Refine
Year of publication
Document Type
- Conference Proceeding (644)
- Article (unreviewed) (449)
- Article (reviewed) (425)
- Part of a Book (358)
- Contribution to a Periodical (221)
- Book (175)
- Other (127)
- Periodical Part (46)
- Patent (37)
- Report (19)
Language
- German (1427)
- English (1115)
- Other language (3)
- Multiple languages (3)
- Russian (3)
- Spanish (1)
Is part of the Bibliography
- yes (2552) (remove)
Keywords
- Digitalisierung (28)
- Dünnschichtchromatographie (26)
- Kommunikation (23)
- Energieversorgung (20)
- Management (18)
- Industrie 4.0 (16)
- Mathematik (14)
- Social Media (14)
- Bildung (13)
- Finite-Elemente-Methode (13)
Institute
- Fakultät Medien und Informationswesen (M+I) (718)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (615)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (531)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (380)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (178)
- INES - Institut für Energiesystemtechnik (124)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (82)
- Zentrale Einrichtungen (75)
- ACI - Affective and Cognitive Institute (45)
- IaF - Institut für angewandte Forschung (27)
本发明涉及一种用于生物阻抗测量和/或用于神经刺激的食道电极探针(10);用于经食道心脏病治疗和/或心脏病诊断的设备(100);以及一种用于控制或调节用于心脏导管消融装置和/或心脏、循环和/或肺支持装置的方法。食道电极探针包括生物阻抗测量装置,用于测量围绕食道电极探针的组织中的至少一部分组织的生物阻抗。生物阻抗装置包括至少一个第一电极和至少一个第二电极,其中至少一个第一电极(12A)布置在食道电极探针的面向心脏的一侧(14)上,并且至少一个第二电极(12B)布置在食道电极探针背离心脏的一侧(16)上。装置(100)包括食道电极探针(10)和控制和/或评估装置(30),其被配置用于从至少一个第一电极(12A)接收第一生物阻抗测量信号并从至少一个第二电极(12B)接收第二生物阻抗测量信号,并对这些信号进行比较,并且在比较的基础上产生控制信号。该控制信号可以是用于控制或调节心脏导管消融装置和/或心脏、循环和/或肺支持装置的信号。
Клиновые акустические волны в твёрдом те-ле — это третий фундаментальный тип волн, после объёмных и поверхност-ных волн, импульсы которых распространяются без изменений своих форм (дисперсия отсутствует). Систему упругого клина можно получить из систе-мы упругого полупространства, “разрезав” его вдоль некоторой плоскости, а систему упругого полупространства можно получить из распределённой в пространстве упругой среды тем же методом, поэтому связи между поверх-ностными и объёмными волнами должны во многом повторяться при рас-смотрении клиновых и поверхностных волн. Например, существование быст-рых псевдоповерхностных волн в системе упругого полупространства, излу-чающих энергию при распространении в объёмные волны, имеет свой аналог и для системы упругого клина: совсем недавно были открыты псевдоклино-вые волны, излучающие как объёмные, так и поверхностные волны по мере своего распространения. С другой стороны, в этой же последовательности объёмных, поверхностных и клиновых волн должны выделяться и отличи-тельные особенности. Если поверхностные волны отличаются от объёмных волн тем, что они локализованы на двухмерной поверхности (объёмные вол-ны являются нелокализованными), то клиновые волны локализованы вдоль одномерной поверхности (линии) — кромки клина. Клиновые волны — это волноводные акустические волны, которые распространяются без дифракци-онных потерь, а также они не обладают дисперсией, поскольку в системе бесконечного упругого клина нет ни одного параметра размерности длины.
В заключении приведены основные результаты работы, которые со-стоят в следующем:
1. С помощью метода функций Лагерра была построена функция динами-ческого отклика на импульсный линейный источник (функция Грина) для задачи Лэмба в полупространстве, а также были изучены вопросы о сходимости и устойчивости данного построения. Было показано, что в предельном случае построенная функция динамического отклика совпа-дает с классической функцией Грина для этой задачи.
