Refine
Year of publication
Document Type
- Conference Proceeding (53) (remove)
Is part of the Bibliography
- yes (53) (remove)
Keywords
- Heart rhythm model (5)
- Modeling and simulation (5)
- Herzkrankheit (4)
- Atrial fibrillation (2)
- CRT (2)
- CST (2)
- Cryoballoon catheter ablation (2)
- Elektrokardiogramm (2)
- HF-Ablation (2)
- Herzrhythmusmodell (2)
Abstract: 3D print of heart rhythm model with cryoballoon catheter ablation of pulmonary vein
(2019)
The visualization of heart rhythm disturbance and atrial fibrillation therapy allow the optimization of new cardiac catheter ablations. With the simulation software CST (Computer Simulation Technology, Darmstadt) electromagnetic and thermal simulations can be carried out to analyze and optimize different heart rhythm disturbance and cardiac catheters for pulmonary vein isolation. Another form of visualization is provided by haptic, three-dimensional print models. These models can be produced using an additive manufacturing method, such as a 3D printer. The aim of the study was to produce a 3D print of the Offenburg heart rhythm model with a representation of an atrial fibrillation ablation procedure to improve the visualization of simulation of cardiac catheter ablation.
The basis of 3D printing was the Offenburg heart rhythm model and the associated simulation of cryoablation of the pulmonary vein. The thermal simulation shows the pulmonary vein isolation of the left inferior pulmonary vein with the cryoballoon catheter Arctic Front AdvanceTM from Medtronic. After running through the simulation, the thermal propagation during the procedure was shown in the form of different colors. The three-dimensional print models were constructed on the base of the described simulation in a CAD program. Four different 3D printers are available for this purpose in a rapid prototyping laboratory at the University of Applied Science Offenburg. Two different printing processes were used: 1. a binder jetting printer with polymer gypsum and 2. a multi-material printer with photopolymer. A final print model with additional representation of the esophagus and internal esophagus catheter was also prepared for printing.
With the help of the thermal simulation results and the subsequent evaluation, it was possible to make a conclusion about the propagation of the cold emanating from the catheter in the myocardium and the surrounding tissue. It could be measured that already 3 mm from the balloon surface into the myocardium the temperature drops to 25 °C. The simulation model was printed using two 3D printing methods. Both methods as well as the different printing materials offer different advantages and disadvantages. While the first model made of polymer gypsum can be produced quickly and cheaply, the second model made of photopolymer takes five times longer and was twice as expensive. On the other hand, the second model offers significantly better properties and was more durable overall. All relevant parts, especially the balloon catheter and the conduction, are realistically represented. Only the thermal propagation in the form of different colors is not shown on this model.
Three-dimensional heart rhythm models as well as virtual simulations allow a very good visualization of complex cardiac rhythm therapy and atrial fibrillation treatment methods. The printed models can be used for optimization and demonstration of cryoballoon catheter ablation in patients with atrial fibrillation.
Cardiac resynchronization therapy (CRT) with biventricular pacing is an established therapy for heart failure (HF) patients (P) with ventricular desynchronization and reduced left ventricular (LV) ejection fraction. The aim of this study was to evaluate electrical right atrial (RA), left atrial (LA), right ventricular (RV) and LV conduction delay with novel telemetric signal averaging electrocardiography (SAECG) in implantable cardioverter defibrillator (ICD) P to better select P for CRT and to improve hemodynamics in cardiac pacing.
Methods: ICD-P (n=8, age 70.8 ± 9.0 years; 2 females, 6 males) with VVI-ICD (n=4), DDD-ICD (n=3) and CRT-ICD (n=1) (Medtronic, Inc., Minneapolis, MN, USA) were analysed with telemetric ECG recording by Medronic programmer 2090, ECG cable 2090AB, PCSU1000 oscilloscope with Pc-Lab2000 software (Velleman®) and novel National Intruments LabView SAECG software.
Results: Electrical RA conduction delay (RACD) was measured between onset and offset of RA deflection in the RAECG. Interatrial conduction delay (IACD) was measured between onset of RA deflection and onset of far-field LA deflection in the RAECG. Interventricular conduction delay (IVCD) was measured between onset of RV deflection in the RVECG and onset of LV deflection in the LVECG. Telemetric SAECG recording was possible in all ICD-P with a mean of 11.7 ± 4.4 SAECG heart beats, 97.6 ± 33.7 ms QRS duration, 81.5 ± 44.6 ms RACD, 62.8 ± 28.4 ms RV conduction delay, 143.7 ± 71.4 ms right cardiac AV delay, 41.5 ms LA conduction delay, 101.6 ms LV conduction delay, 176.8 ms left cardiac AV delay, 53.6 ms IACD and 93 ms IVCD.
