Refine
Year of publication
- 2015 (4) (remove)
Document Type
- Part of a Book (1)
- Conference Proceeding (1)
- Patent (1)
- Article (unreviewed) (1)
Is part of the Bibliography
- yes (4) (remove)
Keywords
- App <Programm> (1)
- Applikation (1)
- Datenmanagement (1)
- Mathematik (1)
- Physik (1)
Smartphones Welcome! Preparatory Course in Mathematics using the Mobile App MassMatics. Case Study
(2015)
Die Erfindung betrifft ein Verfahren zum Spektrum-Monitoring eines vorgegebenen Frequenzbandes, bei dem die spektrale Leistungsdichte (S(f)) innerhalb des vorgegebenen Frequenzbandes für alle in dem Frequenzband enthaltenen Rausch- und Signalanteile bestimmt wird und für das Detektieren des Vorhandenseins eines oder mehrerer Signale innerhalb des vorgegebenen Frequenzbandes das Überschreiten eines Schwellenwertes (λ) durch die spektrale Leistungsdichte (S(f)) ausgewertet wird. Erfindungsgemäß wird der Schwellenwert (λ) abhängig von einer Schätzung einer Verteilungsdichte (hR(S)) für den Rauschanteil der spektralen Leistungsdichte (S(f)) innerhalb des vorgegebenen Frequenzbandes und einem vorgegebenen Wert für die Falschalarmwahrscheinlichkeit (Pfa) berechnet.
We propose secure multi-party computation techniques for the distributed computation of the average using a privacy-preserving extension of gossip algorithms. While recently there has been mainly research on the side of gossip algorithms (GA) for data aggregation itself, to the best of our knowledge, the aforementioned research line does not take into consideration the privacy of the entities involved. More concretely, it is our objective to not reveal a node's private input value to any other node in the network, while still computing the average in a fully-decentralized fashion. Not revealing in our setting means that an attacker gains only minor advantage when guessing a node's private input value. We precisely quantify an attacker's advantage when guessing - as a mean for the level of data privacy leakage of a node's contribution. Our results show that by perturbing the input values of each participating node with pseudo-random noise with appropriate statistical properties (i) only a minor and configurable leakage of private information is revealed, by at the same time (ii) providing a good average approximation at each node. Our approach can be applied to a decentralized prosumer market, in which participants act as energy consumers or producers or both, referred to as prosumers.