Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 8 of 8
Back to Result List

Lebensdauer und Sicherheit von Lithium-Ionen-Batterien für die dezentrale Speicherung regenerativer Energien

  • Die Lithium-Ionen-Batterietechnologie ist seit ihrem kommerziellen Durchbruch zu Beginn der neunziger Jahre zum Standard für die portable Energieversorgung geworden. Zunehmend macht sie auch im mobilen und stationären Bereich klassischen Technologien, wie dem Verbrennungsmotor, Konkurrenz. Da in diesen Anwendungsfeldern aber meist größere Energiemengen erforderlich und wesentlich längereDie Lithium-Ionen-Batterietechnologie ist seit ihrem kommerziellen Durchbruch zu Beginn der neunziger Jahre zum Standard für die portable Energieversorgung geworden. Zunehmend macht sie auch im mobilen und stationären Bereich klassischen Technologien, wie dem Verbrennungsmotor, Konkurrenz. Da in diesen Anwendungsfeldern aber meist größere Energiemengen erforderlich und wesentlich längere Produktlebenszyklen üblich sind, sind einerseits die Sicherheit und andererseits die Alterung der Batterien von herausragendem Interesse. Diese Arbeit konzentriert sich auf die Untersuchung und Modellierung einer Lithium-Eisenphosphat-Zelle. Dabei wird eine Lithiumeisenphosphat-Kathode mit einer Graphit-Anode kombiniert. Dieser Zelltyp eignet sich besonders für stationäre Anwendungen. Trotz eines bisher vergleichsweise geringen Marktanteils lassen sich, wie im Laufe dieser Arbeit ersichtlich wird, die Ergebnisse gut auf den Großteil der kommerziell verwendeten Lithium-Ionen-Zellen abstrahieren. Ziel der Arbeit ist es, mit Hilfe mathematischer Modellierung dieser Lithium-Ionen-Batterie das Verständnis über die komplexen Alterungsmechanismen zu vertiefen, um mit diesen Erkenntnissen Verbesserungsvorschläge zum Aufbau und der Betriebsweise der Batterien zu erarbeiten. Eine Batterie ist ein hochkomplexes physikalisches System, in dem sich die räumlichen Gradienten der physikalischen Größen um viele Größenordnungen unterscheiden können. Auch bei der zeitlichen Betrachtung laufen wichtige Prozesse wie beispielsweise die Ladung, die Alterung oder das thermische Durchgehen auf sehr unterschiedlichen Zeitskalen ab. Dabei finden in der Zelle gleichzeitig, teilweise in gegenseitiger Abhängigkeit, zahlreiche chemische Reaktionen statt. Zur numerischen Simulation bedarf es also eines Modells, das flexibel mit diesen unterschiedlichen Anforderungen umgeht. Die in dieser Arbeit verwendete hauseigene Software DENIS bildet dieses flexible Gerüst, welches sich des numerischen Lösers LIMEX, der elektrochemischen Simulationsumgebung Cantera und der Mathematiksoftware MATLAB bedient. Das Kontinuum-Modell verwendet drei unterschiedliche Skalen entlang der gleichen räumlichen Dimension (sog. 1D+1D+1D oder pseudo-3D-Modell). Durch diese drei miteinander gekoppelten Skalen werden die Temperaturverteilung, die elektrochemischen Vorgänge und die Diffusion von Lithium in die Aktivmaterialien berechnet. Ähnliche, häufig nach John Newman benannte, Modelle lassen sich in großer Vielfalt in der Literatur finden. Eine wichtige Verbesserung des Modells stellt daher vor allem die Erweiterung um die Nebenreaktionen dar. Dabei ist die Bildung der Solid Electrolyte Interface (SEI) von herausragendem Interesse, jedoch auch deren Zersetzung bei zu hohen Temperaturen, die zum thermischen Durchgehen der Batterie führen kann. Durch die Modellierung der SEI-Nebenreaktion gelingt es, die kalendarische Alterung der Zellen in dem für viele kommerzielle Anwendungen relevanten Bereich von 100 % bis 80 % State of health (SOH) zu simulieren. Eine weitere wichtige Modellerweiterung stellt die Berücksichtigung mechanischer Effekte dar; dies führt zu einer Beschreibung der zyklischen Alterung der Zelle. Dabei wird ein realer mechanischer Effekt mit dem bestehenden elektrochemischen Modell verbunden. Grundlegende Hypothese ist hierbei, dass die SEI-Schicht beim Laden der Zelle aufbricht und es damit zu einer erhöhten Reduktion des Elektrolyten kommt. Somit ist das Modell in der Lage, sowohl kalendarische als auch zyklische Effekte zu simulieren, die auf chemischen und mechanischen Ursachen basieren. Die Berücksichtigung des Effektes der Austrocknung der Elektrode durch die Reduktion des Elektrolyten ermöglicht eine Vorhersage des irreversiblen Kapazitätsverlustes bis weit über die 80 % SOH-Grenze hinaus. Durch Hinzufügen einer zweiten SEI-Reaktion kann darüber hinaus das thermische und elektrische Verhalten der Zelle bei erhöhten Temperaturen außerhalb des Betriebsbereichs sowie bei externem Kurzschluss qualitativ und quantitativ gut abgebildet werden. Abweichungen der Modellvorhersage zu experimentellen Werten lassen sich zum Teil mit der Vernachlässigung von weniger relevanten physikalischen und chemischen Vorgängen erklären. Ein weiterer Grund für Abweichungen ist in der Zusammensetzung der experimentellen Daten zu suchen, bei denen die Batterien stets von der gleichen Zellchemie sind, sich jedoch in der exakten Bauform teilweise unterscheiden. Um das an Parametern deutlich überbestimmte Modell zu validieren, werden die Ergebnisse umfangreicher Experimente mit stationären Lithium-Eisenphosphat-Zellen (LFP) verwendet. Neben Lade- und Entladezyklen sind die Elektrochemische-Impedanz-Spektroskopie (EIS) und Alterungsexperimente an baugleichen Zellen durchgeführt worden. Nur mit dieser experimentellen Unterstützung entsteht somit ein konsistentes thermo-elektrochemisches Modell der Zelle. Aufgrund der erweiterten experimentellen Datengrundlage kann somit die Komplexität des Modells erhöht werden. Diese verschiedenen Modellvorhersagen können mit einem einzigen Satz an Parametern gemacht werden. Durch die Kombination und Integration dieser unterschiedlichen Alterungseffekte in ein konsistentes physikalisches System entsteht damit ein Modell, dessen Aussagekraft sich nicht auf einen spezifischen Betriebsbereich der Zelle reduziert. Die Interaktionen der vielen physikalisch-chemischen Effekte sind für verschiedene Betriebszustände analytisch nur schwer abschätzbar. Mit der modellbasierten Abbildung dieser komplexen Interaktionen wird somit ein wissenschaftlicher Mehrwert geschaffen.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Christian KupperORCiD
Subtitle (German):Modellbasierte Untersuchung einer Lithiumeisenphosphatzelle
Publisher:Mensch & Buch Verlag
Year of Publication:2020
Date of first Publication:2020/10/15
Pagenumber:140
ISBN:3967290654
ISBN:978-3967290653
Language:German
DDC classes:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau / 624 Ingenieurbau und Umwelttechnik
Publishing Institution:Albert-Ludwigs-Universität Freiburg
Granting Institution:Albert-Ludwigs-Universität Freiburg
Date of final exam:2019/10/22
Document Type:Doctoral Thesis
Institutes:Bibliografie
Release Date:2020/12/16
Licence (German):License LogoEs gilt das UrhG