Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 43 of 215
Back to Result List

Investigating the ability of the microbial model Cunninghamella elegans for the metabolism of synthetic tryptamines.

  • Tryptamines can occur naturally in plants, mushrooms, microbes, and amphibians. Synthetic tryptamines are sold as new psychoactive substances (NPS) because of their hallucinogenic effects. When it comes to NPS, metabolism studies are of crucial importance, due to the lack of pharmacological and toxicological data. Different approaches can be taken to study in vitro and in vivo metabolism ofTryptamines can occur naturally in plants, mushrooms, microbes, and amphibians. Synthetic tryptamines are sold as new psychoactive substances (NPS) because of their hallucinogenic effects. When it comes to NPS, metabolism studies are of crucial importance, due to the lack of pharmacological and toxicological data. Different approaches can be taken to study in vitro and in vivo metabolism of xenobiotica. The zygomycete fungus Cunninghamella elegans (C. elegans) can be used as a microbial model for the study of drug metabolism. The current study investigated the biotransformation of four naturally occurring and synthetic tryptamines [N,N‐Dimethyltryptamine (DMT), 4‐hydroxy‐N‐methyl‐N‐ethyltryptamine (4‐HO‐MET), N,N‐di allyl‐5‐methoxy tryptamine (5‐MeO‐DALT) and 5‐methoxy‐N‐methyl‐N‐isoporpoyltryptamine (5‐MeO‐MiPT)] in C. elegans after incubation for 72 hours. Metabolites were identified using liquid chromatography–high resolution–tandem mass spectrometry (LC–HR–MS/MS) with a quadrupole time‐of‐flight (QqTOF) instrument. Results were compared to already published data on these substances. C. elegans was capable of producing all major biotransformation steps: hydroxylation, N‐oxide formation, carboxylation, deamination, and demethylation. On average 63% of phase I metabolites found in the literature could also be detected in C. elegans. Additionally, metabolites specific for C. elegans were identified. Therefore, C. elegans is a suitable complementary model to other in vitro or in vivo methods to study the metabolism of naturally occurring or synthetic tryptamines.show moreshow less

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Document Type:Article (reviewed)
Zitierlink: https://opus.hs-offenburg.de/3801
Bibliografische Angaben
Title (English):Investigating the ability of the microbial model Cunninghamella elegans for the metabolism of synthetic tryptamines.
Author:Katharina Elisabeth Grafinger, Andreas WilkeStaff MemberGND, Stefan König, Wolfgang Weinmann
Year of Publication:2019
Publisher:Wiley-Blackwell
First Page:721
Last Page:729
Parent Title (English):Drug Testing and Analysis
Volume:11
Issue:5
ISSN:1942-7603 (Print)
ISSN:1942-7611 (Online)
DOI:https://doi.org/10.1002/dta.2544
Language:English
Inhaltliche Informationen
Institutes:Fakultät Maschinenbau und Verfahrenstechnik (M+V)
Institutes:Bibliografie
DDC classes:600 Technik, Medizin, angewandte Wissenschaften
GND Keyword:Cunninghamella elegans; NPS; fungi; metabolism; tryptamines
Formale Angaben
Open Access: Closed Access 
Licence (German):License LogoUrheberrechtlich geschützt