11.2024 : Offenburg)
Author:Stefan GlaserStaff MemberGND, Thomas SeifertStaff MemberORCiDGND, Daniela OelkeStaff MemberORCiDGND
Year of Publication:2024
Date of first Publication:2024/10/29
Place of publication:Offenburg
Publisher:Hochschule Offenburg
First Page:21
Last Page:30
Parent Title (English):Proceedings of the Upper-Rhine Artificial Intelligence Symposium 2024
Editor:Janis Keuper, Klaus Dorer
ISBN:978-3-943301-34-2
DOI:https://doi.org/10.60643/urai.v2024p21
Language:English
Inhaltliche Informationen
Institutes:Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019)
Fakultät Maschinenbau und Verfahrenstechnik (M+V)
Collections of the Offenburg University:Bibliografie
GND Keyword:Künstliche Intelligenz; Materialermüdung
Tag:thermomechanische Ermüdung
AI; ML; Machine Learning; TMF life prediction; XAI; explainable artificial intelligence
Formale Angaben
Relevance for "Jahresbericht über Forschungsleistungen":Konferenzbeitrag: h5-Index < 30
Open Access: Open Access 
 Diamond 
Licence (German):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International