Preprint: Creation and Detection of German Voice Deepfakes
- Synthesizing voice with the help of machine learning techniques has made rapid progress over the last years [1]. Given the current increase in using conferencing tools for online teaching, we question just how easy (i.e. needed data, hardware, skill set) it would be to create a convincing voice fake. We analyse how much training data a participant (e.g. a student) would actually need to fakeSynthesizing voice with the help of machine learning techniques has made rapid progress over the last years [1]. Given the current increase in using conferencing tools for online teaching, we question just how easy (i.e. needed data, hardware, skill set) it would be to create a convincing voice fake. We analyse how much training data a participant (e.g. a student) would actually need to fake another participants voice (e.g. a professor). We provide an analysis of the existing state of the art in creating voice deep fakes and align the identified as well as our own optimization techniques in the context of two different voice data sets. A user study with more than 100 participants shows how difficult it is to identify real and fake voice (on avg. only 37 percent can recognize a professor’s fake voice). From a longer-term societal perspective such voice deep fakes may lead to a disbelief by default.…
Document Type: | Working Paper |
---|---|
Zitierlink: | https://opus.hs-offenburg.de/5200 | Bibliografische Angaben |
Title (English): | Preprint: Creation and Detection of German Voice Deepfakes |
Conference: | International Symposium on Foundations & Practice of Security (14. : December 8-9-10, 2021 : Paris, France) |
Author: | Vanessa Barnekow, Dominik BinderStaff MemberGND, Niclas Kromrey, Pascal Munaretto, Andreas SchaadStaff MemberORCiDGND, Felix Schmieder![]() |
Year of Publication: | 2021 |
Page Number: | 10 |
First Page: | 1 |
Last Page: | 10 |
URL: | https://www.researchgate.net/publication/353677657 |
Language: | English | Inhaltliche Informationen |
Institutes: | Fakultät Medien (M) (ab 22.04.2021) |
Collections of the Offenburg University: | Bibliografie |
DDC classes: | 600 Technik, Medizin, angewandte Wissenschaften | Formale Angaben |
Open Access: | Open Access |
Licence (German): | ![]() |
ArXiv Id: | http://arxiv.org/abs/2108.01469 |