Volltext-Downloads (blau) und Frontdoor-Views (grau)

Comparison of Approaches for Human Detection with Low-Resolution Infrared Data Sets Using Deep Learning

  • Human-machine interaction can be supported by the detection of humans through the simultaneous localization and distinction from non-human objects. This paper compares modern object detection algorithms (Damo-YOLO, YOLOv6, YOLOv7 and YOLOv8) in combination with Transfer Learning and Super Resolution in different scenarios to achieve human detection on low resolution infrared images. The data setHuman-machine interaction can be supported by the detection of humans through the simultaneous localization and distinction from non-human objects. This paper compares modern object detection algorithms (Damo-YOLO, YOLOv6, YOLOv7 and YOLOv8) in combination with Transfer Learning and Super Resolution in different scenarios to achieve human detection on low resolution infrared images. The data set created for this purpose includes images of an empty room, images of warm coffee cups, and images of people in various scenarios and at distances ranging from two to six meters. The Average Precision AP@50 and AP@50:95 values achieved across all scenarios reach up to 98.02 % and 66.99 % respectively.show moreshow less

Export metadata

Statistics

frontdoor_oas
Metadaten
Document Type:Conference Proceeding
Conference Type:Konferenzartikel
Zitierlink: https://opus.hs-offenburg.de/9018
Bibliografische Angaben
Title (English):Comparison of Approaches for Human Detection with Low-Resolution Infrared Data Sets Using Deep Learning
Conference:International Conference on Ubiquitous Robots (21. : June 24 - 27, 2024 : New York, USA)
Author:Damian LäuferStaff MemberGND, Simone BraunStaff MemberORCiDGND, Sinan SümeStaff MemberORCiD, Urban HimmelsbachStaff MemberORCiD
Year of Publication:2024
Publisher:IEEE
First Page:596
Last Page:602
Parent Title (English):2024 21st International Conference on Ubiquitous Robots (UR)
ISBN:979-8-3503-6107-0 (Elektronisch)
ISBN:979-8-3503-6106-3 (USB)
ISBN:979-8-3503-6108-7 (Print on Demand)
DOI:https://doi.org/10.1109/UR61395.2024.10597494
Language:English
Inhaltliche Informationen
Collections of the Offenburg University:Bibliografie
Research:IMLA - Institute for Machine Learning and Analytics
WLRI - Work-Life Robotics Institute
DDC classes:000 Allgemeines, Informatik, Informationswissenschaft
Tag:Deep learning; Detektion; Robotik
Human Machine Interaction; YOLO; cobot; human detection; low-resolution infrared image; super resolution; transfer learning
Formale Angaben
Relevance for "Jahresbericht über Forschungsleistungen":Konferenzbeitrag: h5-Index < 30
Open Access: Closed 
Licence (German):License LogoUrheberrechtlich geschützt