Volltext-Downloads (blau) und Frontdoor-Views (grau)

Learning Embeddings for Image Clustering: An Empirical Study of Triplet Loss Approaches

  • In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisyIn this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisy labels. Additionally, we propose a new, simple Triplet Loss formulation, which shows desirable properties with respect to formal clustering objectives and outperforms the existing methods. We evaluate all three Triplet loss formulations for K-means and correlation clustering on the CIFAR-10 image classification dataset.show moreshow less

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Document Type:Conference Proceeding
Conference Type:Konferenzartikel
Zitierlink: https://opus.hs-offenburg.de/5283
Bibliografische Angaben
Title (English):Learning Embeddings for Image Clustering: An Empirical Study of Triplet Loss Approaches
Conference:International Conference on Pattern Recognition : ICPR (25. : Jan. 10 2021 to Jan. 15 2021 : Milan, Italy)
Author:Kalun Ho, Franz-Josef Pfreundt, Margret KeuperORCiD, Janis KeuperStaff MemberORCiDGND
Year of Publication:2021
Publisher:IEEE
First Page:87
Last Page:94
Parent Title (English):Proceedings of ICPR 2020 : 25th International Conference on Pattern Recognition
ISBN:978-1-7281-8808-9 (elektronisch)
ISBN:978-1-7281-8809-6 (Print on Demand)
ISSN:1051-4651
DOI:https://doi.org/10.1109/ICPR48806.2021.9412602
URL:https://ieeexplore.ieee.org/abstract/document/9412602
URL:https://www.computer.org/csdl/proceedings-article/icpr/2021/09412602/1tmjjjXo0xO
Language:English
Inhaltliche Informationen
Institutes:Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019)
Forschung / IMLA - Institute for Machine Learning and Analytics
Collections of the Offenburg University:Bibliografie
Tag:convolutional neural networks; correlation; image classification; noise measurement; pattern recognition
Formale Angaben
Open Access: Closed Access 
Licence (German):License LogoUrheberrechtlich geschützt