Volltext-Downloads (blau) und Frontdoor-Views (grau)

RL-X: A Deep Reinforcement Learning Library (Not Only) for RoboCup

  • This paper presents the new Deep Reinforcement Learning (DRL) library RL-X and its application to the RoboCup Soccer Simulation 3D League and classic DRL benchmarks. RL-X provides a flexible and easy-to-extend codebase with self-contained single directory algorithms. Through the fast JAX-based implementations, RL-X can reach up to 4.5 speedups compared to well-known frameworks likeThis paper presents the new Deep Reinforcement Learning (DRL) library RL-X and its application to the RoboCup Soccer Simulation 3D League and classic DRL benchmarks. RL-X provides a flexible and easy-to-extend codebase with self-contained single directory algorithms. Through the fast JAX-based implementations, RL-X can reach up to 4.5 speedups compared to well-known frameworks like Stable-Baselines3.show moreshow less

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Document Type:Conference Proceeding
Conference Type:Konferenzartikel
Zitierlink: https://opus.hs-offenburg.de/8905
Bibliografische Angaben
Title (English):RL-X: A Deep Reinforcement Learning Library (Not Only) for RoboCup
Conference:RoboCup 2023, July 4 to 10, 2023, Bordeaux, Frankreich
Author:Nico BohlingerStaff MemberGND, Klaus DorerStaff MemberORCiDGND
Edition:1.
Year of Publication:2024
Place of publication:Cham
Publisher:Springer
First Page:228
Last Page:239
Parent Title (English):RoboCup 2023: Robot World Cup XXVI
Editor:Cédric Buche, Alessandra Rossi, Marco Simões, Ubbo Visser
Volume:LNCS 14140
ISBN:978-3-031-55014-0 (Print)
ISBN:978-3-031-55015-7 (Online)
ISSN:0302-9743 (Print)
ISSN:1611-3349 (Elektronisch)
DOI:https://doi.org/10.1007/978-3-031-55015-7_19
Language:English
Inhaltliche Informationen
Institutes:Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019)
Collections of the Offenburg University:Bibliografie
Projekte / Magma Offenburg
Research:IMLA - Institute for Machine Learning and Analytics
Tag:Deep Reinforcement Learning; RoboCup; Robotics; Simulation
Formale Angaben
Relevance for "Jahresbericht über Forschungsleistungen":Konferenzbeitrag: h5-Index < 30
Open Access: Closed 
Licence (German):License LogoUrheberrechtlich geschützt