Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 10
Back to Result List

Cell design concepts for aqueous lithium-oxygen batteries: A model-based assessment

  • Seven cell design concepts for aqueous (alkaline) lithium–oxygen batteries are investigated using a multi-physics continuum model for predicting cell behavior and performance in terms of the specific energy and specific power. Two different silver-based cathode designs (a gas diffusion electrode and a flooded cathode) and three different separator designs (a porous separator, a stirred separatorSeven cell design concepts for aqueous (alkaline) lithium–oxygen batteries are investigated using a multi-physics continuum model for predicting cell behavior and performance in terms of the specific energy and specific power. Two different silver-based cathode designs (a gas diffusion electrode and a flooded cathode) and three different separator designs (a porous separator, a stirred separator chamber, and a redox-flow separator) are compared. Cathode and separator thicknesses are varied over a wide range (50 μm–20 mm) in order to identify optimum configurations. All designs show a considerable capacity-rate effect due to spatiotemporally inhomogeneous precipitation of solid discharge product LiOH·H2O. In addition, a cell design with flooded cathode and redox-flow separator including oxygen uptake within the external tank is suggested. For this design, the model predicts specific power up to 33 W/kg and specific energy up to 570 Wh/kg (gravimetric values of discharged cell including all cell components and catholyte except housing and piping).show moreshow less

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Document Type:Article (reviewed)
Zitierlink: https://opus.hs-offenburg.de/1860
Bibliografische Angaben
Title (English):Cell design concepts for aqueous lithium-oxygen batteries: A model-based assessment
Author:Daniel GrüblStaff Member, Wolfgang G. BesslerStaff MemberORCiDGND
Year of Publication:2015
First Page:481
Last Page:491
Parent Title (English):Journal of power sources
Issue:297
DOI:https://doi.org/10.1016/j.jpowsour.2015.07.058
Language:English
Inhaltliche Informationen
Institutes:Forschung / INES - Institut für nachhaltige Energiesysteme
Fakultät Maschinenbau und Verfahrenstechnik (M+V)
Institutes:Bibliografie
GND Keyword:Lithiumbatterie
Formale Angaben
Open Access: Closed Access 
Licence (German):License LogoUrheberrechtlich geschützt