Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 54 of 141
Back to Result List

Heart rhythm model and simulation of electrophysiological studies and high-­frequency ablations

  • Background: The simulation of complex cardiologic structures has the potential to replace clinical studies due to its high efficiency regarding time and costs. Furthermore, the method is more careful for the patients’ health than the conventional ways. The aim of the study was to create an anatomic CAD heart rhythm model (HRM) as accurate as possible, and to show its usefulness for cardiacBackground: The simulation of complex cardiologic structures has the potential to replace clinical studies due to its high efficiency regarding time and costs. Furthermore, the method is more careful for the patients’ health than the conventional ways. The aim of the study was to create an anatomic CAD heart rhythm model (HRM) as accurate as possible, and to show its usefulness for cardiac electrophysiological studies (EPS) and high-frequency (HF) ablations. Methods: All natural heart components of the new HRM were based on MRI records, which guaranteed electronic functionality. The software CST (Computer Simulation Technology, Darmstadt) was used for the construction, while CST’s material library assured genuine tissue properties. It should be applicable to simulate different heart rhythm diseases as well as various diffusions of electromagnetic fields, caused by electrophysiological conduction, inside the heart tissue. Results: It was achievable to simulate normal sinus rhythm and fourteen different heart rhythm disturbance with different atrial and ventricular conduction delays. The simulated biological excitation of healthy and sick HRM were plotted by simulated electrodes of four polar right atrial catheter, six polar His bundle catheter, ten polar coronary sinus catheter, four polar ablation catheter and eight polar transesophageal left cardiac catheter (Fig.). Accordingly, six variables were rebuilt and inserted into the anatomic HRM in order to establish heart catheters for ECG monitoring and HF ablation. The HF ablation catheters made it possible to simulate various types of heart rhythm disturbance ablations with different HF ablation catheters and also showed a functional visualisation of tissue heating. The use of tetrahedral meshing HRM made it attainable to store the results faster accompanied by a higher degree of space saving. The smart meshing function reduced unnecessary high resolutions for coarse structures. Conclusions: The new HRM for EPS simulation may be additional useful for simulation of heart rhythm disturbance, cardiac pacing, HF ablation and for locating and identification of complex fractioned signals within the atrium during atrial fibrillation HF ablation.show moreshow less

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Document Type:Conference Proceeding
Conference Type:Konferenz-Abstract
Zitierlink: https://opus.hs-offenburg.de/2691
Bibliografische Angaben
Title (English):Heart rhythm model and simulation of electrophysiological studies and high-­frequency ablations
Conference:Europace Cardiostim, June 18-21, 2017, Vienna, Austria
Author:Marco Schalk, Matthias HeinkeStaff MemberORCiDGND, Reinhard EchleStaff MemberGND
Year of Publication:2017
Date of first Publication:2017/06/20
First Page:iii 182
Last Page:iii 182
Parent Title (English):EP Europace
Volume:19
Issue:Suppl. 3
ISSN:1099-5129 (Print)
ISSN:1532-2092 (Online)
DOI:https://doi.org/10.1093/ehjci/eux151.101
Language:English
Inhaltliche Informationen
Institutes:Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019)
Institutes:Bibliografie
GND Keyword:CST; HF-Ablation
Tag:CST; HF-Ablation
Formale Angaben
Open Access: Closed Access 
Licence (German):License LogoUrheberrechtlich geschützt