Conclusions: Determination of RA, LA, RV and LV conduction delay, IACD, IVCD, right and left cardiac AV delay by telemetric SAECG recording using LabView SAECG technique may be useful parameters of atrial and ventricular desynchronization to improve P selection for CRT and hemodynamics in cardiac pacing.
Spectral analysis of signal averaging electrocardiography in atrial and ventricular tachyarrhythmias
(2017)
Background: Targeting complex fractionated atrial electrograms detected by automated algorithms during ablation of persistent atrial fibrillation has produced conflicting outcomes in previous electrophysiological studies. The aim of the investigation was to evaluate atrial and ventricular high frequency fractionated electrical signals with signal averaging technique.
Methods: Signal averaging electrocardiography (ECG) allows high resolution ECG technique to eliminate interference noise signals in the recorded ECG. The algorithm uses automatic ECG trigger function for signal averaged transthoracic, transesophageal and intracardiac ECG signals with novel LabVIEW software (National Instruments, Austin, Texas, USA). For spectral analysis we used fast fourier transformation in combination with spectro-temporal mapping and wavelet transformation for evaluation of detailed information about the frequency and intensity of high frequency atrial and ventricular signals.
Results: Spectral-temporal mapping and wavelet transformation of the signal averaged ECG allowed the evaluation of high frequency fractionated atrial signals in patients with atrial fibrillation and high frequency ventricular signals in patients with ventricular tachycardia. The analysis in the time domain evaluated fractionated atrial signals at the end of the signal averaged P-wave and fractionated ventricular signals at the end of the QRS complex. The analysis in the frequency domain evaluated high frequency fractionated atrial signals during the P-wave and high frequency fractionated ventricular signals during QRS complex. The combination of analysis in the time and frequency domain allowed the evaluation of fractionated signals during atrial and ventricular conduction.
Conclusions: Spectral analysis of signal averaging electrocardiography with novel LabVIEW software can utilized to evaluate atrial and ventricular conduction delays in patients with atrial fibrillation and ventricular tachycardia. Complex fractionated atrial electrograms may be useful parameters to evaluate electrical cardiac arrhythmogenic signals in atrial fibrillation ablation.
Transcatheter aortiv valve implantation is a new safe strategy treatment for patients with symptomatic severe aortic stenosis and high operative risk. The aim of the study was to compare the pre-and post- muiscatheter aortiv valve implantation procedures to determine the atrioventricuktr conduction time as a potential predictor of permanent pacemaker therapy requirement after transcatheter aortiv valve implantation. The transcatheter aortiv valve implantation patients were divided into groups without pacemaker and with dual or single chamber pacemEtker with diffent atrioventrieular conduction time disturbance before and after transcatheter aortiv valve implantation. In heart failure, patients without permanent pacemaker therapy after transcatheter aortiv valve implantation, atrioventricular conduction time was prolonged after transcatheter aortiv valve implantation. In patients with permanent dual chamber pacemaker therapy after transcatheter aortiv valve implantation, atrioventricular conduction time was normalised with dual chaniber atrioventrieuku pacing mode. Atrioventricular conduction time may be a useful parameter to evaluate the risk of post-procedural atrioventricular conduction block and permanent pacemaker therapy in transcatheter north, valve implantation patients.
