• search hit 1 of 2
Back to Result List

Multifunctional Phosphate-Based Inorganic–Organic Hybrid Nanoparticles

  • Phosphate-based inorganic–organic hybrid nanoparticles (IOH-NPs) with the general composition [M]2+[Rfunction(O)PO3]2– (M = ZrO, Mg2O; R = functional organic group) show multipurpose and multifunctional properties. If [Rfunction(O)PO3]2– is a fluorescent dye anion ([RdyeOPO3]2–), the IOH-NPs show blue, green, red, and near-infrared fluorescence. This is shown for [ZrO]2+[PUP]2–, [ZrO]2+[MFP]2–,Phosphate-based inorganic–organic hybrid nanoparticles (IOH-NPs) with the general composition [M]2+[Rfunction(O)PO3]2– (M = ZrO, Mg2O; R = functional organic group) show multipurpose and multifunctional properties. If [Rfunction(O)PO3]2– is a fluorescent dye anion ([RdyeOPO3]2–), the IOH-NPs show blue, green, red, and near-infrared fluorescence. This is shown for [ZrO]2+[PUP]2–, [ZrO]2+[MFP]2–, [ZrO]2+[RRP]2–, and [ZrO]2+[DUT]2– (PUP = phenylumbelliferon phosphate, MFP = methylfluorescein phosphate, RRP = resorufin phosphate, DUT = Dyomics-647 uridine triphosphate). With pharmaceutical agents as functional anions ([RdrugOPO3]2–), drug transport and release of anti-inflammatory ([ZrO]2+[BMP]2–) and antitumor agents ([ZrO]2+[FdUMP]2–) with an up to 80% load of active drug is possible (BMP = betamethason phosphate, FdUMP = 5′-fluoro-2′-deoxyuridine 5′-monophosphate). A combination of fluorescent dye and drug anions is possible as well and shown for [ZrO]2+[BMP]2–0.996[DUT]2–0.004. Merging of functional anions, in general, results in [ZrO]2+([RdrugOPO3]1–x[RdyeOPO3]x)2– nanoparticles and is highly relevant for theranostics. Amine-based functional anions in [MgO]2+[RaminePO3]2– IOH-NPs, finally, show CO2 sorption (up to 180 mg g–1) and can be used for CO2/N2 separation (selectivity up to α = 23). This includes aminomethyl phosphonate [AMP]2–, 1-aminoethyl phosphonate [1AEP]2–, 2-aminoethyl phosphonate [2AEP]2–, aminopropyl phosphonate [APP]2–, and aminobutyl phosphonate [ABP]2–. All [M]2+[Rfunction(O)PO3]2– IOH-NPs are prepared via noncomplex synthesis in water, which facilitates practical handling and which is optimal for biomedical application. In sum, all IOH-NPs have very similar chemical compositions but can address a variety of different functions, including fluorescence, drug delivery, and CO2 sorption.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Joachim G. Heck, Joanna Napp, Sara Simonato, Jens MöllmerGND, Marcus Lange, Holger M. Reichardt, Reiner StaudtGND, Frauke Alves, Claus Feldmann
Contributing Corporation:American Chemical Society
Publisher:ACS Publications
Year of Publication:2015
Language:English
GND Keyword:Funktionalität; Nanopartikel; Nanotechnologie; Phosphate; organische Verbindung
Parent Title (English):Journal of the American Chemical Society
Volume:137
ISSN:0002-7863
First Page:7329
Last Page:7336
Document Type:Article (reviewed)
Institutes:Hochschule Offenburg / Bibliografie
Acces Right:Zugriffsbeschränkt
Release Date:2018/03/28
Licence (German):License LogoEs gilt das UrhG
DOI:https://doi.org/10.1021/jacs.5b01172
Pubmed Id:http://www.ncbi.nlm.nih.gov/pubmed?term=26018463