2. На основе результатов предыдущего пункта была построена функция Грина для упругого клина (и функция плотности состояния на кром-ке, совпадающая с диагональными компонентами функции Грина), с по-мощью которой удалось идентифицировать импульсы псевдоклиновых волн на экспериментальных кривых.
3. Для определённых клиновых конфигураций в анизотропных упругих средах (тетрагональных кристаллах) удалось получить критерий суще-ствования клиновых волн на основе характеристик поверхностных волн, распространяющихся на гранях исследуемых конфигураций, а также в некоторых случаях удалось классифицировать клиновые волны по типу симметрии.
4. Была разработана теория, описывающая формы импульсов клиновых волн при различных режимах генерации: абляционном и термоупругом.
5. Для клиновых волн была представлена нелинейная теория второго по-рядка. Были проведены численные расчёты функции ядра эволюцион-ного уравнения клиновых волн для кремниевых клиньев с одной гранью, совпадающей с поверхностью (111) (поверхность скола), и с произволь-ной ориентацией второй грани.
6. Были описаны фундаментальные отличия нелинейных линовых волн от нелинейных объёмных и поверхностных волн, а также было проведено численное моделирование эволюции импульса клиновых волн, которое показало соответствие теории эксперименту.
7. Получены решения солитонного типа для клиновых волн. Рассмотрены взаимодействия солитонов и свойства солитонного распада.
Die Erfindung betrifft eine Ösophaguselektrodensonde bzw. einen Ösophaguskatheter 10 zur Bioimpedanzmessung und/oder zur Neurostimulation, eine Vorrichtung 100 zur transösophagealen kardiologischen Behandlung und/oder kardiologischen Diagnose und ein Verfahren zum Steuern oder Regeln einer Ablationseinrichtung zum Durchführen einer Herzablation. Die Ösophaguselektrodensonde 10 umfasst eine Bioimpedanzmesseinrichtung zur Messung der Bioimpedanz von zumindest einem Teil des die Ösophaguselektrodensonde 10 umgebenden Gewebes. Die Bioimpedanzmesseinrichtung umfasst mindestens eine erste Elektrode 12A und mindestens eine zweite Elektrode 12B, wobei die mindestens eine erste Elektrode 12A auf einer dem Herzen zugewandten Seite 14 der Ösophaguselektrodensonde 10 angeordnet ist, und die mindestens eine zweite Elektrode 12B auf einer vom Herzen abgewandten Seite 16 der Ösophaguselektrodensonde 10 angeordnet ist.Die Vorrichtung 100 umfasst die Ösophaguselektrodensonde 10 und eine Steuer- und/oder Auswerteinrichtung 30. Die Steuer- und/oder Auswerteinrichtung 30 ist eingerichtet, ein erstes Bioimpedanzmesssignal von der mindestens einen ersten Elektrode 12A und ein zweites Bioimpedanzmesssignal von der mindestens einen zweiten Elektrode 12B zu empfangen und zu vergleichen, und ein Kontrollsignal auf Basis des Vergleichs zu generieren. Das Kontrollsignal kann ein Signal zum Steuern oder Regeln einer Ablationseinrichtung zum Durchführen einer Herzablation sein.
Die Geschäftsleitung und Führungskräfte von Eller Repro+Druck beschlossen im Juli 1994 die Teilnahme am damls noch neuen EU-Öko-Audit. Die Durchführung des Audits ist für 1996 geplant. Zwei Diplomanden der FH Offenburg wurde die Möglichkeit gegeben, als externe Berater für Eller Repro+Druck ihre Diplomarbeit über die Vorbereitung zum Öko-Audit zu schreiben. Der Betrieb (170 Mitarbeiter) verfügt über elektronische Bildverarbeitung auf Scitex- und Mac-Schiene, derzeit noch konventionelle Plattenkopie und -entwicklung, fünf Offsetrotationen sowie Weiterverarbeitung mit Sammelheftern und Falzmaschinen. Der Referent berichtet über die Erfahrungen, die sein Unternehmen bis zum Herbst 1995 mit der Vorbereitung zum Öko-Audit gemacht hat, und gibt Praxistips. Zusammen mit den Beratern wurden eine Aufnahme der betrieblichen Situation durchgeführt, Maßnahmen geplant und zum Teil durchgeführt.