Spinal cord stimulation (SCS) is the most commonly used technique of neurostimulation. It involves the stimulation of the spinal cord and is therefore used to treat chronic pain. The existing esophageal catheters are used for temperature monitoring during an electrophysiology study with ablation and transesophageal echocardiography. The aim of the study was to model the spine and new esophageal electrodes for the transesophageal electrical pacing of the spinal cord, and to integrate them in the Offenburg heart rhythm model for the static and dynamic simulation of transesophageal neurostimulation. The modeling and simulation were both performed with the electromagnetic and thermal simulation software CST (Computer Simulation Technology, Darmstadt). Two new esophageal catheters were modelled as well as a thoracic spine based on the dimensions of a human skeleton. The simulation of directed transesophageal neurostimulation is performed using the esophageal balloon catheter with an electric pacing potential of 5 V and a trapezoidal signal. A potential of 4.33 V can be measured directly at the electrode, 3.71 V in the myocardium at a depth of 2 mm, 2.68 V in the thoracic vertebra at a depth of 10 mm, 2.1 V in the thoracic vertebra at a depth of 50 mm and 2.09 V in the spinal cord at a depth of 70 mm. The relation between the voltage delivered to the electrodes and the voltage applied to the spinal cord is linear. Virtual heart rhythm and catheter models as well as the simulation of electrical pacing fields and electrical sensing fields allow the static and dynamic simulation of directed transesophageal electrical pacing of the spinal cord. The 3D simulation of the electrical sensing and pacing fields may be used to optimize transesophageal neurostimulation.
Introduction: To simplify AV delay (AVD) optimization in cardiac resynchronization therapy (CRT), we reported that the hemodynamically optimal AVD for VDD and DDD mode CRT pacing can be approximated by individually measuring implant-related interatrial conduction intervals (IACT) in oesophageal electrogram (LAE) and adding about 50ms. The programmer-based St Jude QuickOpt algorithm is utilizing this finding. By automatically measuring IACT in VDD operation, it predicts the sensed AVD by adding either 30ms or 60ms. Paced AVD is strictly 50ms longer than sensed AVD. As consequence of those variations, several studies identified distinct inaccuracies of QuickOpt. Therefore, we aimed to seek for better approaches to automate AVD optimization.
Methods: In a study of 35 heart failure patients (27m, 8f, age: 67±8y) with Insync III Marquis CRT-D systems we recorded telemetric electrograms between left ventricular electrode and superior vena cava shock coil (LVtip/SVC = LVCE) simultaneously with LAE. By LVCE we measured intervals As-Pe in VDD and Ap-Pe in DDD operation between right atrial sense-event (As) or atrial stimulus (Ap), resp., and end of the atrial activity (Pe). As-Pe and Ap-Pe were compared with As-LA an Ap-LA in LAE, respectively.
Results: End of the left atrial activity in LVCE could clearly be recognized in 35/35 patients in VDD and 29/35 patients in DDD operation. We found mean intervals As-LA of 40.2±24.5ms and Ap-LA of 124.3±20.6ms. As-Pe was 94.8±24.1ms and Ap-Pe was 181.1±17.8ms. Analyzing the sums of As-LA + 50ms with duration of As-Pe and Ap-LA + 50ms with duration of Ap-Pe, the differences were 4.7±9.2ms and 4.2±8.6ms, resp., only. Thus, hemodynamically optimal timing of the ventricular stimulus can be triggered by automatically detecting Pe in LVCE.
Conclusion: Based on minimal deviations between LAE and LVCE approach, we proposed companies to utilize the LVCE in order to automate individual AVD optimization in CRT pacing.
Introduction: Patient selection for cardiac resynchronization therapy (CRT) requires quantification of left ventricular conduction delay (LVCD). After implantation of biventricular pacing systems, individual AV delay (AVD) programming is essential to ensure hemodynamic response. To exclude adverse effects, AVD should exceed individual implant-related interatrial conduction times (IACT). As result of a pilot study, we proposed the development of a programmer-based transoesophageal left heart electrogram (LHE) recording to simplify both, LVCD and IACT measurement. This feature was implemented into the Biotronik ICS3000 programmer simultaneously with 3-channel surface ECG.
Methods: A 5F oesophageal electrode was perorally applied in 44 heart failure CRT-D patients (34m, 10f, 65±8 yrs., QRS=162±21ms). In position of maximum left ventricular deflection, oesophageal LVCD was measured between onsets of QRS in surface ECG and oesophageal left ventricular deflection. Then, in position of maximum left atrial deflection (LA), IACT in VDD operation (As-LA) was calculated by difference between programmed AV delay and the measured interval from onset of left atrial deflection to ventricular stimulus in the oesophageal electrogram. IACT in DDD operation (Ap-LA) was measured between atrial stimulus and LA..
Results: LVCD of the CRT patients was characterized by a minimum of 47ms with mean of 69±23ms. As-LA and Ap-LA were found to be 41±23ms and 125±25ms, resp., at mean. In 7 patients (15,9%), IACT measurement in DDD operation uncovered adverse AVD if left in factory settings. In this cases, Ap-LA exceeded the factory AVD. In 6 patients (13,6%), IACT in VDD operation was less than or equal 10ms indicating the need for short AVD.
