Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 9 of 306
Back to Result List

Maxwell stress generated long wave instabilities in a thin aqueous film under time-dependent electro-osmotic flow

  • In this study the dynamics and stability of thin and electrically conductive aqueous films under the influence of a time-periodic electric field are explored. With the help of analytical linear stability analysis for long wavelength disturbances, the stability threshold of the system as a function of various electrochemical parameters and transport coefficients is presented. The contributions ofIn this study the dynamics and stability of thin and electrically conductive aqueous films under the influence of a time-periodic electric field are explored. With the help of analytical linear stability analysis for long wavelength disturbances, the stability threshold of the system as a function of various electrochemical parameters and transport coefficients is presented. The contributions of parameters like surface tension, disjoining pressure, electric double layer (Debye length and interfacial zeta potential), and unsteady Maxwell and viscous stresses are highlighted with the help of appropriate dimensionless groups. The physical mechanisms affecting the stability of thin films are detailed with the above-mentioned forces and parametric dependence of stability trends is discussed.show moreshow less

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Document Type:Article (reviewed)
Zitierlink: https://opus.hs-offenburg.de/7182
Bibliografische Angaben
Title (English):Maxwell stress generated long wave instabilities in a thin aqueous film under time-dependent electro-osmotic flow
Author:Manik MayurStaff MemberORCiD, Sakir Amiroudine, Evgeny A. Demekhin, Georgy S. Ganchenko
Year of Publication:2016
Place of publication:Berlin, Heidelberg
Publisher:Springer
First Page:1
Last Page:13
Article Number:60
Parent Title (English):Microfluidics and Nanofluidics
Volume:20
Issue:4
ISSN:1613-4982 (Print)
ISSN:1613-4990 (Elektronisch)
DOI:https://doi.org/10.1007/s10404-016-1719-0
Language:English
Inhaltliche Informationen
Institutes:Fakultät Maschinenbau und Verfahrenstechnik (M+V)
Institutes:Bibliografie
Tag:Applied Electric Field; Capillary Number; Disjoin Pressure; Electrical Double Layer; Maxwell Stress
Formale Angaben
Open Access: Closed 
Licence (German):License LogoUrheberrechtlich geschützt