Refine
Year of publication
- 2015 (4) (remove)
Is part of the Bibliography
- yes (4) (remove)
Keywords
- Datenmanagement (1)
- Dienstleistung (1)
- Informationstechnik (1)
- Kommunikation (1)
- Programmierung (1)
- Quellcode (1)
- Sicherheit (1)
- cloud computing (1)
Covert and Side-Channels have been known for a long time due to their versatile forms of appearance. For nearly every technical improvement or change in technology, such channels have been (re-)created or known methods have been adapted. For example the introduction of hyperthreading technology has introduced new possibilities for covert communication between malicious processes because they can now share the arithmetic logical unit (ALU) as well as the L1 and L2 cache which enables establishing multiple covert channels. Even virtualization which is known for its isolation of multiple machines is prone to covert and side-channel attacks due to the sharing of resources. Therefore itis not surprising that cloud computing is not immune to this kind of attacks. Even more, cloud computing with multiple, possibly competing users or customers using the same shared resources may elevate the risk of unwanted communication. In such a setting the ”air gap” between physical servers and networks disappears and only the means of isolation and virtual separation serve as a barrier between adversary and victim. In the work at hand we will provide a survey on weak spots an adversary trying to exfiltrate private data from target virtual machines could exploit in a cloud environment. We will evaluate the feasibility of example attacks and point out possible mitigation solutions if they exist.
We provide a privacy-friendly cloud-based smart metering storage architecture which provides few-instance storage on encrypted measurements by at the same time allowing SQL queries on them. Our approach is most flexible with respect to two axes: on the one hand it allows to apply filtering rules on encrypted data with respect to various upcoming business cases; on the other hand it provides means for a storage-efficient handling of encrypted measurements by applying server-side deduplication techniques over all incoming smart meter measurements. Although the work at hand is purely dedicated to a smart metering architecture we believe our approach to have value for a broader class of IoT cloud storage solutions. Moreover, it is an example for Privacy-by-design supporting the positive-sum paradigm.
We propose secure multi-party computation techniques for the distributed computation of the average using a privacy-preserving extension of gossip algorithms. While recently there has been mainly research on the side of gossip algorithms (GA) for data aggregation itself, to the best of our knowledge, the aforementioned research line does not take into consideration the privacy of the entities involved. More concretely, it is our objective to not reveal a node's private input value to any other node in the network, while still computing the average in a fully-decentralized fashion. Not revealing in our setting means that an attacker gains only minor advantage when guessing a node's private input value. We precisely quantify an attacker's advantage when guessing - as a mean for the level of data privacy leakage of a node's contribution. Our results show that by perturbing the input values of each participating node with pseudo-random noise with appropriate statistical properties (i) only a minor and configurable leakage of private information is revealed, by at the same time (ii) providing a good average approximation at each node. Our approach can be applied to a decentralized prosumer market, in which participants act as energy consumers or producers or both, referred to as prosumers.