Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 1 of 1
Back to Result List

Characterization and compact modeling of printed electrolyte-gated thin film transistors and circuits

  • The manufacturing of conventional electronics has become a highly complicated process, which requires intensive investment. In this context, printed electronics keeps attracting attention from both academia and industry. The primary reason is the simplification of the manufacturing process via additive printing technology such as ink-jet printing. Consequently, advantages are realized such asThe manufacturing of conventional electronics has become a highly complicated process, which requires intensive investment. In this context, printed electronics keeps attracting attention from both academia and industry. The primary reason is the simplification of the manufacturing process via additive printing technology such as ink-jet printing. Consequently, advantages are realized such as on-demand fabrication, minimal material waste and versatile choice of substrate materials. Central to the development of printed electronic circuits are printed transistors. Recently, metal oxide semiconductors such as indium oxide have become promising materials for the fabrication of printed transistors due to their high charge mobility. Furthermore, electrolyte-gating also provides benefits such as the low-voltage operation in sub-1 V regime due to the large gate capacitance provided by electrical double layers. This opens new possibilities to fabricate printed devices and circuits for niche applications. To facilitate the design and fabrication of printed circuits, the development of compact models is necessary. However, most of the current works have focused on the study of the static behavior of transistors, while the in-depth understanding of other characteristics such as the dynamic or noise behavior is missing. To this end, the purpose of this work is the comprehensive study on capacitance and noise properties of inkjet-printed electrolyte-gated thin-film transistors (EGT) based on indium oxide semiconductors. Proper modeling approaches are also proposed to capture accurately the electrical behaviour, which can be further utilized to enable advanced analysis of digital, analog and mixed-signal circuits. In this work, the capacitance of EGTs is characterized using voltage-dependent impedance spectroscopy. Intrinsic and extrinsic effects are carefully separated by using de-embedding test structures. Also, a dedicated equivalent circuit model is established to offer accurate simulations of the measured frequency response of the gate impedance. Based on that, it is revealed that top-gated EGTs have the potential to reach operation frequency in the kHz regime with proper optimizations of materials and printing process. Furthermore, a Meyer-like model is proposed to accurately capture the capacitance-voltage characteristics of the lumped terminal capacitance. Both parasitic and nonquasi-static effects are considered. This further enables the AC and transient analysis of complex circuits in circuit simulators. Following, the study of noise properties in the field of printed electronics is conducted. Low-frequency noise of EGTs is characterized using a reliable experimental setup. By examining measured noise spectra of the drain current at various gate voltages, the number fluctuation with correlated mobility fluctuation has been determined as the primary noise mechanism. Based on that, normalized flat-band voltage noise can be determined as the key performance metrics, which is only 1.08 × 10−7 V^2 µm^2, significantly lower in comparison with other thin-film technologies, which are based on dielectric gating and semiconductors such as IZO and IGZO. A plausible reason could be the large gate capacitance offered by the electrical double layers. This renders EGT technology useful for low-noise and sensitive applications such as sensor periphery circuits. Last but not least, various circuit designs based on EGT technology are proposed, including basic digital circuits such as inverters and ring oscillators. Their performance metrics such as the propagation delay and power consumption are extensively characterized. Also, the first design of a printed full-wave rectifier is presented by using diode-connected EGTs, which features near-zero threshold voltage. As a consequence, the presented rectifier can effectively process input voltage with a small amplitude of 100 mV and a cut-off frequency of 300 Hz, which is particularly attractive for the application domain of energy harvesting. Additionally, the previously established capacitance models are verified on those circuits, which provide a satisfactory agreement between the simulation and measurement data.show moreshow less