Conclusion: Response to CRT requires distinct LVCD and AVD optimization. The ICS3000 oesophageal LHE feature can be utilized to measure LVCD in order to justify selection for CRT. IACT measurement simplifies AV delay optimization in patients with CRT systems irrespective of their make and model.
In-vivo and in-vitro comparison of implant-based CRT optimization - What provide new algorithms?
(2011)
Introduction: In cardiac resynchronization therapy (CRT), individual AV delay (AVD) optimization can effectively increase hemodynamics and reduce non-responder rate. Accurate, automatic and easily comprehensible algorithms for the follow-up are desirable. QuickOpt is the first attempt of a semi-automatic intracardiac electrogram (IEGM) based AVD algorithm. We aimed to compare its accuracy and usefulness by in-vitro and in-vivo studies.
Methods: Using the programmable ARSI-4 four-chamber heart rhythm and IEGM simulator (HKP, Germany), the QuickOpt feature of an Epic HF system (St. Jude, USA) was tested in-vitro by simulated atrial IEGM amplitudes between 0.3 and 3.5mV during both, manual and automatic atrial sensing between 0.2 and 1.0mV. Subsequently, in 21 heart failure patients with implanted biventricular defibrillators, QuickOpt was performed in-vivo. Results of the algorithm for VDD and DDD stimulation were compared with echo AV delay optimization.
Results: In-vitro simulations demonstrated a QuickOpt measuring accuracy of ± 8ms. Depending on atrial IEGM amplitude, the algorithm proposed optimal AVD between 90 and 150ms for VDD and between 140 and 200ms for DDD operation, respectively. In-vivo, QuickOpt difference between individual AVD in DDD and VDD mode was either 50ms (20pts) or 40ms (1pt). QuickOpt and echo AVD differed by 41 ± 25ms (7 – 90ms) in VDD and by 18 ± 24ms (17-50ms) in DDD operation. Individual echo AVD difference between both modes was 73 ± 20ms (30-100ms).
Conclusion: The study demonstrates the value of in-vitro studies. It predicted QuickOpt deficiencies regarding IEGM amplitude dependent AVD proposals constrained to fixed individual differences between DDD and VDD mode. Consequently, in-vivo, the algorithm provided AVD of predominantly longer duration than echo in both modes. Accepting echo individualization as gold standard, QuickOpt should not be used alone to optimize AVD in CRT patients.
Background: Pulmonary vein isolation (PVI) using cryoballoon catheters are a recognized method for the treatment of atrial fibrillation (AF). This method offers shorter treatment duration in contrast to the classical therapy with high-frequency (HF) ablation.
Purpose: The aim of this study was to integrate different cryoballoon catheters and a HF catheter into a heart rhythm model and to compare them by means of static and dynamic electromagnetic and thermal simulation in use under AF.
Methods: The cryoballoon catheters from Medtronic and the HF ablation catheter from Osypka were modelled virtually with the aid of manufacturer specifications and the CST (Computer Simulation Technology, Darmstadt) simulation program. The cryoballoon catheter was located in the lower left pulmonary vein of the virtual heart rhythm model for the realization of pulmonary vein isolation (PVI) by cryoenergy. The simulated temperature at the balloon surface was -50°C during the simulation.
Results: During a simulated 20 second application of a cryoballoon catheter at -50°C, a temperature of -24°C was measured at a depth of 0.5 mm in the myocardium. At a depth of 1 mm the temperature was -3°C, at 2 mm depth 18°C and at 3 mm depth 29°C. Under the 15 second application of a RF catheter with a 8 mm electrode and a power of 5 W at 420 kHz, the temperature at the tip of the electrode was 110°C. At a depth of 0.5 mm in the myocardium, the temperature was 75°C, at a depth of 1 mm 58°C, at 2 mm depth 45°C and at 3 mm depth 38°C.
Conclusions: The simulation of temperature profiles during the virtual application of several catheter models in the heart rhythm model allows the static and dynamic simulation of PVI by cryoballoon ablation and RF ablation. The three-dimensional simulation can be used to improve ablation applications by creating a model in personalized cardiac rhythm therapy from MRI or CT data of a heart and finding a favourable position for ablation of AF.