  • Die Herstellung konventioneller Elektronik ist ein hochkomplexer Prozess, der hohe Kosten erfordert. In diesem Zusammenhang gewinne die gedruckte Elektronik sowohl in der Wissenschaft als auch in der Industrie eine erhöhte Aufmerksamkeit. Der Hauptgrund dafür ist die Vereinfachung des Herstellungsprozesses durch additive Drucktechnologien wie Inkjet-Druck. Dies hat Vorteile wie die bedarfsgerechteDie Herstellung konventioneller Elektronik ist ein hochkomplexer Prozess, der hohe Kosten erfordert. In diesem Zusammenhang gewinne die gedruckte Elektronik sowohl in der Wissenschaft als auch in der Industrie eine erhöhte Aufmerksamkeit. Der Hauptgrund dafür ist die Vereinfachung des Herstellungsprozesses durch additive Drucktechnologien wie Inkjet-Druck. Dies hat Vorteile wie die bedarfsgerechte Herstellung und minimaler Materialverbrauch. Außerdem wird eine vielfältige Auswahl verschiedener Substratmaterialien ermöglicht. Im Zentrum der Entwicklung von Schaltungen auf Basis gedruckter Elektronik stehen gedruckte Transistoren. In letzter Zeit sind Metalloxidhalbleiter wie Indiumoxid aufgrund ihrer hohen Ladungsbeweglichkeit zu vielversprechenden Materialien für die Herstellung gedruckter elektronischer Bauelemente geworden. Darüber hinaus bietet der Elektrolyt-Gate-Ansatz aufgrund der großen Gate-Kapazität, die durch die elektrischen Doppelschichten bereitgestellt wird, auch die Vorteile, einen Niederspannungsbetrieb im Sub-1 V-Bereich zu erreichen. Dies eröffnet neue Möglichkeiten für die Herstellung gedruckter Bauteile und Schaltungen in Nischenanwendungen. Um das Design und die Herstellung von gedruckten Schaltungen zu erleichtern, ist die Entwicklung kompakter Modelle erforderlich. Die meisten existierenden Arbeiten haben sich bisher auf die Untersuchung des statischen Verhaltens von Transistoren konzentriert. Hierbei wird das dynamische und das Rauschverhalten der Bauteile häufig vernachlässigt. Ziel dieser Arbeit ist es daher, die umfassende Untersuchung der Kapazitäts sowie Rauscheigenschaften Tintenstrahl-gedruckter Dünnschichttransistoren mit einem flüssig-prozessierbaren Feststoffelektrolyten als Isolator (EGT) und einem Indiumoxid-Halbleiter als Kanalmaterial durchzuführen.. Es werden geeignete Modellierungsansätze vorgeschlagen, um das elektrische Verhalten genau zu erfassen. Dies ermöglicht eine erweiterte Analyse analoger, digitaler sowie gemischter analog-digitaler Schaltungen. In dieser Arbeit wird die Kapazität von EGTs mittels spannungsabhängiger Impedanzspektroskopie charakterisiert. Intrinsische und extrinsische Effekte werden durch Verwendung von De-Embedding-Teststrukturen getrennt. Des Weiteren wird ein Ersatzschaltbild erstellt, um genaue Simulationen des gemessenen Frequenzgangs der Gate-Impedanz zu ermöglichen. Auf dieser Grundlage zeigt sich, dass Top-Gate EGTs das Potenzial haben, eine Schaltfrequenz im kHz-Bereich zu erreichen, wenn die Materialien und der Druckprozess weiter optimiert werden. Darüber hinaus wird ein Meyer-ähnliches Modell vorgeschlagen, um die Kapazitäts-Spannungs-Eigenschaften der Anschlusskapazität genau zu erfassen. Es werden sowohl parasitäre Kapazitäten als auch nicht-quasistatische Effekte berücksichtigt. Die resultierenden Modelle ermöglichen weitere AC- und transiente Simulationen komplexer Schaltungen in der EGT-Technologie. Im Folgenden werden Untersuchungen zu den Rauscheigenschaften gedruckter EGTs durchgeführt. Das Niederfrequenzrauschen wird anhand eines eigens dafür optimierten Versuchsaufbaus charakterisiert. Durch Untersuchung der gemessenen Rauschspektren im Transistor-Drainstrom bei verschiedenen Gate-Spannungen wurde die Ladungsträgerschwankung mit korrelierter Mobilitätsschwankung als primärer Rauschmechanismus bestimmt. Auf dieser Grundlage kann das normalisierte Flachband-Spannungsrauschen als Hauptleistungsmetrik berechnet werden, was im Vergleich zu anderen Dünnschichttechnologien, die auf Dielektrika und Halbleitern wie IZO und IGZO basieren, einen erheblich niedrigeren Wert aufweist.. Ein plausibler Grund könnte die große Gate-Kapazität sein, die durch die elektrische Doppelschicht erzeugt wird. Daher eigenen sich gedruckte EGTs für beispielsweise rauscharme Anwendungen in der Sensorik. Abschließend werden verschiedene Schaltungsdesigns vorgeschlagen, die auf EGT-Technologie basieren. Dies beinhaltet grundlegende digitale Schaltungen wie Inverter Strukturen und Ringoszillatoren. Ihre Leistungsmetriken, einschließlich der Gatterlaufzeit und dem Stromverbrauch, werden ausführlich charakterisiert. Des Weiteren wird das erste Design eines gedruckten Brückengleichrichters unter Verwendung von EGTs mit eine nahe-null-Volt-Schwellspannung in einer Dioden-Konfiguration vorgestellt. Der vorgestellte Gleichrichter ist in der Lage, Eingangsspannungen mit kleiner Amplitude von circa 100 mV effektiv zu verarbeiten. Dies ist besonders im Anwendungsbereich des Energy-Harvestings von Interesse. Zusätzlich werden die zuvor etablierten Kapazitätsmodelle auf diesen Schaltungen verifiziert. Ein Vergleich der Simulations- und Messdaten zeigt deren sehr gute Übereinstimmung und verifiziert die entwickelten Kapazitätsmodelle.show moreshow less

Export metadata

Statistics

frontdoor_oas
Metadaten
Document Type:Doctoral Thesis
Zitierlink: https://opus.hs-offenburg.de/5058
Bibliografische Angaben
Title (English):Characterization and compact modeling of printed electrolyte-gated thin film transistors and circuits
Author:Xiaowei FengStaff MemberGND
Advisor:Jasmin Aghassi-Hagmann, Mehdi Baradaran Tahoori
Referee:Ulrich Lemmer
Year of Publication:2021
Date of final exam:2021/07/31
Publishing Institution:Karlsruher Institut für Technologie (KIT)
Granting Institution:Karlsruher Institut für Technologie (KIT)
Page Number:13, ix, 126
DOI:https://doi.org/10.5445/IR/1000137975
Language:English
Inhaltliche Informationen
Institutes:Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019)
Institutes:Bibliografie
DDC classes:500 Naturwissenschaften und Mathematik
Formale Angaben
Open Access: Open Access 
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International